Questionnaire Validation

Descriptive Stat

Perceived performance questions

Data summary
Name Perform[[“01-data”]]
Number of rows 100
Number of columns 15
_______________________
Column type frequency:
numeric 15
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Q1 0 1 3.83 1.01 1 3 4 5.00 5 ▁▁▃▇▅
Q2 0 1 3.82 0.97 1 3 4 5.00 5 ▁▂▅▇▅
Q3 0 1 3.90 0.97 2 3 4 5.00 5 ▂▅▁▇▇
Q4 0 1 3.80 0.97 1 3 4 5.00 5 ▁▂▅▇▅
Q5 0 1 3.98 1.00 1 3 4 5.00 5 ▁▂▅▇▇
E1 0 1 3.78 1.01 1 3 4 5.00 5 ▁▂▅▇▆
E2 0 1 3.82 0.97 1 3 4 5.00 5 ▁▂▅▇▆
E3 0 1 3.84 1.02 1 3 4 5.00 5 ▁▂▅▇▇
E4 0 1 3.74 0.93 2 3 4 4.00 5 ▂▅▁▇▃
E5 0 1 3.81 0.97 2 3 4 5.00 5 ▂▇▁▇▇
T1 0 1 3.83 0.99 1 3 4 5.00 5 ▁▁▅▇▆
T2 0 1 3.79 0.97 1 3 4 5.00 5 ▁▂▆▇▆
T3 0 1 3.72 0.94 1 3 4 4.00 5 ▁▁▇▇▅
T4 0 1 3.79 0.96 1 3 4 4.25 5 ▁▂▅▇▅
T5 0 1 3.64 0.94 1 3 4 4.00 5 ▁▂▇▇▃

Job satisfaction questions

Data summary
Name Satisfy[[“01-data”]]
Number of rows 100
Number of columns 34
_______________________
Column type frequency:
numeric 34
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
CF1 0 1 3.70 1.23 1 2 4 5.00 5 ▁▆▁▇▇
CF2 0 1 3.63 1.29 1 2 4 5.00 5 ▁▇▁▇▇
CF3 0 1 3.67 1.24 1 2 4 5.00 5 ▁▆▁▇▇
CF4 0 1 3.63 1.26 1 2 4 5.00 5 ▁▆▁▇▇
L1 0 1 3.47 1.32 1 2 4 5.00 5 ▂▆▂▇▆
L2 0 1 3.31 1.38 1 2 4 4.25 5 ▂▇▁▇▆
L3 0 1 3.26 1.42 1 2 4 4.25 5 ▃▇▁▇▆
L4 0 1 3.54 1.39 1 2 4 5.00 5 ▂▅▁▇▇
L5 0 1 3.43 1.37 1 2 4 5.00 5 ▂▇▁▇▇
E2 0 1 3.48 1.30 1 2 4 5.00 5 ▁▇▁▇▆
E1 0 1 3.61 1.20 1 2 4 5.00 5 ▁▆▁▇▅
E3 0 1 3.55 1.21 1 2 4 5.00 5 ▁▇▁▇▆
E4 0 1 3.58 1.22 1 2 4 5.00 5 ▁▆▁▇▅
E5 0 1 3.89 1.12 1 4 4 5.00 5 ▁▃▁▇▆
PA1 0 1 3.53 1.26 1 2 4 5.00 5 ▁▇▁▇▆
PA2 0 1 3.49 1.29 1 2 4 5.00 5 ▁▇▁▇▆
PA3 0 1 3.58 1.26 1 2 4 5.00 5 ▁▇▁▇▇
PA4 0 1 3.44 1.31 1 2 4 5.00 5 ▁▇▁▇▆
PA5 0 1 3.62 1.23 1 2 4 5.00 5 ▁▅▁▇▅
I1 0 1 3.50 1.28 1 2 4 5.00 5 ▁▇▁▇▆
I2 0 1 3.44 1.27 1 2 4 4.00 5 ▁▇▁▇▅
I3 0 1 3.52 1.26 1 2 4 5.00 5 ▁▇▁▇▆
I4 0 1 3.00 0.89 1 2 3 4.00 4 ▁▇▁▆▇
I5 0 1 3.32 1.32 1 2 4 4.25 5 ▁▇▁▆▅
ED1 0 1 3.53 1.24 1 2 4 5.00 5 ▁▇▁▇▆
ED2 0 1 3.48 1.27 1 2 4 5.00 5 ▁▇▁▇▆
ED3 0 1 3.47 1.23 1 2 4 4.00 5 ▁▇▁▇▅
ED4 0 1 3.48 1.27 1 2 4 5.00 5 ▁▇▁▇▆
ED5 0 1 3.39 1.22 1 2 4 4.00 5 ▁▇▁▇▅
RM1 0 1 3.62 1.21 1 2 4 5.00 5 ▁▆▁▇▆
RM2 0 1 3.60 1.17 2 2 4 4.25 5 ▆▁▁▇▅
RM3 0 1 3.61 1.19 1 2 4 4.25 5 ▁▅▁▇▅
RM4 0 1 3.65 1.18 2 2 4 5.00 5 ▆▁▁▇▆
RM5 0 1 3.62 1.20 1 2 4 5.00 5 ▁▆▁▇▆

Interpretation:

Descriptive Stat shows summary statistics on the collected data.

Construct Validity

Construct validity evaluates whether a survey or test measures the theoretical construct it intends to measure.
Factor Analysis is a common statistical method used to check construct validity by identifying underlying structures in the data.

Exploratory Factor Analysis

EFA will be used to test whether the set of questions are measuring the same construct

Step 1: Checking Sampling Adequacy

Factor Analysis requires:

1️⃣ Kaiser-Meyer-Olkin (KMO) test → Checks sample adequacy (should be ≥ 0.60).

[1] "Perceived performance"
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = Perform[["01-data"]])
Overall MSA =  0.95
MSA for each item = 
  Q1   Q2   Q3   Q4   Q5   E1   E2   E3   E4   E5   T1   T2   T3   T4   T5 
0.93 0.93 0.97 0.91 0.95 0.96 0.95 0.96 0.96 0.93 0.98 0.96 0.95 0.94 0.95 
Perceived performance
MSA
Q1 0.9256642
Q2 0.9315976
Q3 0.9687490
Q4 0.9084615
Q5 0.9510895
E1 0.9626467
E2 0.9463807
E3 0.9578144
E4 0.9587813
E5 0.9334827
T1 0.9751672
T2 0.9622190
T3 0.9534971
T4 0.9375298
T5 0.9529314
Overall 0.9480763
Job Satisfaction
MSA
CF1 0.9657551
CF2 0.9335115
CF3 0.9314618
CF4 0.9588260
L1 0.8895295
L2 0.9237876
L3 0.8844444
L4 0.9548260
L5 0.9216280
E2 0.9443449
E1 0.9309878
E3 0.9537231
E4 0.9221422
E5 0.9538823
PA1 0.9668021
PA2 0.9559752
PA3 0.9086324
PA4 0.9683483
PA5 0.9664113
I1 0.9270253
I2 0.8873321
I3 0.9223565
I4 0.9556711
I5 0.9616464
ED1 0.8940627
ED2 0.9139832
ED3 0.9135873
ED4 0.9381815
ED5 0.9606524
RM1 0.9447022
RM2 0.9466630
RM3 0.9490725
RM4 0.9150753
RM5 0.9109256
Overall 0.9334225

Interpretation:

KMO test on sampling adequacy shows that the overall MSA of questions on Perceived performance and Job Satisfaction, which are 0.9334225 and 0.9480763, respectively, are both >= 0.60. This means that we can perform EFA on the survey data on Perceived Performance and Job Satisfaction and that that the sample of 100 are considered adequate for Exploratory Factor Analysis.


2️⃣ Bartlett’s test → Checks if variables are correlated (p-value should be < 0.05).

Perceived performance
Chi_sq p.value df
2264.652 0 105
Job Satisfaction
Chi_sq p.value df
5940.36 0 561

Interpretation:

Bartlett’s test show that both the data on Perceived Performance (p-value = 0 ) and Job Satisfaction (p-value = 0 ) have p-value of less than 0.05. This means that questions are in fact, correlated, which may also imply that they measure their respective major construct.

Step 2: Check optimal number of factors (constructs)

Parallel analysis suggests that the number of factors =  1  and the number of components =  1 

Parallel analysis suggests that the number of factors =  1  and the number of components =  1 

Interpretation:

Scree plot shows that the ideal number of significant factor/s for Perceived Performance and Job Satisfaction are both 1.

Step 3: Perform EFA

Perceived performance

Factor loadings
item PA1 PA2 PA3
Q1 0.834 0.295 0.048
Q2 0.841 0.247 0.077
Q3 0.833 0.238 0.111
Q4 0.864 0.062 0.231
Q5 0.85 0.083 0.26
E1 0.927 -0.139 0.115
E2 0.964 -0.134 0.034
E3 0.932 -0.108 0.008
E4 0.939 -0.095 -0.04
E5 0.928 -0.095 0.014
T1 0.945 -0.049 -0.1
T2 0.935 -0.092 -0.122
T3 0.894 0.008 -0.134
T4 0.889 0.109 -0.246
T5 0.9 0.066 -0.092
Factor summary statistcs
PA1 PA2 PA3
SS loadings 12.206 0.381 0.292
Proportion Var 0.814 0.025 0.019
Cumulative Var 0.814 0.839 0.859
Proportion Explained 0.948 0.030 0.023
Cumulative Proportion 0.948 0.977 1.000

Job Satisfcation

Factor loadings
item PA4 PA6 PA2 PA5 PA1 PA3 PA7
CF1 0.081 0.13 0.261 0.467 -0.006 0.187 -0.042
CF2 -0.05 0.118 0.174 0.637 0.118 0.142 -0.003
CF3 0.082 0.013 0.025 0.739 0.057 0.028 0.069
CF4 0.206 0.171 0.341 0.367 -0.185 -0.023 0.192
L1 0.191 0.067 0.437 0.215 -0.056 0.062 0.173
L2 0.096 0.146 0.623 0.088 0.051 -0.025 0.111
L3 0.046 0.049 0.681 0.124 0.159 0.065 0.016
L4 0.159 -0.004 0.459 0.128 0.007 0.331 0.036
L5 0.142 0.121 0.441 0.156 0.128 0.02 0.181
E2 0.008 0.178 0.276 -0.042 0.033 0.31 0.427
E1 0.036 0.261 0.081 0.085 0.159 0.297 0.196
E3 -0.143 0.178 0.177 0.068 0.248 0.443 0.205
E4 0.139 0.111 0.074 -0.002 0.028 0.715 -0.043
E5 0.116 0.019 -0.164 0.281 -0.096 0.6 0.144
PA1 0.185 0.252 -0.007 0.141 0.264 0.024 0.33
PA2 0.164 0.174 0.042 0.222 0.309 0.047 0.22
PA3 0.284 0.124 -0.025 0.181 0.322 0.062 0.248
PA4 0.316 0.048 0.063 0.18 0.311 0.078 0.156
PA5 0.547 -0.049 0.099 -0.031 0.133 0.232 0.165
I1 0.32 0.187 0.092 0.188 0.229 -0.078 0.192
I2 0.023 0.098 0.183 0.165 0.569 0.029 0.126
I3 0.179 0.123 0.147 0.163 0.445 -0.047 0.147
I4 0.198 0.128 0.067 -0.024 0.44 0.284 -0.029
I5 0.255 0.285 0.209 0 0.324 0.023 0.017
ED1 0.255 0.357 -0.005 0.172 0.323 0.093 -0.086
ED2 0.19 0.563 0.03 0.177 0.137 0.029 -0.049
ED3 -0.005 0.89 0.072 -0.043 0.005 0.073 0.015
ED4 -0.009 1.008 -0.038 0.029 -0.025 -0.006 0.033
ED5 0.234 0.393 0.238 0.014 0.164 0.029 0.028
RM1 0.68 0.067 0.032 0.035 0.043 0.019 0.226
RM2 0.526 0.093 0.012 0.217 0.166 0.037 0.031
RM3 0.755 0.091 0.063 0.021 0.01 0.087 -0.021
RM4 0.7 0.142 -0.002 0.139 0.106 0.053 -0.087
RM5 0.643 0.029 0.247 0.027 -0.052 0.122 0.083
Factor summary statistcs
PA4 PA6 PA2 PA5 PA1 PA3 PA7
SS loadings 6.384 5.689 4.330 4.218 3.735 3.129 2.332
Proportion Var 0.188 0.167 0.127 0.124 0.110 0.092 0.069
Cumulative Var 0.188 0.355 0.482 0.607 0.716 0.808 0.877
Proportion Explained 0.214 0.191 0.145 0.141 0.125 0.105 0.078
Cumulative Proportion 0.214 0.405 0.550 0.692 0.817 0.922 1.000

Interpretation:

Using EFA, results showed that for Perceived performance questions, only one factor explained 80% of the total variance. This suggests that all fifteen questions are measuring just one construct. Additional factors/constructs may not be as meaningful ( SS Loadings< 1 ). It can also be seen that only the first construct have high proportion of variance ( around 81% ) while other factors have very low share of variance ( <1% ). This may suggest revising the factor structure.

For questions on Job Satisfaction, variance is too spread across 7 factors, which may suggest overfactoring. Consider decrease the number of factors when some of the grouped questions does not uniquely identify to one construct. Factors may be poorly defined and items are not well-grouped into 7 factors.

Confirmatory Factor Analysis

CFA for Perceived performance

CFA Factor loadings
Factor Item Estimate SE p_value
Quality Q1 1 0.000 NA
Quality Q2 0.963 0.044 0
Quality Q3 0.961 0.054 0
Quality Q4 0.95 0.053 0
Quality Q5 0.985 0.054 0
Efficiency E1 1 0.000 NA
Efficiency E2 0.997 0.059 0
Efficiency E3 1.026 0.061 0
Efficiency E4 0.934 0.052 0
Efficiency E5 0.968 0.053 0
Timeliness T1 1 0.000 NA
Timeliness T2 0.962 0.049 0
Timeliness T3 0.919 0.067 0
Timeliness T4 0.935 0.051 0
Timeliness T5 0.926 0.056 0
CFA Fit indices
Index Value
chisq chisq 173.170
df df 87.000
pvalue pvalue 0.000
cfi cfi 0.963
tli tli 0.955
rmsea rmsea 0.100
srmr srmr 0.019

Interpretation

Estimates of CFA factor loadings shows that each question in the Perceived performance strongly correlates to their respective latent factors ( factor loadings of >0.6 ).

CFA for Job Satisfaction

CFA Factor loadings
Factor Item Estimate SE p_value
Customer Focus CF1 1 0.000 NA
Customer Focus CF2 1.09 0.050 0
Customer Focus CF3 0.939 0.080 0
Customer Focus CF4 0.996 0.070 0
Leadership L1 1 0.000 NA
Leadership L2 1.084 0.054 0
Leadership L3 1.134 0.067 0
Leadership L4 1.04 0.076 0
Leadership L5 1.115 0.062 0
Engagement of the People E1 1 0.000 NA
Engagement of the People E2 1.15 0.073 0
Engagement of the People E3 1.042 0.084 0
Engagement of the People E4 0.933 0.079 0
Engagement of the People E5 0.749 0.091 0
Process Approach PA1 1 0.000 NA
Process Approach PA2 1.025 0.037 0
Process Approach PA3 1.016 0.036 0
Process Approach PA4 1.002 0.042 0
Process Approach PA5 0.874 0.063 0
Evidence based Decision Making ED1 1 0.000 NA
Evidence based Decision Making ED2 1.045 0.044 0
Evidence based Decision Making ED3 0.97 0.069 0
Evidence based Decision Making ED4 1.023 0.062 0
Evidence based Decision Making ED5 0.953 0.060 0
Improvement I1 1 0.000 NA
Improvement I2 1.013 0.034 0
Improvement I3 0.998 0.042 0
Improvement I4 0.609 0.043 0
Improvement I5 1.011 0.043 0
Relationship Management RM1 1 0.000 NA
Relationship Management RM2 0.965 0.035 0
Relationship Management RM3 0.964 0.033 0
Relationship Management RM4 0.988 0.030 0
Relationship Management RM5 0.972 0.036 0
CFA Fit indices
Index Value
chisq chisq 1427.016
df df 506.000
pvalue pvalue 0.000
cfi cfi 0.853
tli tli 0.837
rmsea rmsea 0.135
srmr srmr 0.034

Interpretation

Estimates of CFA factor loadings shows that each question in the Job Satisfaciton strongly correlates to their respective latent factors ( factor loadings of >0.6 ).

Convergence and Discriminant Validity

Average Variance Extracted (AVE)

AVE measures how much variance in indicators is explained by the latent factor

Convergent validity of Perceived performance questions
x
Quality 0.8729198
Efficiency 0.8526864
Timeliness 0.8295374
Convergent validity of Job Satisfaction questions
x
Customer Focus 0.8387971
Leadership 0.8595479
Engagement of the People 0.7362619
Process Approach 0.8663970
Evidence based Decision Making 0.8866793
Improvement 0.8654847
Relationship Management 0.8771183

Interpretation

Estimated AVE for each factor shows that items under each factor have high convergent validity. This means that items are strongly related and that participants interpret the items consistently

Composite Reliability

CR measures construct reliability and internal consistency

Convergent validity of Perceived performance questions
x
Quality 0.9718841
Efficiency 0.9667543
Timeliness 0.9600002
Convergent validity of Job Satisfaction questions
x
Customer Focus 0.9557580
Leadership 0.9691124
Engagement of the People 0.9215045
Process Approach 0.9722438
Evidence based Decision Making 0.9753546
Improvement 0.9714854
Relationship Management 0.9723574

Interpretation:

Results show factors have high Composite reliability which implies that all items consistently measure their respective construct.

Fornell-Lacker Criterion (AVE > squared correlation)

A construct has good discriminant validity if the AVE is greater than the squared correlations.

Correlation Matrix for Perceived performance questions
Quality Efficiency Timeliness
Quality 1.00 0.870 0.860
Efficiency 0.87 1.000 0.948
Timeliness 0.86 0.948 1.000
Correlation Matrix for Job Satisfaction questions
Customer Focus Leadership Engagement of the People Process Approach Evidence based Decision Making Improvement Relationship Management
Customer Focus 1.000 0.871 0.784 0.825 0.801 0.785 0.787
Leadership 0.871 1.000 0.837 0.818 0.781 0.829 0.781
Engagement of the People 0.784 0.837 1.000 0.828 0.782 0.772 0.733
Process Approach 0.825 0.818 0.828 1.000 0.880 0.939 0.879
Evidence based Decision Making 0.801 0.781 0.782 0.880 1.000 0.892 0.831
Improvement 0.785 0.829 0.772 0.939 0.892 1.000 0.836
Relationship Management 0.787 0.781 0.733 0.879 0.831 0.836 1.000

Interpretation

Looking at the squared correlation matrix, if the computed AVE is higher than the squared correlation, then the construct have good discriminant validity with other constructs. If the AVE is lower, then the constructs or factors are not distinct.

Reliablity testing

Reliability testing evaluates how consistently a set of items measures a construct

Cronbach’s Alpha - Internal Consistency

Reliablity analysis for Perceived performance questions
Overall Quality Efficiency Timeliness
raw_alpha 0.9853 0.9716 0.9663 0.9604
std.alpha 0.9854 0.9716 0.9667 0.9604
G6(smc) 0.9895 0.9691 0.9633 0.9538
average_r 0.8181 0.8726 0.8529 0.8292
S/N 67.4514 34.2605 28.9933 24.2699
ase 0.0022 0.0045 0.0054 0.0063
mean 3.8060 3.8660 3.7980 3.7540
sd 0.8877 0.9329 0.9205 0.8903
median_r 0.8140 0.8807 0.8481 0.8318
Reliablity analysis for Job Satisfaction questions
Overall Customer.focus Leadership Engagement.of.the.people Process.Approach Evidence.based.decision.making Improvement Relationship.Management
raw_alpha 0.9914 0.9524 0.9675 0.9065 0.9686 0.9747 0.9611 0.9728
std.alpha 0.9915 0.9524 0.9676 0.9063 0.9685 0.9746 0.9637 0.9728
G6(smc) 0.9972 0.9477 0.9682 0.8840 0.9649 0.9755 0.9627 0.9682
average_r 0.7744 0.8333 0.8564 0.7073 0.8602 0.8849 0.8415 0.8775
S/N 116.7064 19.9888 29.8272 9.6669 30.7592 38.4344 26.5555 35.8299
ase 0.0012 0.0079 0.0052 0.0152 0.0051 0.0041 0.0054 0.0043
mean 3.5188 3.6575 3.4020 3.6575 3.5320 3.4700 3.3560 3.6200
sd 1.1065 1.1740 1.2957 1.0497 1.1970 1.1866 1.1316 1.1290
median_r 0.7804 0.8274 0.8619 0.7234 0.8653 0.8728 0.8526 0.8695

Results showed the computed Cronbach’s Alpha for each set of questions. Consider the following criteria for interpretation:

Alpha value Interpretation
>0.9 Excellent reliability
0.80 to 0.89 Good reliability
0.70 to 0.79 Acceptable reliability
0.60 to 0.69 Questionable reliability
<0.60 Poor reliability

McDonald Omega

Omega values for Perceived performance questions
measure Quality Efficiency Timeliness
omega 0.9717 0.9666 0.9605
omega2 0.9717 0.9666 0.9605
omega3 0.9719 0.9668 0.9600
Omega values for Job Satisfaction questions
measure Customer Focus Leadership Engagement of the People Process Approach Evidence based Decision Making Improvement Relationship Management
omega 0.9540 0.9683 0.9320 0.9700 0.9750 0.9690 0.9727
omega2 0.9540 0.9683 0.9320 0.9700 0.9750 0.9690 0.9727
omega3 0.9558 0.9691 0.9215 0.9722 0.9754 0.9715 0.9724

Results showed the computed McDonald’s Omega for each set of questions. Consider the following criteria for interpretation:

Omega value Interpretation
>0.9 Excellent reliability
0.80 to 0.89 Good reliability
0.70 to 0.79 Acceptable reliability
0.60 to 0.69 Poor reliability

Test Retest Reliablity using Intraclass Correlation Coefficient (ICC)

 Single Score Intraclass Correlation

   Model: twoway 
   Type : consistency 

   Subjects = 100 
     Raters = 15 
   ICC(C,1) = 0.818

 F-Test, H0: r0 = 0 ; H1: r0 > 0 
 F(99,1386) = 68.2 , p = 0 

 95%-Confidence Interval for ICC Population Values:
  0.773 < ICC < 0.86
 Single Score Intraclass Correlation

   Model: twoway 
   Type : consistency 

   Subjects = 100 
     Raters = 34 
   ICC(C,1) = 0.773

 F-Test, H0: r0 = 0 ; H1: r0 > 0 
 F(99,3267) = 117 , p = 0 

 95%-Confidence Interval for ICC Population Values:
  0.723 < ICC < 0.822

Results showed the computed Test Retest reliablity using ICC for each set of questions. Consider the following criteria for interpretation:

ICC value Interpretation
>0.9 Excellent reliability
0.75 to 0.89 Good reliability
0.50 to 0.74 Acceptable reliability
0.60 to 0.69 Poor reliability