library(tidyverse)  
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13)

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

q1 <- inner_join(flights, planes, by = 'tailnum') %>%
  filter(origin == 'LGA', dest == 'XNA')

2. join - Add the airline name to the flights table (1 POINT)

q2 <- inner_join(flights, airlines, by = 'carrier')

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

commercial_airports <- flights%>%
  select(origin)%>%
  distinct()%>%
  rename(faa= origin)

q3 <- anti_join(airports, commercial_airports, by = 'faa')

Create a table with the names of the airports with the most

winds (wind_speed > 30). The table must contain only the airport

name (airports$name) and no duplicate rows

q5 <- weather %>%
  filter(wind_speed> 30)%>%
  select(origin)%>%
  distinct()%>%
  inner_join(airports, by = c('origin'= 'faa'))%>%
  select(name)%>%
  distinct()