Part 1
movielength <- c(94,109,110,123,125,108,92,106,84,119,110,140)
cat("Mean movies length (in min): \n", mean(movielength) , "minutes")
## Mean movies length (in min):
## 110 minutes
paste0("The mean movie length is ", mean(movielength) , " minutes." )
## [1] "The mean movie length is 110 minutes."
Part 2
1
Recipes <- data.frame(
Type = c("entree" , "appetizer" , "appetizer" , "entree" , "entree" , "appetizer" , "dessert" , "dessert" , "entree" ,"entree"),
Ingredients = c(8,4,5,10,6,8,7,15,10,9),
PrepTime = c(15,15,5,35,20,40,25,30,10,20),
CookTime = c(30,15,20,55,25,10,120,25,45,60),
Meat = c("yes", "yes", "yes", "no", "no", "yes", "no", "no","yes", "yes")
)
Recipes
## Type Ingredients PrepTime CookTime Meat
## 1 entree 8 15 30 yes
## 2 appetizer 4 15 15 yes
## 3 appetizer 5 5 20 yes
## 4 entree 10 35 55 no
## 5 entree 6 20 25 no
## 6 appetizer 8 40 10 yes
## 7 dessert 7 25 120 no
## 8 dessert 15 30 25 no
## 9 entree 10 10 45 yes
## 10 entree 9 20 60 yes
Recipes2 <- data.frame(
TotalTime = Recipes$PrepTime + Recipes$CookTime)
Recipes2
## TotalTime
## 1 45
## 2 30
## 3 25
## 4 90
## 5 45
## 6 50
## 7 145
## 8 55
## 9 55
## 10 80
Recipes_combo <- cbind(Recipes, Recipes2)
Recipes_combo
## Type Ingredients PrepTime CookTime Meat TotalTime
## 1 entree 8 15 30 yes 45
## 2 appetizer 4 15 15 yes 30
## 3 appetizer 5 5 20 yes 25
## 4 entree 10 35 55 no 90
## 5 entree 6 20 25 no 45
## 6 appetizer 8 40 10 yes 50
## 7 dessert 7 25 120 no 145
## 8 dessert 15 30 25 no 55
## 9 entree 10 10 45 yes 55
## 10 entree 9 20 60 yes 80
Recipe3 <- data.frame(
Type = c("appetizer", "entree", "dessert", "appetizer"),
Ingredients = c(3,15,8,5),
PrepTime = c(10,35,45,10),
CookTime = c(0,90,150,20),
Meat = c("no", "no", "no", "yes")
)
Recipe3
## Type Ingredients PrepTime CookTime Meat
## 1 appetizer 3 10 0 no
## 2 entree 15 35 90 no
## 3 dessert 8 45 150 no
## 4 appetizer 5 10 20 yes
Recipe4 <- data.frame(
TotalTime = Recipe3$PrepTime + Recipe3$CookTime)
Recipe4
## TotalTime
## 1 10
## 2 125
## 3 195
## 4 30
Recipes_combo2 <- cbind(Recipe3, Recipe4)
Recipes_combo2
## Type Ingredients PrepTime CookTime Meat TotalTime
## 1 appetizer 3 10 0 no 10
## 2 entree 15 35 90 no 125
## 3 dessert 8 45 150 no 195
## 4 appetizer 5 10 20 yes 30
Recipe5 <- rbind(Recipes_combo, Recipes_combo2)
Recipe5
## Type Ingredients PrepTime CookTime Meat TotalTime
## 1 entree 8 15 30 yes 45
## 2 appetizer 4 15 15 yes 30
## 3 appetizer 5 5 20 yes 25
## 4 entree 10 35 55 no 90
## 5 entree 6 20 25 no 45
## 6 appetizer 8 40 10 yes 50
## 7 dessert 7 25 120 no 145
## 8 dessert 15 30 25 no 55
## 9 entree 10 10 45 yes 55
## 10 entree 9 20 60 yes 80
## 11 appetizer 3 10 0 no 10
## 12 entree 15 35 90 no 125
## 13 dessert 8 45 150 no 195
## 14 appetizer 5 10 20 yes 30
(Recipe5[Recipe5$TotalTime < 60 , ])
## Type Ingredients PrepTime CookTime Meat TotalTime
## 1 entree 8 15 30 yes 45
## 2 appetizer 4 15 15 yes 30
## 3 appetizer 5 5 20 yes 25
## 5 entree 6 20 25 no 45
## 6 appetizer 8 40 10 yes 50
## 8 dessert 15 30 25 no 55
## 9 entree 10 10 45 yes 55
## 11 appetizer 3 10 0 no 10
## 14 appetizer 5 10 20 yes 30
Part 3
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
nrow(mtcars)
## [1] 32
head(mtcars, n = 9)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
mtcars[ ,1]
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
## [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
## [31] 15.0 21.4
mean(mtcars$mpg)
## [1] 20.09062
median(mtcars$mpg)
## [1] 19.2
mtcars1 <-mtcars[ , -2:-3]
(mtcars2 <- mtcars1[ , -3:-9])
## mpg hp
## Mazda RX4 21.0 110
## Mazda RX4 Wag 21.0 110
## Datsun 710 22.8 93
## Hornet 4 Drive 21.4 110
## Hornet Sportabout 18.7 175
## Valiant 18.1 105
## Duster 360 14.3 245
## Merc 240D 24.4 62
## Merc 230 22.8 95
## Merc 280 19.2 123
## Merc 280C 17.8 123
## Merc 450SE 16.4 180
## Merc 450SL 17.3 180
## Merc 450SLC 15.2 180
## Cadillac Fleetwood 10.4 205
## Lincoln Continental 10.4 215
## Chrysler Imperial 14.7 230
## Fiat 128 32.4 66
## Honda Civic 30.4 52
## Toyota Corolla 33.9 65
## Toyota Corona 21.5 97
## Dodge Challenger 15.5 150
## AMC Javelin 15.2 150
## Camaro Z28 13.3 245
## Pontiac Firebird 19.2 175
## Fiat X1-9 27.3 66
## Porsche 914-2 26.0 91
## Lotus Europa 30.4 113
## Ford Pantera L 15.8 264
## Ferrari Dino 19.7 175
## Maserati Bora 15.0 335
## Volvo 142E 21.4 109
(mtcars[mtcars$hp >= 105, ])
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
(mtcars[mtcars$mpg < 20 | mtcars$mpg > 25 , ])
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
(mtcars[mtcars$mpg >= 22 & mtcars$hp < 95 , ])
## mpg cyl disp hp drat wt qsec vs am gear carb
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2