# Panel A: "GSHt Blood and Global Cognitive Score"
dat1A <- data.frame(
author = c("Nucifora et al. 2017", "Coughlin et al. 2021", "Gares-Caballer et al. 2022"),
r = c(0.245, 0.57, 0.34),
n = c(51, 24, 30)
)
meta1A <- metacor(r, n, data = dat1A, studlab = author,
common = FALSE, # was comb.fixed=FALSE
random = TRUE, # was comb.random=TRUE
method.tau = "REML",
sm = "ZCOR")
meta1A
## Number of studies: k = 3
## Number of observations: o = 105
##
## COR 95%-CI z p-value
## Random effects model 0.3553 [0.1574; 0.5258] 3.42 0.0006
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0037 [0.0000; 1.6395]; tau = 0.0608 [0.0000; 1.2804]
## I^2 = 13.5% [0.0%; 91.0%]; H = 1.08 [1.00; 3.33]
##
## Test of heterogeneity:
## Q d.f. p-value
## 2.31 2 0.3146
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
# Panel B: "GSHt Blood and Executive Function"
dat1B <- data.frame(
author = c("Martinez-Cengotitobengoa et al. 2012", "Gonzalez-Liencres et al. 2014",
"Coughlin et al. 2021", "Gares-Caballer et al. 2022"),
r = c(0.072, 0.171, 0.45, 0.4),
n = c(28, 41, 24, 30)
)
meta1B <- metacor(r, n, data = dat1B, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta1B
## Number of studies: k = 4
## Number of observations: o = 123
##
## COR 95%-CI z p-value
## Random effects model 0.2637 [0.0839; 0.4269] 2.85 0.0044
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 < 0.0001 [0.0000; 0.5017]; tau = 0.0007 [0.0000; 0.7083]
## I^2 = 0.0% [0.0%; 84.7%]; H = 1.00 [1.00; 2.56]
##
## Test of heterogeneity:
## Q d.f. p-value
## 2.94 3 0.4003
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
png("temp_Forest_1A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta1A,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_1A.png")
Forest Plot 1A: GSHt Blood and Global Cognitive Score
png("temp_Forest_1B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta1B,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_1B.png")
Forest Plot 1B: GSHt Blood and Executive Function
png("temp_Funnel_1A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta1A,
main = "GSHt Blood and Global Cognitive Score",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_1A.png")
Funnel Plot 1A: GSHt Blood and Global Cognitive Score
png("temp_Funnel_1B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta1B,
main = "GSHt Blood and Executive Function",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_1B.png")
Funnel Plot 1B: GSHt Blood and Executive Function
dat2A <- data.frame(
author = c("Ballesteros et al. 2013", "Tsai et al. 2013", "Tuncel et al. 2015",
"Nucifora et al. 2017", "Hendouei et al. 2018", "Hendouei et al. 2018*",
"Hendouei et al. 2018**", "Kizilpinar et al. 2023", "Lin et al. 2023",
"Lin et al. 2023"),
r = c(0.15, -0.413, -0.106, -0.311, -0.1, -0.1, 0.1, 0.016, 0.068, -0.047),
n = c(29, 41, 18, 51, 34, 34, 32, 26, 92, 219)
)
meta2A <- metacor(r, n, data = dat2A, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta2A
## Number of studies: k = 10
## Number of observations: o = 576
##
## COR 95%-CI z p-value
## Random effects model -0.0769 [-0.1871; 0.0353] -1.34 0.1788
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0094 [0.0000; 0.0866]; tau = 0.0969 [0.0000; 0.2943]
## I^2 = 27.3% [0.0%; 65.1%]; H = 1.17 [1.00; 1.69]
##
## Test of heterogeneity:
## Q d.f. p-value
## 12.39 9 0.1923
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
dat2B <- data.frame(
author = c("Raffa et al. 2011", "Tsai et al. 2013", "Fathy et al. 2015",
"Nucifora et al. 2017", "Hendouei et al. 2018", "Hendouei et al. 2018*",
"Hendouei et al. 2018**", "Chien et al. 2020", "Chien et al. 2020*",
"Coughlin et al. 2021", "Gares-Caballer et al. 2022",
"Kizilpinar et al. 2023", "Lin et al. 2023", "Lin et al. 2023"),
r = c(-0.02, -0.349, -0.805, -0.203, 0.07, -0.1, -0.1, 0, -0.17, -0.06, 0.01,
-0.038, -0.027, -0.055),
n = c(23, 41, 30, 51, 34, 34, 32, 43, 19, 24, 30, 26, 92, 219)
)
meta2B <- metacor(r, n, data = dat2B, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta2B
## Number of studies: k = 14
## Number of observations: o = 698
##
## COR 95%-CI z p-value
## Random effects model -0.1485 [-0.2876; -0.0034] -2.00 0.0450
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0477 [0.0112; 0.1917]; tau = 0.2184 [0.1060; 0.4378]
## I^2 = 61.3% [30.6%; 78.4%]; H = 1.61 [1.20; 2.15]
##
## Test of heterogeneity:
## Q d.f. p-value
## 33.55 13 0.0014
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
png("temp_Forest_2A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta2A,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_2A.png")
Forest Plot 2A: GSHt Blood and Total Symptoms
png("temp_Forest_2B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta2B,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_2B.png")
Forest Plot 2B: GSHt Blood and Negative Symptoms
png("temp_Funnel_2A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta2A,
main = "GSHt Blood and Total Symptoms",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_2A.png")
Funnel Plot 2A: GSHt Blood and Total Symptoms
png("temp_Funnel_2B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta2B,
main = "GSHt Blood and Negative Symptoms",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_2B.png")
Funnel Plot 2B: GSHt Blood and Negative Symptoms
dat3A <- data.frame(
author = c("Matsuzawa et al. 2008", "Reyes-Madrigal et al. 2019", "Iwata et al. 2021",
"Lesh et al. 2021", "Ravanfar et al. 2022"),
r = c(-0.41, 0.42, -0.08, -0.293, -0.286),
n = c(20, 10, 67, 33, 12)
)
meta3A <- metacor(r, n, data = dat3A, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta3A
## Number of studies: k = 5
## Number of observations: o = 142
##
## COR 95%-CI z p-value
## Random effects model -0.1662 [-0.3331; 0.0108] -1.84 0.0655
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0013 [0.0000; 0.8861]; tau = 0.0359 [0.0000; 0.9414]
## I^2 = 20.7% [0.0%; 66.4%]; H = 1.12 [1.00; 1.72]
##
## Test of heterogeneity:
## Q d.f. p-value
## 5.05 4 0.2827
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
dat3B <- data.frame(
author = c("Matsuzawa et al. 2008", "Reyes-Madrigal et al. 2019", "Coughlin et al. 2021",
"Iwata et al. 2021", "Lesh et al. 2021", "Ravanfar et al. 2022"),
r = c(-0.6, 0.36, 0.21, 0.15, -0.01, -0.348),
n = c(20, 10, 16, 67, 33, 12)
)
meta3B <- metacor(r, n, data = dat3B, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta3B
## Number of studies: k = 6
## Number of observations: o = 158
##
## COR 95%-CI z p-value
## Random effects model -0.0553 [-0.3428; 0.2417] -0.36 0.7193
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0814 [0.0000; 0.8864]; tau = 0.2852 [0.0000; 0.9415]
## I^2 = 59.7% [1.0%; 83.6%]; H = 1.58 [1.00; 2.47]
##
## Test of heterogeneity:
## Q d.f. p-value
## 12.40 5 0.0296
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
png("temp_Forest_3A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta3A,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_3A.png")
Forest Plot 3A: GHS Brain and Total Symptoms
png("temp_Forest_3B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta3B,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_3B.png")
Forest Plot 3B: GHS Brain and Negative Symptoms
png("temp_Funnel_3A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta3A,
main = "GHS Brain and Total Symptoms",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_3A.png")
Funnel Plot 3A: GHS Brain and Total Symptoms
png("temp_Funnel_3B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta3B,
main = "GHS Brain and Negative Symptoms",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_3B.png")
Funnel Plot 3B: GHS Brain and Negative Symptoms
dat4A <- data.frame(
author = c("Nucifora et al. 2017", "Coughlin et al. 2021", "Gares-Caballer et al. 2022"),
r = c(0.245, 0.57, 0.34),
n = c(51, 24, 30)
)
meta4A <- metacor(r, n, data = dat4A, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta4A
## Number of studies: k = 3
## Number of observations: o = 105
##
## COR 95%-CI z p-value
## Random effects model 0.3553 [0.1574; 0.5258] 3.42 0.0006
##
## Quantifying heterogeneity (with 95%-CIs):
## tau^2 = 0.0037 [0.0000; 1.6395]; tau = 0.0608 [0.0000; 1.2804]
## I^2 = 13.5% [0.0%; 91.0%]; H = 1.08 [1.00; 3.33]
##
## Test of heterogeneity:
## Q d.f. p-value
## 2.31 2 0.3146
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Q-Profile method for confidence interval of tau^2 and tau
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
dat4B <- data.frame(
author = c("Raffa et al. 2009", "Gares-Caballer et al. 2022"),
r = c(-0.28, -0.08),
n = c(88, 30)
)
meta4B <- metacor(r, n, data = dat4B, studlab = author,
common = FALSE,
random = TRUE,
method.tau = "REML",
sm = "ZCOR")
meta4B
## Number of studies: k = 2
## Number of observations: o = 118
##
## COR 95%-CI z p-value
## Random effects model -0.2333 [-0.3993; -0.0524] -2.52 0.0119
##
## Quantifying heterogeneity:
## tau^2 = 0; tau = 0; I^2 = 0.0%; H = 1.00
##
## Test of heterogeneity:
## Q d.f. p-value
## 0.88 1 0.3476
##
## Details of meta-analysis methods:
## - Inverse variance method
## - Restricted maximum-likelihood estimator for tau^2
## - Calculation of I^2 based on Q
## - Fisher's z transformation of correlations
png("temp_Forest_4A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta4A,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_4A.png")
Forest Plot 4A: GSHt Blood and Global Cognitive Score
png("temp_Forest_4B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5.5, 5, 3, 2) + 0.1)
forest(meta4B,
xlab = "Effect Size (Fisher's Z)",
hetstat.pos = "outside",
cex = 0.9,
cex.lab = 1.0,
cex.axis = 0.9,
fs.hetstat = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Forest_4B.png")
Forest Plot 4B: GSHt Blood and Clinical Global Impression
png("temp_Funnel_4A.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta4A,
main = "GSHt Blood and Global Cognitive Score",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_4A.png")
Funnel Plot 4A: GSHt Blood and Global Cognitive Score
png("temp_Funnel_4B.png", width = 8, height = 5.5, units = "in", res = 300)
par(mar = c(5, 5, 3, 2) + 0.1)
funnel(meta4B,
main = "GSHt Blood and Clinical Global Impression",
xlab = "Effect Size (Fisher's Z)",
cex = 0.9)
dev.off()
## quartz_off_screen
## 2
knitr::include_graphics("temp_Funnel_4B.png")
Funnel Plot 4B: GSHt Blood and Clinical Global Impression