This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
Enter this data set, giving it the name “tomatodata”:
tomatodata <- c( 6.3, 7.2, 6.8, 5.4, 6.5, 5.9, 6.6, 6.5, 7.1, 7.0)
Take the average:
mean(tomatodata)
## [1] 6.53
Take the median:
median(tomatodata)
## [1] 6.55
Find the standard deviation:
sd(tomatodata)
## [1] 0.5578729
Find the largest number:
max(tomatodata)
## [1] 7.2
Find the smallest number:
min(tomatodata)
## [1] 5.4
Find the 30th percentile:
quantile(tomatodata, 0.30)
## 30%
## 6.44
Find the 5-number summary (min, 25th percentile, median, 75th percentile, max):
quantile(tomatodata)
## 0% 25% 50% 75% 100%
## 5.40 6.35 6.55 6.95 7.20
Find the interquartile range (75th percentile minus the 25th percentile)
IQR(tomatodata)
## [1] 0.6
Make a histogram:
hist(tomatodata)
Make a box plot (display the five number summary):
boxplot(tomatodata)
Make a horizontal box plot:
boxplot(tomatodata, horizontal=TRUE)
Make the output say “Tomato data is awesome!”
print("Tomato data is awesome!")
## [1] "Tomato data is awesome!"
Make the output say “The mean tomato size is 6.53”
print(paste("The mean tomato size is",mean(tomatodata)),sep ="")
## [1] "The mean tomato size is 6.53"
Install the tidyverse package in the console below markdown
install.packages("tidyverse")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
Load the tidyverse library and diamonds data into the markdown
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Load the Mtcars data and view the first 6 rows
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Use tidyverse language to make a histogram of any numeric variable in Mtcars:
ggplot(data = mtcars, aes(x = mpg)) + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.