#### Regression Trees and Model Trees

## Understanding regression trees and model trees

## Example: Calculating SDR


# set up the data
tee <- c(1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7)
at1 <- c(1, 1, 1, 2, 2, 3, 4, 5, 5)
at2 <- c(6, 6, 7, 7, 7, 7)
bt1 <- c(1, 1, 1, 2, 2, 3, 4)
bt2 <- c(5, 5, 6, 6, 7, 7, 7, 7)
# compute the SDR
sdr_a <- sd(tee) - (length(at1) / length(tee) * sd(at1) + length(at2) / length(tee) * sd(at2))
sdr_b <- sd(tee) - (length(bt1) / length(tee) * sd(bt1) + length(bt2) / length(tee) * sd(bt2))
# compare the SDR for each split
sdr_a
[1] 1.202815
sdr_b
[1] 1.392751
## Exercise No 3: Estimating Wine Quality


## Step 2: Exploring and preparing the data
wine <- read.csv("whitewines.csv")
# examine the wine data
str(wine)
'data.frame':   4898 obs. of  12 variables:
 $ fixed.acidity       : num  6.7 5.7 5.9 5.3 6.4 7 7.9 6.6 7 6.5 ...
 $ volatile.acidity    : num  0.62 0.22 0.19 0.47 0.29 0.14 0.12 0.38 0.16 0.37 ...
 $ citric.acid         : num  0.24 0.2 0.26 0.1 0.21 0.41 0.49 0.28 0.3 0.33 ...
 $ residual.sugar      : num  1.1 16 7.4 1.3 9.65 0.9 5.2 2.8 2.6 3.9 ...
 $ chlorides           : num  0.039 0.044 0.034 0.036 0.041 0.037 0.049 0.043 0.043 0.027 ...
 $ free.sulfur.dioxide : num  6 41 33 11 36 22 33 17 34 40 ...
 $ total.sulfur.dioxide: num  62 113 123 74 119 95 152 67 90 130 ...
 $ density             : num  0.993 0.999 0.995 0.991 0.993 ...
 $ pH                  : num  3.41 3.22 3.49 3.48 2.99 3.25 3.18 3.21 2.88 3.28 ...
 $ sulphates           : num  0.32 0.46 0.42 0.54 0.34 0.43 0.47 0.47 0.47 0.39 ...
 $ alcohol             : num  10.4 8.9 10.1 11.2 10.9 ...
 $ quality             : int  5 6 6 4 6 6 6 6 6 7 ...
#create a histogram
# the distribution of quality ratings
hist(wine$quality)

# summary statistics of the wine data
summary(wine)
 fixed.acidity    volatile.acidity  citric.acid     residual.sugar     chlorides      
 Min.   : 3.800   Min.   :0.0800   Min.   :0.0000   Min.   : 0.600   Min.   :0.00900  
 1st Qu.: 6.300   1st Qu.:0.2100   1st Qu.:0.2700   1st Qu.: 1.700   1st Qu.:0.03600  
 Median : 6.800   Median :0.2600   Median :0.3200   Median : 5.200   Median :0.04300  
 Mean   : 6.855   Mean   :0.2782   Mean   :0.3342   Mean   : 6.391   Mean   :0.04577  
 3rd Qu.: 7.300   3rd Qu.:0.3200   3rd Qu.:0.3900   3rd Qu.: 9.900   3rd Qu.:0.05000  
 Max.   :14.200   Max.   :1.1000   Max.   :1.6600   Max.   :65.800   Max.   :0.34600  
 free.sulfur.dioxide total.sulfur.dioxide    density             pH          sulphates     
 Min.   :  2.00      Min.   :  9.0        Min.   :0.9871   Min.   :2.720   Min.   :0.2200  
 1st Qu.: 23.00      1st Qu.:108.0        1st Qu.:0.9917   1st Qu.:3.090   1st Qu.:0.4100  
 Median : 34.00      Median :134.0        Median :0.9937   Median :3.180   Median :0.4700  
 Mean   : 35.31      Mean   :138.4        Mean   :0.9940   Mean   :3.188   Mean   :0.4898  
 3rd Qu.: 46.00      3rd Qu.:167.0        3rd Qu.:0.9961   3rd Qu.:3.280   3rd Qu.:0.5500  
 Max.   :289.00      Max.   :440.0        Max.   :1.0390   Max.   :3.820   Max.   :1.0800  
    alcohol         quality     
 Min.   : 8.00   Min.   :3.000  
 1st Qu.: 9.50   1st Qu.:5.000  
 Median :10.40   Median :6.000  
 Mean   :10.51   Mean   :5.878  
 3rd Qu.:11.40   3rd Qu.:6.000  
 Max.   :14.20   Max.   :9.000  
wine_train <- wine[1:3750, ]
wine_test <- wine[3751:4898, ]
## Step 3: Training a model on the data
# regression tree using rpart
library(rpart)
m.rpart <- rpart(quality ~ ., data = wine_train)
# get basic information about the tree
m.rpart
n= 3750 

node), split, n, deviance, yval
      * denotes terminal node

 1) root 3750 2945.53200 5.870933  
   2) alcohol< 10.85 2372 1418.86100 5.604975  
     4) volatile.acidity>=0.2275 1611  821.30730 5.432030  
       8) volatile.acidity>=0.3025 688  278.97670 5.255814 *
       9) volatile.acidity< 0.3025 923  505.04230 5.563380 *
     5) volatile.acidity< 0.2275 761  447.36400 5.971091 *
   3) alcohol>=10.85 1378 1070.08200 6.328737  
     6) free.sulfur.dioxide< 10.5 84   95.55952 5.369048 *
     7) free.sulfur.dioxide>=10.5 1294  892.13600 6.391036  
      14) alcohol< 11.76667 629  430.11130 6.173291  
        28) volatile.acidity>=0.465 11   10.72727 4.545455 *
        29) volatile.acidity< 0.465 618  389.71680 6.202265 *
      15) alcohol>=11.76667 665  403.99400 6.596992 *
# get more detailed information about the tree
summary(m.rpart)
Call:
rpart(formula = quality ~ ., data = wine_train)
  n= 3750 

          CP nsplit rel error    xerror       xstd
1 0.15501053      0 1.0000000 1.0001513 0.02445377
2 0.05098911      1 0.8449895 0.8500814 0.02341699
3 0.02796998      2 0.7940004 0.8007950 0.02266068
4 0.01970128      3 0.7660304 0.7751774 0.02146340
5 0.01265926      4 0.7463291 0.7553128 0.02068580
6 0.01007193      5 0.7336698 0.7524466 0.02066777
7 0.01000000      6 0.7235979 0.7430637 0.02040124

Variable importance
             alcohol              density     volatile.acidity            chlorides 
                  34                   21                   15                   11 
total.sulfur.dioxide  free.sulfur.dioxide       residual.sugar            sulphates 
                   7                    6                    3                    1 
         citric.acid 
                   1 

Node number 1: 3750 observations,    complexity param=0.1550105
  mean=5.870933, MSE=0.7854751 
  left son=2 (2372 obs) right son=3 (1378 obs)
  Primary splits:
      alcohol              < 10.85    to the left,  improve=0.15501050, (0 missing)
      density              < 0.992035 to the right, improve=0.10915940, (0 missing)
      chlorides            < 0.0395   to the right, improve=0.07682258, (0 missing)
      total.sulfur.dioxide < 158.5    to the right, improve=0.04089663, (0 missing)
      citric.acid          < 0.235    to the left,  improve=0.03636458, (0 missing)
  Surrogate splits:
      density              < 0.991995 to the right, agree=0.869, adj=0.644, (0 split)
      chlorides            < 0.0375   to the right, agree=0.757, adj=0.339, (0 split)
      total.sulfur.dioxide < 103.5    to the right, agree=0.690, adj=0.155, (0 split)
      residual.sugar       < 5.375    to the right, agree=0.667, adj=0.094, (0 split)
      sulphates            < 0.345    to the right, agree=0.647, adj=0.038, (0 split)

Node number 2: 2372 observations,    complexity param=0.05098911
  mean=5.604975, MSE=0.5981709 
  left son=4 (1611 obs) right son=5 (761 obs)
  Primary splits:
      volatile.acidity    < 0.2275   to the right, improve=0.10585250, (0 missing)
      free.sulfur.dioxide < 13.5     to the left,  improve=0.03390500, (0 missing)
      citric.acid         < 0.235    to the left,  improve=0.03204075, (0 missing)
      alcohol             < 10.11667 to the left,  improve=0.03136524, (0 missing)
      chlorides           < 0.0585   to the right, improve=0.01633599, (0 missing)
  Surrogate splits:
      pH                   < 3.485    to the left,  agree=0.694, adj=0.047, (0 split)
      sulphates            < 0.755    to the left,  agree=0.685, adj=0.020, (0 split)
      total.sulfur.dioxide < 105.5    to the right, agree=0.683, adj=0.011, (0 split)
      residual.sugar       < 0.75     to the right, agree=0.681, adj=0.007, (0 split)
      chlorides            < 0.0285   to the right, agree=0.680, adj=0.003, (0 split)

Node number 3: 1378 observations,    complexity param=0.02796998
  mean=6.328737, MSE=0.7765472 
  left son=6 (84 obs) right son=7 (1294 obs)
  Primary splits:
      free.sulfur.dioxide  < 10.5     to the left,  improve=0.07699080, (0 missing)
      alcohol              < 11.76667 to the left,  improve=0.06210660, (0 missing)
      total.sulfur.dioxide < 67.5     to the left,  improve=0.04438619, (0 missing)
      residual.sugar       < 1.375    to the left,  improve=0.02905351, (0 missing)
      fixed.acidity        < 7.35     to the right, improve=0.02613259, (0 missing)
  Surrogate splits:
      total.sulfur.dioxide < 53.5     to the left,  agree=0.952, adj=0.214, (0 split)
      volatile.acidity     < 0.875    to the right, agree=0.940, adj=0.024, (0 split)

Node number 4: 1611 observations,    complexity param=0.01265926
  mean=5.43203, MSE=0.5098121 
  left son=8 (688 obs) right son=9 (923 obs)
  Primary splits:
      volatile.acidity    < 0.3025   to the right, improve=0.04540111, (0 missing)
      alcohol             < 10.05    to the left,  improve=0.03874403, (0 missing)
      free.sulfur.dioxide < 13.5     to the left,  improve=0.03338886, (0 missing)
      chlorides           < 0.0495   to the right, improve=0.02574623, (0 missing)
      citric.acid         < 0.195    to the left,  improve=0.02327981, (0 missing)
  Surrogate splits:
      citric.acid          < 0.215    to the left,  agree=0.633, adj=0.141, (0 split)
      free.sulfur.dioxide  < 20.5     to the left,  agree=0.600, adj=0.063, (0 split)
      chlorides            < 0.0595   to the right, agree=0.593, adj=0.047, (0 split)
      residual.sugar       < 1.15     to the left,  agree=0.583, adj=0.023, (0 split)
      total.sulfur.dioxide < 219.25   to the right, agree=0.582, adj=0.022, (0 split)

Node number 5: 761 observations
  mean=5.971091, MSE=0.5878633 

Node number 6: 84 observations
  mean=5.369048, MSE=1.137613 

Node number 7: 1294 observations,    complexity param=0.01970128
  mean=6.391036, MSE=0.6894405 
  left son=14 (629 obs) right son=15 (665 obs)
  Primary splits:
      alcohol              < 11.76667 to the left,  improve=0.06504696, (0 missing)
      chlorides            < 0.0395   to the right, improve=0.02758705, (0 missing)
      fixed.acidity        < 7.35     to the right, improve=0.02750932, (0 missing)
      pH                   < 3.055    to the left,  improve=0.02307356, (0 missing)
      total.sulfur.dioxide < 191.5    to the right, improve=0.02186818, (0 missing)
  Surrogate splits:
      density              < 0.990885 to the right, agree=0.720, adj=0.424, (0 split)
      volatile.acidity     < 0.2675   to the left,  agree=0.637, adj=0.253, (0 split)
      chlorides            < 0.0365   to the right, agree=0.630, adj=0.238, (0 split)
      residual.sugar       < 1.475    to the left,  agree=0.575, adj=0.126, (0 split)
      total.sulfur.dioxide < 128.5    to the right, agree=0.574, adj=0.124, (0 split)

Node number 8: 688 observations
  mean=5.255814, MSE=0.4054895 

Node number 9: 923 observations
  mean=5.56338, MSE=0.5471747 

Node number 14: 629 observations,    complexity param=0.01007193
  mean=6.173291, MSE=0.6838017 
  left son=28 (11 obs) right son=29 (618 obs)
  Primary splits:
      volatile.acidity     < 0.465    to the right, improve=0.06897561, (0 missing)
      total.sulfur.dioxide < 200      to the right, improve=0.04223066, (0 missing)
      residual.sugar       < 0.975    to the left,  improve=0.03061714, (0 missing)
      fixed.acidity        < 7.35     to the right, improve=0.02978501, (0 missing)
      sulphates            < 0.575    to the left,  improve=0.02165970, (0 missing)
  Surrogate splits:
      citric.acid          < 0.045    to the left,  agree=0.986, adj=0.182, (0 split)
      total.sulfur.dioxide < 279.25   to the right, agree=0.986, adj=0.182, (0 split)

Node number 15: 665 observations
  mean=6.596992, MSE=0.6075098 

Node number 28: 11 observations
  mean=4.545455, MSE=0.9752066 

Node number 29: 618 observations
  mean=6.202265, MSE=0.6306098 
install.packages("rpart.plot")
Installing package into ‘/cloud/lib/x86_64-pc-linux-gnu-library/4.3’
(as ‘lib’ is unspecified)
trying URL 'http://rspm/default/__linux__/focal/latest/src/contrib/rpart.plot_3.1.2.tar.gz'
Content type 'application/x-gzip' length 1013568 bytes (989 KB)
==================================================
downloaded 989 KB

* installing *binary* package ‘rpart.plot’ ...
* DONE (rpart.plot)

The downloaded source packages are in
    ‘/tmp/RtmpSgTuAJ/downloaded_packages’
# use the rpart.plot package to create a visualization
library(rpart.plot)
# a basic decision tree diagram
rpart.plot(m.rpart, digits = 3)

# a few adjustments to the diagram
rpart.plot(m.rpart, digits = 4, fallen.leaves = TRUE, type = 3, extra = 101)
## Step 4: Evaluate model performance
# generate predictions for the testing dataset
p.rpart <- predict(m.rpart, wine_test)
# compare the distribution of predicted values vs. actual values
summary(p.rpart)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  4.545   5.563   5.971   5.893   6.202   6.597 
summary(wine_test$quality)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  3.000   5.000   6.000   5.901   6.000   9.000 
# compare the correlation
cor(p.rpart, wine_test$quality)
[1] 0.5369525


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuIyBmdW5jdGlvbiB0byBjYWxjdWxhdGUgdGhlIG1lYW4gYWJzb2x1dGUgZXJyb3Jcbk1BRSA8LSBmdW5jdGlvbihhY3R1YWwsIHByZWRpY3RlZCkge1xuICBtZWFuKGFicyhhY3R1YWwgLSBwcmVkaWN0ZWQpKSAgXG59XG5gYGAifQ== -->

```r
# function to calculate the mean absolute error
MAE <- function(actual, predicted) {
  mean(abs(actual - predicted))  
}
# mean absolute error between predicted and actual values
MAE(p.rpart, wine_test$quality)
# mean absolute error between actual values and mean value
mean(wine_train$quality) # result = 5.87
MAE(5.87, wine_test$quality)
## Step 5: Improving model performance
##install.packages("Cubist")
# train a Cubist Model Tree
library(Cubist)
m.cubist <- cubist(x = wine_train[-12], y = wine_train$quality)
# display basic information about the model tree
m.cubist
# display the tree itself
summary(m.cubist)
# generate predictions for the model
p.cubist <- predict(m.cubist, wine_test)
# summary statistics about the predictions
summary(p.cubist)
# correlation between the predicted and true values
cor(p.cubist, wine_test$quality)
# mean absolute error of predicted and true values
# (uses a custom function defined above)
MAE(wine_test$quality, p.cubist) 
LS0tCnRpdGxlOiAiUmVncmVzc2lvbiBUcmVlcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CiMjIyMgUmVncmVzc2lvbiBUcmVlcyBhbmQgTW9kZWwgVHJlZXMKCiMjIFVuZGVyc3RhbmRpbmcgcmVncmVzc2lvbiB0cmVlcyBhbmQgbW9kZWwgdHJlZXMKCiMjIEV4YW1wbGU6IENhbGN1bGF0aW5nIFNEUgoKCiMgc2V0IHVwIHRoZSBkYXRhCnRlZSA8LSBjKDEsIDEsIDEsIDIsIDIsIDMsIDQsIDUsIDUsIDYsIDYsIDcsIDcsIDcsIDcpCmF0MSA8LSBjKDEsIDEsIDEsIDIsIDIsIDMsIDQsIDUsIDUpCmF0MiA8LSBjKDYsIDYsIDcsIDcsIDcsIDcpCmJ0MSA8LSBjKDEsIDEsIDEsIDIsIDIsIDMsIDQpCmJ0MiA8LSBjKDUsIDUsIDYsIDYsIDcsIDcsIDcsIDcpCgoKCmBgYApgYGB7cn0KIyBjb21wdXRlIHRoZSBTRFIKc2RyX2EgPC0gc2QodGVlKSAtIChsZW5ndGgoYXQxKSAvIGxlbmd0aCh0ZWUpICogc2QoYXQxKSArIGxlbmd0aChhdDIpIC8gbGVuZ3RoKHRlZSkgKiBzZChhdDIpKQpzZHJfYiA8LSBzZCh0ZWUpIC0gKGxlbmd0aChidDEpIC8gbGVuZ3RoKHRlZSkgKiBzZChidDEpICsgbGVuZ3RoKGJ0MikgLyBsZW5ndGgodGVlKSAqIHNkKGJ0MikpCmBgYAoKYGBge3J9CiMgY29tcGFyZSB0aGUgU0RSIGZvciBlYWNoIHNwbGl0CnNkcl9hCnNkcl9iCmBgYAoKYGBge3J9CiMjIEV4ZXJjaXNlIE5vIDM6IEVzdGltYXRpbmcgV2luZSBRdWFsaXR5CgoKIyMgU3RlcCAyOiBFeHBsb3JpbmcgYW5kIHByZXBhcmluZyB0aGUgZGF0YQpgYGAKCmBgYHtyfQp3aW5lIDwtIHJlYWQuY3N2KCJ3aGl0ZXdpbmVzLmNzdiIpCmBgYAoKYGBge3J9CiMgZXhhbWluZSB0aGUgd2luZSBkYXRhCnN0cih3aW5lKQpgYGAKCmBgYHtyfQojY3JlYXRlIGEgaGlzdG9ncmFtOiBIaXN0b2dyYW1zIGFyZSBhIHR5cGUgb2YgZ3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIHRoYXQgc2hvd3MgdGhlIGRpc3RyaWJ1dGlvbiBvZiBkYXRhIG92ZXIgYSBzZXQgb2YgaW50ZXJ2YWxzLCBhbHNvIGNhbGxlZCAiYmlucy4iIFRoZXkgcHJvdmlkZSBhIHZpc3VhbCBzdW1tYXJ5IG9mIHRoZSBkaXN0cmlidXRpb24gb2YgYSBkYXRhc2V0IGJ5IHNob3dpbmcgdGhlIGZyZXF1ZW5jeSAob3IgY291bnQpIG9mIGRhdGEgcG9pbnRzIHRoYXQgZmFsbCBpbnRvIGVhY2ggaW50ZXJ2YWwKIyB0aGUgZGlzdHJpYnV0aW9uIG9mIHF1YWxpdHkgcmF0aW5ncwpoaXN0KHdpbmUkcXVhbGl0eSkKYGBgCgpgYGB7cn0KIyBzdW1tYXJ5IHN0YXRpc3RpY3Mgb2YgdGhlIHdpbmUgZGF0YQpzdW1tYXJ5KHdpbmUpCmBgYAoKYGBge3J9CndpbmVfdHJhaW4gPC0gd2luZVsxOjM3NTAsIF0Kd2luZV90ZXN0IDwtIHdpbmVbMzc1MTo0ODk4LCBdCmBgYApgYGB7cn0KIyMgU3RlcCAzOiBUcmFpbmluZyBhIG1vZGVsIG9uIHRoZSBkYXRhCiMgcmVncmVzc2lvbiB0cmVlIHVzaW5nIHJwYXJ0CmxpYnJhcnkocnBhcnQpCm0ucnBhcnQgPC0gcnBhcnQocXVhbGl0eSB+IC4sIGRhdGEgPSB3aW5lX3RyYWluKQpgYGAKCmBgYHtyfQojIGdldCBiYXNpYyBpbmZvcm1hdGlvbiBhYm91dCB0aGUgdHJlZQptLnJwYXJ0CmBgYAoKYGBge3J9CiMgZ2V0IG1vcmUgZGV0YWlsZWQgaW5mb3JtYXRpb24gYWJvdXQgdGhlIHRyZWUKc3VtbWFyeShtLnJwYXJ0KQpgYGAKYGBge3J9CiNpbnN0YWxsLnBhY2thZ2VzKCJycGFydC5wbG90IikKYGBgCmBgYHtyfQojIHVzZSB0aGUgcnBhcnQucGxvdCBwYWNrYWdlIHRvIGNyZWF0ZSBhIHZpc3VhbGl6YXRpb24KbGlicmFyeShycGFydC5wbG90KQpgYGAKYGBge3J9CiMgYSBiYXNpYyBkZWNpc2lvbiB0cmVlIGRpYWdyYW0KcnBhcnQucGxvdChtLnJwYXJ0LCBkaWdpdHMgPSAzKQpgYGAKYGBge3J9CiMgYSBmZXcgYWRqdXN0bWVudHMgdG8gdGhlIGRpYWdyYW0KcnBhcnQucGxvdChtLnJwYXJ0LCBkaWdpdHMgPSA0LCBmYWxsZW4ubGVhdmVzID0gVFJVRSwgdHlwZSA9IDMsIGV4dHJhID0gMTAxKQpgYGAKCmBgYHtyfQojIyBTdGVwIDQ6IEV2YWx1YXRlIG1vZGVsIHBlcmZvcm1hbmNlCiMgZ2VuZXJhdGUgcHJlZGljdGlvbnMgZm9yIHRoZSB0ZXN0aW5nIGRhdGFzZXQKcC5ycGFydCA8LSBwcmVkaWN0KG0ucnBhcnQsIHdpbmVfdGVzdCkKYGBgCgpgYGB7cn0KIyBjb21wYXJlIHRoZSBkaXN0cmlidXRpb24gb2YgcHJlZGljdGVkIHZhbHVlcyB2cy4gYWN0dWFsIHZhbHVlcwpzdW1tYXJ5KHAucnBhcnQpCnN1bW1hcnkod2luZV90ZXN0JHF1YWxpdHkpCmBgYAoKYGBge3J9CiMgY29tcGFyZSB0aGUgY29ycmVsYXRpb24KY29yKHAucnBhcnQsIHdpbmVfdGVzdCRxdWFsaXR5KQpgYGAKYGBgCgpgYGB7cn0KIyBmdW5jdGlvbiB0byBjYWxjdWxhdGUgdGhlIG1lYW4gYWJzb2x1dGUgZXJyb3IKTUFFIDwtIGZ1bmN0aW9uKGFjdHVhbCwgcHJlZGljdGVkKSB7CiAgbWVhbihhYnMoYWN0dWFsIC0gcHJlZGljdGVkKSkgIAp9CmBgYApgYGB7cn0KIyBtZWFuIGFic29sdXRlIGVycm9yIGJldHdlZW4gcHJlZGljdGVkIGFuZCBhY3R1YWwgdmFsdWVzCk1BRShwLnJwYXJ0LCB3aW5lX3Rlc3QkcXVhbGl0eSkKYGBgCmBgYHtyfQojIG1lYW4gYWJzb2x1dGUgZXJyb3IgYmV0d2VlbiBhY3R1YWwgdmFsdWVzIGFuZCBtZWFuIHZhbHVlCm1lYW4od2luZV90cmFpbiRxdWFsaXR5KSAjIHJlc3VsdCA9IDUuODcKTUFFKDUuODcsIHdpbmVfdGVzdCRxdWFsaXR5KQpgYGAKYGBge3J9CiMjIFN0ZXAgNTogSW1wcm92aW5nIG1vZGVsIHBlcmZvcm1hbmNlCiMjaW5zdGFsbC5wYWNrYWdlcygiQ3ViaXN0IikKYGBgCmBgYHtyfQojIHRyYWluIGEgQ3ViaXN0IE1vZGVsIFRyZWUKbGlicmFyeShDdWJpc3QpCm0uY3ViaXN0IDwtIGN1YmlzdCh4ID0gd2luZV90cmFpblstMTJdLCB5ID0gd2luZV90cmFpbiRxdWFsaXR5KQpgYGAKCmBgYHtyfQojIGRpc3BsYXkgYmFzaWMgaW5mb3JtYXRpb24gYWJvdXQgdGhlIG1vZGVsIHRyZWUKbS5jdWJpc3QKYGBgCgpgYGB7cn0KIyBkaXNwbGF5IHRoZSB0cmVlIGl0c2VsZgpzdW1tYXJ5KG0uY3ViaXN0KQpgYGAKCmBgYHtyfQojIGdlbmVyYXRlIHByZWRpY3Rpb25zIGZvciB0aGUgbW9kZWwKcC5jdWJpc3QgPC0gcHJlZGljdChtLmN1YmlzdCwgd2luZV90ZXN0KQpgYGAKCmBgYHtyfQojIHN1bW1hcnkgc3RhdGlzdGljcyBhYm91dCB0aGUgcHJlZGljdGlvbnMKc3VtbWFyeShwLmN1YmlzdCkKCmBgYApgYGB7cn0KIyBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSBwcmVkaWN0ZWQgYW5kIHRydWUgdmFsdWVzCmNvcihwLmN1YmlzdCwgd2luZV90ZXN0JHF1YWxpdHkpCmBgYAoKYGBge3J9CiMgbWVhbiBhYnNvbHV0ZSBlcnJvciBvZiBwcmVkaWN0ZWQgYW5kIHRydWUgdmFsdWVzCiMgKHVzZXMgYSBjdXN0b20gZnVuY3Rpb24gZGVmaW5lZCBhYm92ZSkKTUFFKHdpbmVfdGVzdCRxdWFsaXR5LCBwLmN1YmlzdCkgCmBgYAoK