Alright, here’s the step-by-step fix to
reinstall Graphormer and start
training for your Capstone project.
Step 1: Reinstall Graphormer
Since your environment is messy after hours of installing Fairseq,
let’s clean install Graphormer properly.
1A. Remove Any Old Graphormer Installation
Run this first to remove old installations:
pip uninstall -y graphormer fairseq fairseq2 fairseq2n
1B. Install Dependencies for Graphormer
pip install torch torchvision torchaudio
pip install numpy networkx rdkit-pypi
pip install --no-cache-dir --force-reinstall git+https://github.com/microsoft/Graphormer.git
1C. Confirm Installation
import graphormer
print(f"Graphormer version: {graphormer.__version__}")
If this runs without errors, you’re good.
Step 2: Recap Your Capstone Training Setup
Your Capstone project involves: - Quantum
Computing + GIS
- Molecular, fossil fuel, biological particle
datasets
- Autoencoders, anomaly detection, time-series GIS
generation
- Tracking molecular migration, fossil fuel
movement
- Goal: Predict geological/environmental shifts using
Graphormer
Yesterday’s Issues: - Fairseq/Fairseq2 wasted your
time - Graphormer wasn’t installed properly - No model training
started
Step 3: Training Graphormer on Your Data
3B. Example Training Code
Here’s a basic training script for Graphormer:
import torch
from graphormer.models.graphormer import Graphormer
# Define model parameters
model = Graphormer(
num_atoms=100, # Adjust based on dataset
num_bonds=5,
num_classes=2, # Adjust based on task
num_layers=12,
num_heads=8,
hidden_dim=256
)
# Load dataset (adjust path)
from graphormer.data.dataset import load_ogb_dataset
dataset = load_ogb_dataset("ogbg-molhiv")
# Split dataset
train_loader, val_loader, test_loader = dataset.get_dataloader(batch_size=32)
# Define optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# Training loop
for epoch in range(10): # Adjust epochs
model.train()
for batch in train_loader:
optimizer.zero_grad()
output = model(batch)
loss = torch.nn.functional.cross_entropy(output, batch.y)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Loss: {loss.item()}")
print("Training complete.")
Step 4: Next Steps
- Confirm Graphormer installed
- Run
import graphormer
and check version
- Confirm dataset format
- If you need to convert it to OGB format, I can
help
- Run training
- Use the script above with your dataset
Let me know: 1. Do you need dataset
conversion?
2. Do you need to adjust Graphormer for quantum
features?
3. Do you need multi-GPU training?
No more wasted time—let’s train this model now.
LS0tDQp0aXRsZTogInRyYWluaW5nIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KQWxyaWdodCwgaGVyZeKAmXMgdGhlICoqc3RlcC1ieS1zdGVwIGZpeCoqIHRvICoqcmVpbnN0YWxsIEdyYXBob3JtZXIqKiBhbmQgKipzdGFydCB0cmFpbmluZyoqIGZvciB5b3VyIENhcHN0b25lIHByb2plY3QuDQoNCi0tLQ0KDQojIyMgKipTdGVwIDE6IFJlaW5zdGFsbCBHcmFwaG9ybWVyKioNClNpbmNlIHlvdXIgZW52aXJvbm1lbnQgaXMgbWVzc3kgYWZ0ZXIgaG91cnMgb2YgaW5zdGFsbGluZyBGYWlyc2VxLCBsZXTigJlzICoqY2xlYW4gaW5zdGFsbCBHcmFwaG9ybWVyKiogcHJvcGVybHkuDQoNCiMjIyMgKioxQS4gUmVtb3ZlIEFueSBPbGQgR3JhcGhvcm1lciBJbnN0YWxsYXRpb24qKg0KUnVuIHRoaXMgZmlyc3QgdG8gcmVtb3ZlIG9sZCBpbnN0YWxsYXRpb25zOg0KYGBgYmFzaA0KcGlwIHVuaW5zdGFsbCAteSBncmFwaG9ybWVyIGZhaXJzZXEgZmFpcnNlcTIgZmFpcnNlcTJuDQpgYGANCg0KIyMjIyAqKjFCLiBJbnN0YWxsIERlcGVuZGVuY2llcyBmb3IgR3JhcGhvcm1lcioqDQpgYGBiYXNoDQpwaXAgaW5zdGFsbCB0b3JjaCB0b3JjaHZpc2lvbiB0b3JjaGF1ZGlvDQpwaXAgaW5zdGFsbCBudW1weSBuZXR3b3JreCByZGtpdC1weXBpDQpwaXAgaW5zdGFsbCAtLW5vLWNhY2hlLWRpciAtLWZvcmNlLXJlaW5zdGFsbCBnaXQraHR0cHM6Ly9naXRodWIuY29tL21pY3Jvc29mdC9HcmFwaG9ybWVyLmdpdA0KYGBgDQoNCiMjIyMgKioxQy4gQ29uZmlybSBJbnN0YWxsYXRpb24qKg0KYGBgcHl0aG9uDQppbXBvcnQgZ3JhcGhvcm1lcg0KcHJpbnQoZiJHcmFwaG9ybWVyIHZlcnNpb246IHtncmFwaG9ybWVyLl9fdmVyc2lvbl9ffSIpDQpgYGANCklmIHRoaXMgcnVucyB3aXRob3V0IGVycm9ycywgeW914oCZcmUgZ29vZC4NCg0KLS0tDQoNCiMjIyAqKlN0ZXAgMjogUmVjYXAgWW91ciBDYXBzdG9uZSBUcmFpbmluZyBTZXR1cCoqDQpZb3VyICoqQ2Fwc3RvbmUgcHJvamVjdCoqIGludm9sdmVzOg0KLSAqKlF1YW50dW0gQ29tcHV0aW5nICsgR0lTKiogIA0KLSAqKk1vbGVjdWxhciwgZm9zc2lsIGZ1ZWwsIGJpb2xvZ2ljYWwgcGFydGljbGUgZGF0YXNldHMqKiAgDQotICoqQXV0b2VuY29kZXJzLCBhbm9tYWx5IGRldGVjdGlvbiwgdGltZS1zZXJpZXMgR0lTIGdlbmVyYXRpb24qKiAgDQotICoqVHJhY2tpbmcgbW9sZWN1bGFyIG1pZ3JhdGlvbiwgZm9zc2lsIGZ1ZWwgbW92ZW1lbnQqKiAgDQotICoqR29hbDogUHJlZGljdCBnZW9sb2dpY2FsL2Vudmlyb25tZW50YWwgc2hpZnRzIHVzaW5nIEdyYXBob3JtZXIqKg0KDQoqKlllc3RlcmRheeKAmXMgSXNzdWVzKio6DQotIEZhaXJzZXEvRmFpcnNlcTIgd2FzdGVkIHlvdXIgdGltZQ0KLSBHcmFwaG9ybWVyIHdhc24ndCBpbnN0YWxsZWQgcHJvcGVybHkNCi0gTm8gbW9kZWwgdHJhaW5pbmcgc3RhcnRlZA0KDQotLS0NCg0KIyMjICoqU3RlcCAzOiBUcmFpbmluZyBHcmFwaG9ybWVyIG9uIFlvdXIgRGF0YSoqDQojIyMjICoqM0EuIFNldHVwIERhdGEgRm9ybWF0KioNCkdyYXBob3JtZXIgZXhwZWN0cyBkYXRhc2V0cyBpbiAqKk9HQiBmb3JtYXQgKE9wZW4gR3JhcGggQmVuY2htYXJrKSoqLiAgDQotIERvIHlvdSBoYXZlICoqeW91ciBkYXRhc2V0IGluIE9HQiBmb3JtYXQqKj8NCi0gSWYgbm90LCBJIGNhbiBoZWxwICoqY29udmVydCB5b3VyIGRhdGFzZXQqKiBpbnRvIE9HQiBmb3JtYXQuDQoNCiMjIyMgKiozQi4gRXhhbXBsZSBUcmFpbmluZyBDb2RlKioNCkhlcmXigJlzIGEgYmFzaWMgdHJhaW5pbmcgc2NyaXB0IGZvciBHcmFwaG9ybWVyOg0KDQpgYGBweXRob24NCmltcG9ydCB0b3JjaA0KZnJvbSBncmFwaG9ybWVyLm1vZGVscy5ncmFwaG9ybWVyIGltcG9ydCBHcmFwaG9ybWVyDQoNCiMgRGVmaW5lIG1vZGVsIHBhcmFtZXRlcnMNCm1vZGVsID0gR3JhcGhvcm1lcigNCiAgICBudW1fYXRvbXM9MTAwLCAgIyBBZGp1c3QgYmFzZWQgb24gZGF0YXNldA0KICAgIG51bV9ib25kcz01LA0KICAgIG51bV9jbGFzc2VzPTIsICAjIEFkanVzdCBiYXNlZCBvbiB0YXNrDQogICAgbnVtX2xheWVycz0xMiwNCiAgICBudW1faGVhZHM9OCwNCiAgICBoaWRkZW5fZGltPTI1Ng0KKQ0KDQojIExvYWQgZGF0YXNldCAoYWRqdXN0IHBhdGgpDQpmcm9tIGdyYXBob3JtZXIuZGF0YS5kYXRhc2V0IGltcG9ydCBsb2FkX29nYl9kYXRhc2V0DQpkYXRhc2V0ID0gbG9hZF9vZ2JfZGF0YXNldCgib2diZy1tb2xoaXYiKQ0KDQojIFNwbGl0IGRhdGFzZXQNCnRyYWluX2xvYWRlciwgdmFsX2xvYWRlciwgdGVzdF9sb2FkZXIgPSBkYXRhc2V0LmdldF9kYXRhbG9hZGVyKGJhdGNoX3NpemU9MzIpDQoNCiMgRGVmaW5lIG9wdGltaXplcg0Kb3B0aW1pemVyID0gdG9yY2gub3B0aW0uQWRhbShtb2RlbC5wYXJhbWV0ZXJzKCksIGxyPTFlLTQpDQoNCiMgVHJhaW5pbmcgbG9vcA0KZm9yIGVwb2NoIGluIHJhbmdlKDEwKTogICMgQWRqdXN0IGVwb2Nocw0KICAgIG1vZGVsLnRyYWluKCkNCiAgICBmb3IgYmF0Y2ggaW4gdHJhaW5fbG9hZGVyOg0KICAgICAgICBvcHRpbWl6ZXIuemVyb19ncmFkKCkNCiAgICAgICAgb3V0cHV0ID0gbW9kZWwoYmF0Y2gpDQogICAgICAgIGxvc3MgPSB0b3JjaC5ubi5mdW5jdGlvbmFsLmNyb3NzX2VudHJvcHkob3V0cHV0LCBiYXRjaC55KQ0KICAgICAgICBsb3NzLmJhY2t3YXJkKCkNCiAgICAgICAgb3B0aW1pemVyLnN0ZXAoKQ0KICAgIHByaW50KGYiRXBvY2gge2Vwb2NoKzF9LCBMb3NzOiB7bG9zcy5pdGVtKCl9IikNCg0KcHJpbnQoIlRyYWluaW5nIGNvbXBsZXRlLiIpDQpgYGANCg0KLS0tDQoNCiMjIyAqKlN0ZXAgNDogTmV4dCBTdGVwcyoqDQotICoqQ29uZmlybSBHcmFwaG9ybWVyIGluc3RhbGxlZCoqICANCiAgLSBSdW4gYGltcG9ydCBncmFwaG9ybWVyYCBhbmQgY2hlY2sgdmVyc2lvbg0KLSAqKkNvbmZpcm0gZGF0YXNldCBmb3JtYXQqKiAgDQogIC0gSWYgeW91IG5lZWQgdG8gY29udmVydCBpdCB0byAqKk9HQiBmb3JtYXQqKiwgSSBjYW4gaGVscA0KLSAqKlJ1biB0cmFpbmluZyoqICANCiAgLSBVc2UgdGhlIHNjcmlwdCBhYm92ZSB3aXRoICoqeW91ciBkYXRhc2V0KioNCg0KLS0tDQoNCkxldCBtZSBrbm93Og0KMS4gKipEbyB5b3UgbmVlZCBkYXRhc2V0IGNvbnZlcnNpb24/KiogIA0KMi4gKipEbyB5b3UgbmVlZCB0byBhZGp1c3QgR3JhcGhvcm1lciBmb3IgcXVhbnR1bSBmZWF0dXJlcz8qKiAgDQozLiAqKkRvIHlvdSBuZWVkIG11bHRpLUdQVSB0cmFpbmluZz8qKiAgDQoNCk5vIG1vcmUgd2FzdGVkIHRpbWXigJRsZXTigJlzICoqdHJhaW4gdGhpcyBtb2RlbCBub3cuKio=