#install.packages("plm")
library(plm)
#install.packages("tidyverse")
library(tidyverse)
#install.packages("forecast")
library(forecast)
#install.packages("lavaan")
library(lavaan)
#install.packages("lavaanPlot")
library(lavaanPlot)
#install.packages("DataExplorer")
library(DataExplorer)
#install.packages("ggplot2")
library(ggplot2)
#install.packages("gplots")
library(gplots)La base de datos es de la Universidad de Nueva York y contiene 90 observaciones que incluyen los costos de 6 aerolineas estadounidenses durante 15 años, de 1970 a 1984
Las variables don:
Fuente: Tabla F7.1
## I T C Q
## Min. :1.0 Min. : 1 Min. : 68978 Min. :0.03768
## 1st Qu.:2.0 1st Qu.: 4 1st Qu.: 292046 1st Qu.:0.14213
## Median :3.5 Median : 8 Median : 637001 Median :0.30503
## Mean :3.5 Mean : 8 Mean :1122524 Mean :0.54499
## 3rd Qu.:5.0 3rd Qu.:12 3rd Qu.:1345968 3rd Qu.:0.94528
## Max. :6.0 Max. :15 Max. :4748320 Max. :1.93646
## PF LF
## Min. : 103795 Min. :0.4321
## 1st Qu.: 129848 1st Qu.:0.5288
## Median : 357434 Median :0.5661
## Mean : 471683 Mean :0.5605
## 3rd Qu.: 849840 3rd Qu.:0.5947
## Max. :1015610 Max. :0.6763
## 'data.frame': 90 obs. of 6 variables:
## $ I : int 1 1 1 1 1 1 1 1 1 1 ...
## $ T : int 1 2 3 4 5 6 7 8 9 10 ...
## $ C : int 1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
## $ Q : num 0.953 0.987 1.092 1.176 1.16 ...
## $ PF: int 106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
## $ LF: num 0.534 0.532 0.548 0.541 0.591 ...
## I T C Q PF LF
## 1 1 1 1140640 0.952757 106650 0.534487
## 2 1 2 1215690 0.986757 110307 0.532328
## 3 1 3 1309570 1.091980 110574 0.547736
## 4 1 4 1511530 1.175780 121974 0.540846
## 5 1 5 1676730 1.160170 196606 0.591167
## 6 1 6 1823740 1.173760 265609 0.575417
## I T C Q PF
## 1:15 Min. : 1 Min. : 68978 Min. :0.03768 Min. : 103795
## 2:15 1st Qu.: 4 1st Qu.: 292046 1st Qu.:0.14213 1st Qu.: 129848
## 3:15 Median : 8 Median : 637001 Median :0.30503 Median : 357434
## 4:15 Mean : 8 Mean :1122524 Mean :0.54499 Mean : 471683
## 5:15 3rd Qu.:12 3rd Qu.:1345968 3rd Qu.:0.94528 3rd Qu.: 849840
## 6:15 Max. :15 Max. :4748320 Max. :1.93646 Max. :1015610
## LF Y
## Min. :0.4321 Min. :1970
## 1st Qu.:0.5288 1st Qu.:1973
## Median :0.5661 Median :1977
## Mean :0.5605 Mean :1977
## 3rd Qu.:0.5947 3rd Qu.:1981
## Max. :0.6763 Max. :1984
## 'data.frame': 90 obs. of 7 variables:
## $ I : Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ T : int 1 2 3 4 5 6 7 8 9 10 ...
## $ C : int 1140640 1215690 1309570 1511530 1676730 1823740 2022890 2314760 2639160 3247620 ...
## $ Q : num 0.953 0.987 1.092 1.176 1.16 ...
## $ PF: int 106650 110307 110574 121974 196606 265609 263451 316411 384110 569251 ...
## $ LF: num 0.534 0.532 0.548 0.541 0.591 ...
## $ Y : num 1970 1971 1972 1973 1974 ...
## I T C Q PF LF Y
## 1 1 1 1140640 0.952757 106650 0.534487 1970
## 2 1 2 1215690 0.986757 110307 0.532328 1971
## 3 1 3 1309570 1.091980 110574 0.547736 1972
## 4 1 4 1511530 1.175780 121974 0.540846 1973
## 5 1 5 1676730 1.160170 196606 0.591167 1974
## 6 1 6 1823740 1.173760 265609 0.575417 1975
ggplot(df, aes(x=Y, y=C, color = I, group=I)) +
geom_line() +
labs(title="Costo por Aerolinea (en miles)", x= "Año", y= "Costo (USD)", color = "Aerolinea")+
theme_minimal()ggplot(df, aes(x=Y, y=Q, color = I, group=I)) +
geom_line() +
labs(title="Millas Voladas (por pasajero)", x= "Año", y= "Indice", color = "Aerolinea")+
theme_minimal()ggplot(df, aes(x=Y, y=PF, color = I, group=I)) +
geom_line() +
labs(title="Precio del combustible", x= "Año", y= "Indice", color = "Aerolinea")+
theme_minimal()ggplot(df, aes(x=Y, y=LF, color = I, group=I)) +
geom_line() +
labs(title="Factor de Carga", x= "Año", y= "Indice", color = "Aerolinea")+
theme_minimal()plotmeans(C ~ I, main="Heterogeneidad entre Aerolineas", xlab="Aerolinea", ylab="Costo(miles de USD)", data = df)
Como el valor promedio (circulos) y el rango intercuartil (lÃneas
azules) varian entre individuos, se observa presencia de
heterogeneidad.
# El modelo de regresion agrupada Pooled es una tecnica de estimacion en datos de panel donde se asume que no hay efectos individuales especificos para cada unidad. ignora heterogeneidades
pooled <- plm(C~ Q + PF + LF, data=df_panel, model= "pooling")
summary(pooled)## Pooling Model
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "pooling")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -520654 -250270 37333 208690 849700
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 1.1586e+06 3.6059e+05 3.2129 0.00185 **
## Q 2.0261e+06 6.1807e+04 32.7813 < 2.2e-16 ***
## PF 1.2253e+00 1.0372e-01 11.8138 < 2.2e-16 ***
## LF -3.0658e+06 6.9633e+05 -4.4027 3.058e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.2647e+14
## Residual Sum of Squares: 6.8177e+12
## R-Squared: 0.94609
## Adj. R-Squared: 0.94421
## F-statistic: 503.118 on 3 and 86 DF, p-value: < 2.22e-16
#Prueba de Breusch-Pagan (BP): Para verificar si e lmodelo pooles es adecuado
# p-value < 0.05 Avanzamos para usar un modelo de efectos fijos o aleatorios
# p-value > 0.05 Podemos usar el modelo Pooled
plmtest(pooled, type="bp")##
## Lagrange Multiplier Test - (Breusch-Pagan)
##
## data: C ~ Q + PF + LF
## chisq = 0.61309, df = 1, p-value = 0.4336
## alternative hypothesis: significant effects
Como el P-Value es mayor a 0.05, podemos utilizar el modelo Pooled.
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "within")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -551783 -159259 1796 0 137226 499296
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Q 3.3190e+06 1.7135e+05 19.3694 < 2.2e-16 ***
## PF 7.7307e-01 9.7319e-02 7.9437 9.698e-12 ***
## LF -3.7974e+06 6.1377e+05 -6.1869 2.375e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.0776e+13
## Residual Sum of Squares: 3.5865e+12
## R-Squared: 0.92937
## Adj. R-Squared: 0.92239
## F-statistic: 355.254 on 3 and 81 DF, p-value: < 2.22e-16
walhus <- plm(C~Q + PF + LF, data=df_panel, model = "random",
random.method="walhus")
summary(walhus)## Oneway (individual) effect Random Effect Model
## (Wallace-Hussain's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "walhus")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 7.339e+10 2.709e+05 0.969
## individual 2.363e+09 4.861e+04 0.031
## theta: 0.1788
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -524180 -243611 39332 199517 824905
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.1267e+06 3.6994e+05 3.0455 0.002323 **
## Q 2.0647e+06 7.1927e+04 28.7051 < 2.2e-16 ***
## PF 1.2075e+00 1.0358e-01 11.6578 < 2.2e-16 ***
## LF -3.0314e+06 7.1431e+05 -4.2438 2.198e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1.0182e+14
## Residual Sum of Squares: 6.5784e+12
## R-Squared: 0.93539
## Adj. R-Squared: 0.93314
## Chisq: 1245.09 on 3 DF, p-value: < 2.22e-16
amemiya <- plm(C~Q + PF + LF, data=df_panel, model = "random",
random.method="amemiya")
summary(amemiya)## Oneway (individual) effect Random Effect Model
## (Amemiya's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "amemiya")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 4.270e+10 2.066e+05 0.084
## individual 4.640e+11 6.812e+05 0.916
## theta: 0.9219
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -603585 -144415 22641 158005 485417
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.0746e+06 4.2105e+05 2.5522 0.0107 *
## Q 3.2090e+06 1.6482e+05 19.4695 < 2.2e-16 ***
## PF 8.1014e-01 9.6147e-02 8.4260 < 2.2e-16 ***
## LF -3.7168e+06 6.1330e+05 -6.0603 1.359e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.1238e+13
## Residual Sum of Squares: 3.8227e+12
## R-Squared: 0.92539
## Adj. R-Squared: 0.92279
## Chisq: 1066.71 on 3 DF, p-value: < 2.22e-16
nerlove <- plm(C~Q + PF + LF, data=df_panel, model = "random",
random.method="nerlove")
summary(nerlove)## Oneway (individual) effect Random Effect Model
## (Nerlove's transformation)
##
## Call:
## plm(formula = C ~ Q + PF + LF, data = df_panel, model = "random",
## random.method = "nerlove")
##
## Balanced Panel: n = 6, T = 15, N = 90
##
## Effects:
## var std.dev share
## idiosyncratic 3.985e+10 1.996e+05 0.066
## individual 5.602e+11 7.485e+05 0.934
## theta: 0.9313
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -601947 -145039 18713 154903 483623
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.0752e+06 4.4535e+05 2.4142 0.01577 *
## Q 3.2323e+06 1.6521e+05 19.5652 < 2.2e-16 ***
## PF 8.0229e-01 9.5804e-02 8.3743 < 2.2e-16 ***
## LF -3.7338e+06 6.0963e+05 -6.1247 9.084e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.1133e+13
## Residual Sum of Squares: 3.7726e+12
## R-Squared: 0.92622
## Adj. R-Squared: 0.92365
## Chisq: 1079.63 on 3 DF, p-value: < 2.22e-16
Comparando sus R2 ajustadas, el mejor metodo de efectos aleatorios es el de Walhus.
df_a1 <- df[df$I == "1", ]
ts_a1 <- ts(df_a1$C, start=1970, frequency =1)
df_a2 <- df[df$I == "2", ]
ts_a2 <- ts(df_a2$C, start=1970, frequency =1)
df_a3 <- df[df$I == "3", ]
ts_a3 <- ts(df_a3$C, start=1970, frequency =1)
df_a4 <- df[df$I == "4", ]
ts_a4 <- ts(df_a4$C, start=1970, frequency =1)
df_a5 <- df[df$I == "5", ]
ts_a5 <- ts(df_a5$C, start=1970, frequency =1)
df_a6 <- df[df$I == "6", ]
ts_a6 <- ts(df_a6$C, start=1970, frequency =1)## Series: ts_a1
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 257691.43
## s.e. 44508.78
##
## sigma^2 = 2.987e+10: log likelihood = -188.19
## AIC=380.37 AICc=381.46 BIC=381.65
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 58.86321 160892 129527.1 -1.742419 5.395122 0.502644 0.4084903
## Series: ts_a1
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 257691.43
## s.e. 44508.78
##
## sigma^2 = 2.987e+10: log likelihood = -188.19
## AIC=380.37 AICc=381.46 BIC=381.65
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 58.86321 160892 129527.1 -1.742419 5.395122 0.502644 0.4084903
## Series: ts_a3
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 63155.14
## s.e. 13344.11
##
## sigma^2 = 2.685e+09: log likelihood = -171.32
## AIC=346.64 AICc=347.74 BIC=347.92
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 14.87618 48235.79 38474.72 -0.9277567 5.324145 0.538349 0.09130379
## Series: ts_a4
## ARIMA(0,2,0)
##
## sigma^2 = 1.469e+09: log likelihood = -155.65
## AIC=313.3 AICc=313.66 BIC=313.86
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 7232.074 35684.5 27472.98 1.761789 5.046326 0.2977402 0.1925091
## Series: ts_a5
## ARIMA(1,2,0)
##
## Coefficients:
## ar1
## -0.4543
## s.e. 0.2354
##
## sigma^2 = 775697764: log likelihood = -151.09
## AIC=306.18 AICc=307.38 BIC=307.31
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 3061.06 24911.01 14171.99 2.393894 4.771228 0.3823654 0.008627682
## Series: ts_a6
## ARIMA(1,2,0)
##
## Coefficients:
## ar1
## 0.5824
## s.e. 0.2281
##
## sigma^2 = 386182350: log likelihood = -146.65
## AIC=297.3 AICc=298.5 BIC=298.43
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 6829.403 17576.86 10190.16 2.076518 3.550582 0.1516841 -0.2989742
## Point Forecast Lo 95 Hi 95
## 1985 1234478 1195962 1272994
## 1986 1471026 1364365 1577687
## 1987 1714311 1510670 1917953
## 1988 1961521 1635113 2287929
## 1989 2211016 1738872 2683160
plot(pronostico_a6, main= "Pronostico de costo total Aerolinea 6", xlab= "Año", ylab= "Miles de Dolares (USD)")df_escalada <- df
df_escalada$I <- as.numeric(df_escalada$I)
df_escalada <- scale(df_escalada)
cfa <- cfa(modelo, df_escalada)
summary(cfa)## lavaan 0.6-19 ended normally after 3 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 13
##
## Number of observations 90
##
## Model Test User Model:
##
## Test statistic 63.804
## Degrees of freedom 5
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## C ~
## Q 1.000 0.053 18.826 0.000
## PF 0.194 0.065 3.000 0.003
## LF -0.154 0.025 -6.248 0.000
## I 0.105 0.052 1.999 0.046
## Y 0.140 0.063 2.211 0.027
## Q ~
## PF 0.239 0.046 5.213 0.000
## I -0.871 0.046 -18.985 0.000
## PF ~
## Y 0.931 0.038 24.233 0.000
## LF ~
## I -0.340 0.099 -3.429 0.001
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .C 0.048 0.007 6.708 0.000
## .Q 0.187 0.028 6.708 0.000
## .PF 0.131 0.020 6.708 0.000
## .LF 0.875 0.130 6.708 0.000