21-01-2025
The dataset is updated to December 2024.
Checked the database (urban_review_13_11_24; previous versions in the “archive data” folder) https://docs.google.com/spreadsheets/d/1RQYPN_h9fll4WWYf3i59G-NWt4AgDLax/edit?gid=891108749#gid=891108749
Some authors exclude juveniles in EC abundance calculations, causing differences between sum ECabundance and TOTabundance. While this introduces a bias, i think that we have to work within these limitations.
Different sampling methods (physical and/or chemical) introduce biases that random effects cannot fully address, but i think that we have to work within these limitations.
Aggregated data (site or modality averages, and between-site or between-modality averages) are present. Random effects help account for these biases.
We’ve selected/removed articles in about three stages:
Experimental sites in rural areas will be excluded for descriptive and inferential analyses.
Urban/rural classifications are based on explicit descriptors in the dataset, so coming from the authors (e.g., “urban park” or “urban roadside”). This goes beyond interpretation. GPS coordinates were used in ~10% of ambiguous cases.
For describing earthworm communities and environmental variables, I think it’s essential to focus exclusively on “strictly urban areas”.
Attention article 39 => suppression de la richesse => voir HP
The datamset contains 726 available rows.
## publication_name count percentage
## 1 Tresch et al._2019 160 22.038567
## 2 Francini et al._2018 89 12.258953
## 3 Audusseau et al._2020 87 11.983471
## 4 Xie et al._2018 39 5.371901
## 5 Pelosi et al._2021 36 4.958678
## 6 Richardson et al._2019 28 3.856749
## # A tibble: 3 × 2
## samplingresolution num_publications
## <fct> <int>
## 1 1 7
## 2 2 25
## 3 3 9
## samplingresolution n
## 1 1 343
## 2 2 328
## 3 3 55
1990s: First studies in strictly urban environments by Pizl, Josens, Tiho, etc.
Variable | Min | Max | Mean | Median | SD | n | NAs |
---|---|---|---|---|---|---|---|
totalRichness | 0 | 14.0 | 3.6 | 3.0 | 2.3 | 534 | 132 |
totalAbundance | 0 | 1177.8 | 148.6 | 103.7 | 152.3 | 502 | 164 |
totalBiomass | 0 | 608.9 | 75.6 | 50.7 | 81.9 | 427 | 239 |
ab_anecic | 0 | 188.9 | 19.5 | 11.1 | 27.2 | 377 | 289 |
ab_endogeic | 0 | 611.1 | 56.5 | 28.0 | 83.0 | 377 | 289 |
ab_epigeic | 0 | 173.8 | 9.8 | 0.0 | 23.1 | 377 | 289 |
biom_anecics | 0 | 533.3 | 68.5 | 56.1 | 66.4 | 258 | 408 |
biom_endogeics | 0 | 170.0 | 26.6 | 16.7 | 31.2 | 258 | 408 |
biom_epigeics | 0 | 53.1 | 1.5 | 0.0 | 5.9 | 258 | 408 |
How to analyze earthworm abundance/biomass/richness datam collected at different observation scales?
Species richness is affected by sampling resolution, meaning that more samples generally lead to higher richness.
samplingresolution | n |
---|---|
1 | 295 |
2 | 322 |
3 | 49 |
1: replicate (1 sampling point)
2: site or modality average (default)
3: average between sites or between modalities of the same site (e.g. with same land use)
names(datam)
Variable | Min | Max | Mean | Median | SD | n | NAs |
---|---|---|---|---|---|---|---|
totalRichness | 0 | 8 | 3 | 3 | 1.8 | 287 | 8 |
Variable | Min | Max | Mean | Median | SD | n | NAs |
---|---|---|---|---|---|---|---|
totalRichness | 0 | 12 | 3.4 | 3 | 2.1 | 500 | 117 |
###Common species (n=666)
## species percentage
## 1 Aporrectodea_rosea 42.08038
## 2 Allolobophora_chlorotica 40.42553
## 3 Lumbricus_terrestris 39.00709
## 4 Aporrectodea_caliginosa 34.75177
## 5 Aporrectodea_longa 32.62411
## 6 Lumbricus_castaneus 25.53191
## 7 Allolobophora_icterica 22.22222
## 8 Octalasion_lacteum 15.13002
## 9 Lumbricus_rubellus 15.13002
## 10 Aporrectodea_nocturna 11.82033
The dataset contains 726 available rows.
The distance to the urban core metric (‘dist_area_ratio’ variable), unit : km ?
The human population density (‘HPD_final’ variable), unit : inhabitants .km² ?
The density of the roads around the site (‘road_density’) unit : Kilometers of road per km² ?
The proportion of urban habitat within a 1km grid (‘urban_1km’) in percentage
The proportion of urban habitat within a 25km grid (‘urban_25km’) in percentage
Variable | Min | Max | Mean | Median | SD | n | NAs |
---|---|---|---|---|---|---|---|
phwater | 3.1 | 8.8 | 7.0 | 7.2 | 1.1 | 504 | 162 |
sand | 4.3 | 85.0 | 40.4 | 41.1 | 14.4 | 258 | 408 |
silt | 7.8 | 86.5 | 39.3 | 34.8 | 15.2 | 258 | 408 |
clay | 1.1 | 49.5 | 19.9 | 21.1 | 9.6 | 258 | 408 |
om | 0.0 | 34.9 | 7.4 | 7.0 | 4.4 | 447 | 219 |
corg | 0.0 | 20.2 | 4.3 | 4.1 | 2.5 | 432 | 234 |
Many NAs were present for soil properties in the datamset. In the last meeting, we decided to retain pH, texture, and C_organic for further analyses.
These variables : silt, sand, corg, om, ab_endogeic, totalBiomass, biom_endogeics, biom_anecics, totalAbundance, biom_epigeics, ab_anecic, ab_epigeic are highly correlated
env_vars | com_vars | n_observations | n_articles | env_var_count | com_var_count |
---|---|---|---|---|---|
phwater | totalAbundance | 386 | 21 | 1 | 1 |
phwater | totalBiomass | 375 | 14 | 1 | 1 |
phwater | totalRichness | 366 | 18 | 1 | 1 |
phwater | totalAbundance, totalRichness | 366 | 18 | 1 | 2 |
om | totalBiomass | 324 | 10 | 1 | 1 |
phwater, om | totalBiomass | 324 | 10 | 2 | 1 |
om | totalAbundance | 322 | 16 | 1 | 1 |
phwater, om | totalAbundance | 322 | 16 | 2 | 1 |
om | totalRichness | 314 | 14 | 1 | 1 |
om | totalAbundance, totalRichness | 302 | 13 | 1 | 2 |
phwater, om | totalRichness | 302 | 13 | 2 | 1 |
phwater, om | totalAbundance, totalRichness | 302 | 13 | 2 | 2 |
phwater | totalAbundance, totalBiomass | 289 | 13 | 1 | 2 |
phwater | ab_anecic | 285 | 14 | 1 | 1 |
phwater | ab_endogeic | 285 | 14 | 1 | 1 |
phwater | ab_epigeic | 285 | 14 | 1 | 1 |
phwater | totalAbundance, ab_anecic | 285 | 14 | 1 | 2 |
phwater | totalAbundance, ab_endogeic | 285 | 14 | 1 | 2 |
phwater | totalAbundance, ab_epigeic | 285 | 14 | 1 | 2 |
phwater | ab_anecic, ab_endogeic | 285 | 14 | 1 | 2 |
phwater | ab_anecic, ab_epigeic | 285 | 14 | 1 | 2 |
phwater | ab_endogeic, ab_epigeic | 285 | 14 | 1 | 2 |
phwater | totalAbundance, ab_anecic, ab_endogeic | 285 | 14 | 1 | 3 |
phwater | totalAbundance, ab_anecic, ab_epigeic | 285 | 14 | 1 | 3 |
phwater | totalAbundance, ab_endogeic, ab_epigeic | 285 | 14 | 1 | 3 |
phwater | ab_anecic, ab_endogeic, ab_epigeic | 285 | 14 | 1 | 3 |
phwater | totalAbundance, ab_anecic, ab_endogeic, ab_epigeic | 285 | 14 | 1 | 4 |
phwater | totalBiomass, totalRichness | 279 | 11 | 1 | 2 |
phwater | totalAbundance, totalBiomass, totalRichness | 279 | 11 | 1 | 3 |
phwater | ab_anecic, totalRichness | 275 | 13 | 1 | 2 |
phwater | ab_endogeic, totalRichness | 275 | 13 | 1 | 2 |
phwater | ab_epigeic, totalRichness | 275 | 13 | 1 | 2 |
phwater | totalAbundance, ab_anecic, totalRichness | 275 | 13 | 1 | 3 |
phwater | totalAbundance, ab_endogeic, totalRichness | 275 | 13 | 1 | 3 |
phwater | totalAbundance, ab_epigeic, totalRichness | 275 | 13 | 1 | 3 |
phwater | ab_anecic, ab_endogeic, totalRichness | 275 | 13 | 1 | 3 |
phwater | ab_anecic, ab_epigeic, totalRichness | 275 | 13 | 1 | 3 |
phwater | ab_endogeic, ab_epigeic, totalRichness | 275 | 13 | 1 | 3 |
phwater | totalAbundance, ab_anecic, ab_endogeic, totalRichness | 275 | 13 | 1 | 4 |
phwater | totalAbundance, ab_anecic, ab_epigeic, totalRichness | 275 | 13 | 1 | 4 |
phwater | totalAbundance, ab_endogeic, ab_epigeic, totalRichness | 275 | 13 | 1 | 4 |
phwater | ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 275 | 13 | 1 | 4 |
phwater | totalAbundance, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 275 | 13 | 1 | 5 |
sand | totalAbundance | 252 | 8 | 1 | 1 |
sand | totalRichness | 252 | 8 | 1 | 1 |
clay | totalAbundance | 252 | 8 | 1 | 1 |
clay | totalRichness | 252 | 8 | 1 | 1 |
sand | totalAbundance, totalRichness | 252 | 8 | 1 | 2 |
clay | totalAbundance, totalRichness | 252 | 8 | 1 | 2 |
phwater, sand | totalAbundance | 252 | 8 | 2 | 1 |
phwater, sand | totalRichness | 252 | 8 | 2 | 1 |
phwater, clay | totalAbundance | 252 | 8 | 2 | 1 |
phwater, clay | totalRichness | 252 | 8 | 2 | 1 |
sand, clay | totalAbundance | 252 | 8 | 2 | 1 |
sand, clay | totalRichness | 252 | 8 | 2 | 1 |
sand, om | totalAbundance | 252 | 8 | 2 | 1 |
sand, om | totalRichness | 252 | 8 | 2 | 1 |
clay, om | totalAbundance | 252 | 8 | 2 | 1 |
clay, om | totalRichness | 252 | 8 | 2 | 1 |
phwater, sand | totalAbundance, totalRichness | 252 | 8 | 2 | 2 |
phwater, clay | totalAbundance, totalRichness | 252 | 8 | 2 | 2 |
sand, clay | totalAbundance, totalRichness | 252 | 8 | 2 | 2 |
sand, om | totalAbundance, totalRichness | 252 | 8 | 2 | 2 |
clay, om | totalAbundance, totalRichness | 252 | 8 | 2 | 2 |
phwater, sand, clay | totalAbundance | 252 | 8 | 3 | 1 |
phwater, sand, clay | totalRichness | 252 | 8 | 3 | 1 |
phwater, sand, om | totalAbundance | 252 | 8 | 3 | 1 |
phwater, sand, om | totalRichness | 252 | 8 | 3 | 1 |
phwater, clay, om | totalAbundance | 252 | 8 | 3 | 1 |
phwater, clay, om | totalRichness | 252 | 8 | 3 | 1 |
sand, clay, om | totalAbundance | 252 | 8 | 3 | 1 |
sand, clay, om | totalRichness | 252 | 8 | 3 | 1 |
phwater, sand, clay | totalAbundance, totalRichness | 252 | 8 | 3 | 2 |
phwater, sand, om | totalAbundance, totalRichness | 252 | 8 | 3 | 2 |
phwater, clay, om | totalAbundance, totalRichness | 252 | 8 | 3 | 2 |
sand, clay, om | totalAbundance, totalRichness | 252 | 8 | 3 | 2 |
phwater, sand, clay, om | totalAbundance | 252 | 8 | 4 | 1 |
phwater, sand, clay, om | totalRichness | 252 | 8 | 4 | 1 |
phwater, sand, clay, om | totalAbundance, totalRichness | 252 | 8 | 4 | 2 |
om | totalAbundance, totalBiomass | 238 | 9 | 1 | 2 |
env_vars | com_vars | n_observations | n_articles |
---|---|---|---|
phwater, sand, clay, om | totalAbundance | 252 | 8 |
phwater, sand, clay, om | totalRichness | 252 | 8 |
phwater, sand, clay, om | totalAbundance, totalRichness | 252 | 8 |
phwater | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 221 | 8 |
phwater, sand, clay, om | totalBiomass | 205 | 4 |
phwater, sand, clay, om | totalAbundance, totalBiomass | 205 | 4 |
phwater, sand, clay, om | totalBiomass, totalRichness | 205 | 4 |
phwater, sand, clay, om | totalAbundance, totalBiomass, totalRichness | 205 | 4 |
phwater, sand, clay, om | ab_anecic | 191 | 6 |
phwater, sand, clay, om | ab_endogeic | 191 | 6 |
phwater, sand, clay, om | ab_epigeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_endogeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_endogeic | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | ab_anecic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_endogeic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | ab_endogeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_endogeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_endogeic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_endogeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_endogeic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_endogeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_endogeic, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_endogeic, ab_epigeic | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_endogeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_endogeic, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 191 | 6 |
phwater, sand, clay, om | totalAbundance, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 191 | 6 |
om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 170 | 4 |
phwater, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 170 | 4 |
sand | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
clay | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, clay | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
sand, clay | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
sand, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_endogeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_endogeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_endogeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_endogeic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_endogeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_endogeic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_endogeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_endogeic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_endogeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater, sand, clay, om | totalAbundance, totalBiomass, ab_anecic, ab_endogeic, ab_epigeic, totalRichness | 164 | 3 |
phwater | sand | clay | om | totalAbundance | totalBiomass | ab_anecic | ab_endogeic | ab_epigeic | totalRichness | |
---|---|---|---|---|---|---|---|---|---|---|
phwater | 543 | 289 | 289 | 471 | 426 | 413 | 317 | 317 | 317 | 421 |
sand | 289 | 289 | 289 | 289 | 289 | 210 | 223 | 223 | 223 | 284 |
clay | 289 | 289 | 289 | 289 | 289 | 210 | 223 | 223 | 223 | 284 |
om | 471 | 289 | 289 | 486 | 365 | 357 | 266 | 266 | 266 | 372 |
totalAbundance | 426 | 289 | 289 | 365 | 537 | 315 | 411 | 411 | 411 | 506 |
totalBiomass | 413 | 210 | 210 | 357 | 315 | 456 | 227 | 227 | 227 | 316 |
ab_anecic | 317 | 223 | 223 | 266 | 411 | 227 | 411 | 411 | 411 | 401 |
ab_endogeic | 317 | 223 | 223 | 266 | 411 | 227 | 411 | 411 | 411 | 401 |
ab_epigeic | 317 | 223 | 223 | 266 | 411 | 227 | 411 | 411 | 411 | 401 |
totalRichness | 421 | 284 | 284 | 372 | 506 | 316 | 401 | 401 | 401 | 573 |
LocalLand | phwater | sand | clay | om | totalAbundance | totalBiomass | ab_anecic | ab_endogeic | ab_epigeic | totalRichness |
---|---|---|---|---|---|---|---|---|---|---|
arable - high intensity | 72 | 71 | 71 | 72 | 72 | 75 | 70 | 70 | 70 | 74 |
arable - medium intensity | 23 | 23 | 23 | 23 | 23 | 23 | 22 | 22 | 22 | 23 |
grass - high intensity | 181 | 109 | 109 | 172 | 152 | 128 | 77 | 77 | 77 | 164 |
grass_mediumlow | 124 | 74 | 74 | 112 | 218 | 94 | 182 | 182 | 182 | 227 |
ruderal | 7 | 0 | 0 | 6 | 2 | 7 | 1 | 1 | 1 | 8 |
trees | 136 | 12 | 12 | 101 | 70 | 129 | 59 | 59 | 59 | 77 |
localLandCover | CLC_reduced | LocalLand | phwater | sand | clay | om | totalAbundance | totalBiomass | ab_anecic | ab_endogeic | ab_epigeic | totalRichness |
---|---|---|---|---|---|---|---|---|---|---|---|---|
arable | 100s | arable - high intensity | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 | 68 |
arable | 100s | arable - medium intensity | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
grass | 100s | grass - high intensity | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
grass | 100s | grass_mediumlow | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
trees | 100s | trees | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
localLandCover | CLC_reduced | LocalLand | phwater | sand | clay | om | totalAbundance | totalBiomass | ab_anecic | ab_endogeic | ab_epigeic | totalRichness |
---|---|---|---|---|---|---|---|---|---|---|---|---|
arable | 100s | arable - high intensity | 69 | 69 | 69 | 69 | 69 | 69 | 68 | 68 | 68 | 71 |
arable | 100s | arable - medium intensity | 23 | 23 | 23 | 23 | 23 | 23 | 22 | 22 | 22 | 23 |
arable | 200s | arable - high intensity | 3 | 2 | 2 | 3 | 3 | 6 | 2 | 2 | 2 | 3 |
grass | 100s | grass - high intensity | 180 | 109 | 109 | 171 | 152 | 122 | 77 | 77 | 77 | 164 |
grass | 100s | grass_mediumlow | 96 | 49 | 49 | 87 | 190 | 81 | 154 | 154 | 154 | 195 |
grass | 200s | grass - high intensity | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
grass | 200s | grass_mediumlow | 18 | 17 | 17 | 17 | 18 | 11 | 18 | 18 | 18 | 18 |
grass | 300s | grass - high intensity | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
grass | 300s | grass_mediumlow | 10 | 8 | 8 | 8 | 10 | 2 | 10 | 10 | 10 | 14 |
ruderal | 100s | ruderal | 6 | 0 | 0 | 5 | 1 | 6 | 1 | 1 | 1 | 7 |
ruderal | 300s | ruderal | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
trees | 100s | trees | 108 | 6 | 6 | 77 | 48 | 102 | 48 | 48 | 48 | 52 |
trees | 200s | trees | 3 | 0 | 0 | 3 | 3 | 0 | 3 | 3 | 3 | 1 |
trees | 300s | trees | 25 | 6 | 6 | 21 | 19 | 27 | 8 | 8 | 8 | 24 |
## Arable Lawn Grass Ruderal Trees
## 1 90 0 70 0 4
## Agricultural Urban Natural
## 1 0 164 0
## grass_low grass_high arable_medium arable_high
## 1 20 50 22 68
The datamset contains 164 available rows.
com variables = “totalAbundance”, “totalRichness”
env variables =“phwater”,“om”,“grass_medium”,“grass_low”, arable_high” ,“grass_high”,“arable_medium”
ew variables = “totalAbundance”, “totalRichness”,“ab_anecic”, “ab_endogeic”, “ab_epigeic”
env variables = “phwater”,“om”,“sand”, “clay”,“grass_medium”,“grass_low”,“arable_high”,“grass_high”,“arable_medium”
com variables = “totalBiomass”, “totalRichness”, “totalAbundance”, “ab_anecic”, “ab_endogeic”, “ab_epigeic”
env variables =“phwater”,“om”,“sand”, “clay”
ew variables = “totalAbundance”, “ab_anecic”, “ab_endogeic”, “ab_epigeic”, “totalRichness”, “totalBiomass”
env variables = “phwater”,“om”, “sand”, “clay”, “grass_medium”, “arable_high”, “grass_high”, “arable_medium”
com variables = “totalAbundance”, “totalRichness”
env variables =“phwater”,“om”,“grass_medium”,“arable_high”,“grass_high”,“arable_medium”
## trees grass_mediumlow arable_high ruderal lawn
## 11 40 69 0 0
## grass_high arable_medium
## 109 23
## Coinertia analysis
##
## Class: coinertia dudi
## Call: coinertia(dudiX = env_pca, dudiY = comm_pca, scannf = FALSE)
##
## Total inertia: 0.5962
##
## Eigenvalues:
## Ax1 Ax2
## 0.4259 0.1703
##
## Projected inertia (%):
## Ax1 Ax2
## 71.44 28.56
##
## Cumulative projected inertia (%):
## Ax1 Ax1:2
## 71.44 100.00
##
## Eigenvalues decomposition:
## eig covar sdX sdY corr
## 1 0.4259341 0.6526363 1.47335 1.1130442 0.3979723
## 2 0.1702717 0.4126399 1.11156 0.8724291 0.4255085
##
## Inertia & coinertia X (env_pca):
## inertia max ratio
## 1 2.170761 2.307192 0.9408669
## 12 3.406326 3.567756 0.9547530
##
## Inertia & coinertia Y (comm_pca):
## inertia max ratio
## 1 1.238867 1.47161 0.8418447
## 12 2.000000 2.00000 1.0000000
##
## RV:
## 0.1193925
## Monte-Carlo test
## Call: randtest.coinertia(xtest = coi_result, nrepet = 999)
##
## Observation: 0.1193925
##
## Based on 999 replicates
## Simulated p-value: 0.001
## Alternative hypothesis: greater
##
## Std.Obs Expectation Variance
## 1.894260e+01 1.109363e-02 3.268656e-05
## [1] "Inertie Axe 1: 0.425934078088838 (71.44%)"
## [1] "Inertie Axe 2: 0.170271696670797 (28.56%)"
## CS1 CS2
## phwater -0.49348102 -0.3416676
## om 0.49372383 0.2292508
## trees 0.28320705 -0.7364955
## grass_mediumlow 0.14073516 -0.3632343
## arable_high 0.32480591 0.2670442
## grass_high -0.55048300 0.2201331
## arable_medium 0.06457734 0.1912364
com variables = “totalRichness”, “totalAbundance”
env variables =“phwater”,“om”,“sand”, “clay”, “grass_medium”,“arable_high”,“grass_high”,“arable_medium”
## trees grass_mediumlow arable_high ruderal lawn
## 11 40 69 0 0
## grass_high arable_medium
## 109 23
## Coinertia analysis
##
## Class: coinertia dudi
## Call: coinertia(dudiX = env_pca, dudiY = comm_pca, scannf = FALSE)
##
## Total inertia: 0.7689
##
## Eigenvalues:
## Ax1 Ax2
## 0.5674 0.2015
##
## Projected inertia (%):
## Ax1 Ax2
## 73.79 26.21
##
## Cumulative projected inertia (%):
## Ax1 Ax1:2
## 73.79 100.00
##
## Eigenvalues decomposition:
## eig covar sdX sdY corr
## 1 0.5673980 0.7532583 1.586341 1.1015549 0.4310634
## 2 0.2015418 0.4489341 1.173134 0.8868916 0.4314838
##
## Inertia & coinertia X (env_pca):
## inertia max ratio
## 1 2.516479 2.73918 0.9186977
## 12 3.892722 4.07652 0.9549130
##
## Inertia & coinertia Y (comm_pca):
## inertia max ratio
## 1 1.213423 1.47161 0.8245547
## 12 2.000000 2.00000 1.0000000
##
## RV:
## 0.1310568
## Monte-Carlo test
## Call: randtest.coinertia(xtest = coi_result, nrepet = 999)
##
## Observation: 0.1310568
##
## Based on 999 replicates
## Simulated p-value: 0.001
## Alternative hypothesis: greater
##
## Std.Obs Expectation Variance
## 2.321956e+01 1.178798e-02 2.638429e-05
## [1] "Vergnes et al._2017" "Pelosi et al._2021" "Maréchal et al._2021"
## [4] "Tiho and Josens_2000" "Amossé et al._2016" "Tresch et al._2019"
## [7] "Xie et al._2018" "Maréchal et al._2024"
## [1] "Inertie Axe 1: 0.567398049148044 (73.79%)"
## [1] "Inertie Axe 2: 0.201541797900794 (26.21%)"
## [1] 2 2
## CS1 CS2
## phwater -0.43311298 -0.2918407
## om 0.43142991 0.1885502
## sand -0.19282776 0.3414985
## clay 0.46104651 0.1932203
## trees 0.23285534 -0.6892914
## grass_mediumlow 0.11576009 -0.3400009
## arable_high 0.28578216 0.2308216
## grass_high -0.47301516 0.2268448
## arable_medium 0.05914534 0.1728065
## [1] 2 2
## Axis1 Axis2
## totalRichness 0.1752492 -0.4366150
## totalAbundance 0.7325884 0.1044467
ew variables = “totalAbundance”, “ab_anecic”, “ab_endogeic”, “ab_epigeic”, “totalRichness”
env variables = “phwater”,“om”,“sand”, “clay”,“grass_medium”,“grass_low”,“arable_high”,“grass_high”,“arable_medium”
## trees grass_mediumlow arable_high ruderal lawn
## 11 40 68 0 0
## grass_high arable_medium
## 50 22
## Coinertia analysis
##
## Class: coinertia dudi
## Call: coinertia(dudiX = env_pca, dudiY = comm_pca, scannf = FALSE)
##
## Total inertia: 1.23
##
## Eigenvalues:
## Ax1 Ax2 Ax3 Ax4 Ax5
## 0.945336 0.200672 0.049102 0.031449 0.003244
##
## Projected inertia (%):
## Ax1 Ax2 Ax3 Ax4 Ax5
## 76.8689 16.3174 3.9926 2.5573 0.2638
##
## Cumulative projected inertia (%):
## Ax1 Ax1:2 Ax1:3 Ax1:4 Ax1:5
## 76.87 93.19 97.18 99.74 100.00
##
## Eigenvalues decomposition:
## eig covar sdX sdY corr
## 1 0.9453357 0.9722838 1.201010 1.4944964 0.5416908
## 2 0.2006721 0.4479644 1.290618 0.9438584 0.3677383
##
## Inertia & coinertia X (env_pca):
## inertia max ratio
## 1 1.442426 1.805021 0.7991185
## 12 3.108121 3.446387 0.9018492
##
## Inertia & coinertia Y (comm_pca):
## inertia max ratio
## 1 2.233520 2.610407 0.8556213
## 12 3.124388 3.589751 0.8703634
##
## RV:
## 0.1203808
## Monte-Carlo test
## Call: randtest.coinertia(xtest = coi_result, nrepet = 999)
##
## Observation: 0.1203808
##
## Based on 999 replicates
## Simulated p-value: 0.001
## Alternative hypothesis: greater
##
## Std.Obs Expectation Variance
## 1.255959e+01 2.355875e-02 5.942888e-05
## [1] "Inertie Axe 1: 0.94533571488998 (76.87%)"
## [1] "Inertie Axe 2: 0.20067213581569 (16.32%)"