library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
q1 <- inner_join(flights, planes, by = 'tailnum') %>%
filter(origin == 'LGA', dest == 'XNA')
2. join - Add the airline name to the flights table (1 POINT)
q2 <- inner_join(flights, airlines, by = 'carrier')
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
commercial_airports <- flights%>%
select(origin)%>%
distinct()%>%
rename(faa= origin)
q3 <- anti_join(airports, commercial_airports, by = 'faa')
Create a table with the names of the airports with the most
winds (wind_speed > 30). The table must contain only the
airport
name (airports$name) and no duplicate rows
q5 <- weather %>%
filter(wind_speed> 30)%>%
select(origin)%>%
distinct()%>%
inner_join(airports, by = c('origin'= 'faa'))%>%
select(name)%>%
distinct()