library(ISLR)
library(ggplot2)
# Load the Auto dataset
data(Auto)
# Fit the simple linear regression model
lm_model <- lm(mpg ~ horsepower, data = Auto)
# Display the summary of the regression
summary(lm_model)
##
## Call:
## lm(formula = mpg ~ horsepower, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.935861 0.717499 55.66 <2e-16 ***
## horsepower -0.157845 0.006446 -24.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
Yes, there is a relationship between horsepower and mpg as determined by testing the null hypothesis of all regression coefficients equal to zero. Since the F-statistic is far larger than 1 and the p-value of the F-statistic is close to zero we can reject the null hypothesis and state there is a statistically significant relationship between horsepower and mpg.
The R-squared value means that about 60.59% of the variation in mpg is explained by horsepower. This suggests a moderate to strong linear relationship.
The relationship between mpg and horsepower is negative. The more horsepower an automobile has the linear regression indicates the less mpg fuel efficiency the automobile will have.
###(iv)
new_data <- data.frame(horsepower = 98)
predict(lm_model, newdata = new_data, interval = "confidence") # Confidence interval
## fit lwr upr
## 1 24.46708 23.97308 24.96108
predict(lm_model, newdata = new_data, interval = "prediction") # Prediction interval
## fit lwr upr
## 1 24.46708 14.8094 34.12476
# Fit the simple linear regression model
lm_model <- lm(mpg ~ horsepower, data = Auto)
# Scatterplot of mpg vs horsepower with regression line
plot(Auto$horsepower, Auto$mpg,
main = "MPG vs Horsepower",
xlab = "Horsepower",
ylab = "MPG",
pch = 16, col = "blue") # Plot data points
# Add the regression line
abline(lm_model, col = "red", lwd = 2) # Add least squares regression line
lm_model <- lm(mpg ~ horsepower, data = Auto)
# Generate diagnostic plots
par(mfrow = c(2, 2)) # Arrange plots in a 2x2 grid
plot(lm_model) # Produces residual plots
Problems Observed in This Fit: - The Residuals vs. Fitted plot likely shows a curved pattern, indicating that a quadratic term may better fit the data. - The Normal Q-Q plot may show non-normal residuals at the extremes, suggesting potential outliers or skewed distribution. - The Scale-Location plot might indicate heteroscedasticity, variance is not constant. - The Residuals vs. Leverage plot could reveal high leverage points, which may need further investigation.
library(ISLR)
data(Carseats)
# Fit the multiple regression model
lm_model <- lm(Sales ~ Price + Urban + US, data = Carseats)
# Print the summary of the model
summary(lm_model)
##
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9206 -1.6220 -0.0564 1.5786 7.0581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
## Price -0.054459 0.005242 -10.389 < 2e-16 ***
## UrbanYes -0.021916 0.271650 -0.081 0.936
## USYes 1.200573 0.259042 4.635 4.86e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
## F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
Sales =13.043−0.05446×Price−0.02192×UrbanYes+1.20057×USYes
lm_model_smaller <- lm(Sales ~ Price + US, data = Carseats)
# Print the summary of the smaller model
summary(lm_model_smaller)
##
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.9269 -1.6286 -0.0574 1.5766 7.0515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
## Price -0.05448 0.00523 -10.416 < 2e-16 ***
## USYes 1.19964 0.25846 4.641 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
## F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
lm_model_smaller <- lm(Sales ~ Price + US, data = Carseats)
# Obtain 95% confidence intervals for the coefficients
confint(lm_model_smaller, level = 0.95)
## 2.5 % 97.5 %
## (Intercept) 11.79032020 14.27126531
## Price -0.06475984 -0.04419543
## USYes 0.69151957 1.70776632
# Fit the smaller model using Price and US
lm_model_smaller <- lm(Sales ~ Price + US, data = Carseats)
# Plot studentized residuals vs predicted values
plot(predict(lm_model_smaller), rstudent(lm_model_smaller),
xlab = "Predicted Values", ylab = "Studentized Residuals",
main = "Studentized Residuals vs Predicted Values")
abline(h = 0, col = "red") # Add a horizontal line at y = 0
# Fit the smaller model using Price and US
lm_model_smaller <- lm(Sales ~ Price + US, data = Carseats)
# Set up a 2x2 grid for diagnostic plots
par(mfrow=c(2,2))
# Generate the diagnostic plots
plot(lm_model_smaller)
- exceed (p+1)/n(0.0076) on the leverage-statistic plot that suggest
that the corresponding points have high leverage.
set.seed(1)
x1 = runif(100)
x2 = 0.5 * x1 + rnorm(100)/10
y = 2 + 2*x1 + 0.3*x2 + rnorm(100)
model <- lm(y ~ x1 + x2)
summary(model)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8311 -0.7273 -0.0537 0.6338 2.3359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1305 0.2319 9.188 7.61e-15 ***
## x1 1.4396 0.7212 1.996 0.0487 *
## x2 1.0097 1.1337 0.891 0.3754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
## F-statistic: 12.8 on 2 and 97 DF, p-value: 1.164e-05
cor(x1, x2)
## [1] 0.8351212
plot(x1, x2)
lm.fit = lm(y~x1+x2)
summary(lm.fit)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8311 -0.7273 -0.0537 0.6338 2.3359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1305 0.2319 9.188 7.61e-15 ***
## x1 1.4396 0.7212 1.996 0.0487 *
## x2 1.0097 1.1337 0.891 0.3754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.056 on 97 degrees of freedom
## Multiple R-squared: 0.2088, Adjusted R-squared: 0.1925
## F-statistic: 12.8 on 2 and 97 DF, p-value: 1.164e-05
lm.fit = lm(y~x1)
summary(lm.fit)
##
## Call:
## lm(formula = y ~ x1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.89495 -0.66874 -0.07785 0.59221 2.45560
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1124 0.2307 9.155 8.27e-15 ***
## x1 1.9759 0.3963 4.986 2.66e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.055 on 98 degrees of freedom
## Multiple R-squared: 0.2024, Adjusted R-squared: 0.1942
## F-statistic: 24.86 on 1 and 98 DF, p-value: 2.661e-06
lm.fit = lm(y~x2)
summary(lm.fit)
##
## Call:
## lm(formula = y ~ x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.62687 -0.75156 -0.03598 0.72383 2.44890
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3899 0.1949 12.26 < 2e-16 ***
## x2 2.8996 0.6330 4.58 1.37e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.072 on 98 degrees of freedom
## Multiple R-squared: 0.1763, Adjusted R-squared: 0.1679
## F-statistic: 20.98 on 1 and 98 DF, p-value: 1.366e-05
x1 = c(x1, 0.1)
x2 = c(x2, 0.8)
y = c(y, 6)
lm.fit1 = lm(y~x1+x2)
summary(lm.fit1)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.73348 -0.69318 -0.05263 0.66385 2.30619
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2267 0.2314 9.624 7.91e-16 ***
## x1 0.5394 0.5922 0.911 0.36458
## x2 2.5146 0.8977 2.801 0.00614 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.075 on 98 degrees of freedom
## Multiple R-squared: 0.2188, Adjusted R-squared: 0.2029
## F-statistic: 13.72 on 2 and 98 DF, p-value: 5.564e-06
lm.fit2 = lm(y~x1)
summary(lm.fit2)
##
## Call:
## lm(formula = y ~ x1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8897 -0.6556 -0.0909 0.5682 3.5665
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2569 0.2390 9.445 1.78e-15 ***
## x1 1.7657 0.4124 4.282 4.29e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 99 degrees of freedom
## Multiple R-squared: 0.1562, Adjusted R-squared: 0.1477
## F-statistic: 18.33 on 1 and 99 DF, p-value: 4.295e-05
lm.fit3 = lm(y~x2)
summary(lm.fit3)
##
## Call:
## lm(formula = y ~ x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.64729 -0.71021 -0.06899 0.72699 2.38074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3451 0.1912 12.264 < 2e-16 ***
## x2 3.1190 0.6040 5.164 1.25e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.074 on 99 degrees of freedom
## Multiple R-squared: 0.2122, Adjusted R-squared: 0.2042
## F-statistic: 26.66 on 1 and 99 DF, p-value: 1.253e-06
par(mfrow=c(2,2))
plot(lm.fit1)
par(mfrow=c(2,2))
plot(lm.fit2)
par(mfrow=c(2,2))
plot(lm.fit3)
plot(predict(lm.fit1), rstudent(lm.fit1))
plot(predict(lm.fit2), rstudent(lm.fit2))
plot(predict(lm.fit3), rstudent(lm.fit3))