Your Familiar Tools
Feel free to use the knitr infrastructure with dozens of
tunable options in your document.
## Warning: package 'sf' was built under R version 4.3.3
## Linking to GEOS 3.11.2, GDAL 3.8.2, PROJ 9.3.1; sf_use_s2() is TRUE
## Warning: package 'leaflet' was built under R version 4.3.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'readxl' was built under R version 4.3.3
## Warning: package 'htmlwidgets' was built under R version 4.3.3
## Reading layer `BR_Municipios_2023' from data source
## `C:\Users\lynco\Documents\R\BR_Municipios_2023.shp' using driver `ESRI Shapefile'
## Simple feature collection with 5572 features and 13 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -73.99045 ymin: -33.75118 xmax: -28.84764 ymax: 5.271841
## Geodetic CRS: SIRGAS 2000
dados1 = read_xlsx("artigo_casa_rui.xlsx", skip = 1, sheet = "mapa1") %>%
mutate(CodMun = as.character(CodMun))
dados2 = read_xlsx("artigo_casa_rui.xlsx", skip = 1, sheet = "mapa2") %>%
mutate(CodMun = as.character(CodMun))
dados3 = read_xlsx("artigo_casa_rui.xlsx", skip = 1, sheet = "mapa3") %>%
mutate(CodMun = as.character(CodMun))
dados4 = read_xlsx("artigo_casa_rui.xlsx", skip = 1, sheet = "mapa4") %>%
mutate(CodMun = as.character(CodMun))
dados <- list(dados1, dados2, dados3, dados4)
# Juntar todos os dataframes pela coluna CodMun
dados <- reduce(dados, left_join, by = "CodMun")
# Realizar o merge entre o shapefile e os dados do Excel pelo código do IBGE
brasil_municipios <- brasil_municipios %>%
left_join(dados3 %>% mutate(CodMun = as.character(CodMun)), by = c("CD_MUN" = "CodMun"))
#brasil_municipios <- brasil_municipios %>%
# filter(!is.na(meta_cv))pal_programa <- colorFactor(palette = "Set3", domain = brasil_municipios$`nome do programa.x`)
# Calcular os percentis para a variável meta_cv
percentis_meta_cv <- quantile(brasil_municipios$meta_cv, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1), na.rm = TRUE)
# Definir a paleta de cores com base nos percentis
pal_meta_cv <- colorBin(palette = "YlGnBu", domain = brasil_municipios$meta_cv, bins = percentis_meta_cv, na.color = "transparent")
mapa_brasil <- leaflet() %>%
addPolygons(
data = brasil_municipios %>%
filter(!is.na(meta_cv)),
fillColor = ~pal_meta_cv(meta_cv),
weight = 1,
opacity = 1,
color = "black",
fillOpacity = 0.7,
popup = ~paste("Município: ", NM_MUN, "<br>Meta CV: ", `meta_cv`),
group = "Meta CV"
) %>%
addLegend(
data = brasil_municipios %>%
filter(!is.na(meta_cv)),
pal = pal_meta_cv,
values = ~meta_cv,
opacity = 0.7,
title = "Meta CV",
position = "bottomright",
group = "Meta CV",
labFormat = labelFormat(between = " - ")
) %>%
addLayersControl(
overlayGroups = c("Nome do Programa", "Meta CV"),
options = layersControlOptions(collapsed = FALSE)
)## Warning: sf layer has inconsistent datum (+proj=longlat +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +no_defs).
## Need '+proj=longlat +datum=WGS84'
## Warning: package 'tidyverse' was built under R version 4.3.3
## Warning: package 'ggplot2' was built under R version 4.3.2
## Warning: package 'stringr' was built under R version 4.3.2
## Warning: package 'lubridate' was built under R version 4.3.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ readr 2.1.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors