#Title: Assignment 4 for WFED540
#Author: Andrew Leigey
#Date: 11/19/15
#Output: html_document
# ************************************
# ASSIGNMENT 4, WFED 540 *
# ************************************
# ************************************
# READING Mroz Labor Supply Dataset *
# from Ecdat Package *
# *
# The Mroz dataset contains 753 *
# observations of individuals in the *
# United States. The code below *
# installs the Ecdat package *
# containing the Mroz dataset, loads *
# Ecdat, accesses the Mroz dataset, *
# lists the names of variables in *
# Mroz dataset, and summarizes each *
# variable in the Mroz dataset. Mroz *
# variables do not include missing *
# data. Your entry of the command, *
# "?Mroz", displays documentation *
# for the Mroz dataset. *
# ************************************
require(Ecdat)
## Loading required package: Ecdat
## Loading required package: Ecfun
##
## Attaching package: 'Ecdat'
##
## The following object is masked from 'package:datasets':
##
## Orange
data(Mroz)
names(Mroz)
## [1] "work" "hoursw" "child6" "child618" "agew"
## [6] "educw" "hearnw" "wagew" "hoursh" "ageh"
## [11] "educh" "wageh" "income" "educwm" "educwf"
## [16] "unemprate" "city" "experience"
summary(Mroz)
## work hoursw child6 child618
## yes:325 Min. : 0.0 Min. :0.0000 Min. :0.000
## no :428 1st Qu.: 0.0 1st Qu.:0.0000 1st Qu.:0.000
## Median : 288.0 Median :0.0000 Median :1.000
## Mean : 740.6 Mean :0.2377 Mean :1.353
## 3rd Qu.:1516.0 3rd Qu.:0.0000 3rd Qu.:2.000
## Max. :4950.0 Max. :3.0000 Max. :8.000
## agew educw hearnw wagew
## Min. :30.00 Min. : 5.00 Min. : 0.000 Min. :0.00
## 1st Qu.:36.00 1st Qu.:12.00 1st Qu.: 0.000 1st Qu.:0.00
## Median :43.00 Median :12.00 Median : 1.625 Median :0.00
## Mean :42.54 Mean :12.29 Mean : 2.375 Mean :1.85
## 3rd Qu.:49.00 3rd Qu.:13.00 3rd Qu.: 3.788 3rd Qu.:3.58
## Max. :60.00 Max. :17.00 Max. :25.000 Max. :9.98
## hoursh ageh educh wageh
## Min. : 175 Min. :30.00 Min. : 3.00 Min. : 0.4121
## 1st Qu.:1928 1st Qu.:38.00 1st Qu.:11.00 1st Qu.: 4.7883
## Median :2164 Median :46.00 Median :12.00 Median : 6.9758
## Mean :2267 Mean :45.12 Mean :12.49 Mean : 7.4822
## 3rd Qu.:2553 3rd Qu.:52.00 3rd Qu.:15.00 3rd Qu.: 9.1667
## Max. :5010 Max. :60.00 Max. :17.00 Max. :40.5090
## income educwm educwf unemprate
## Min. : 1500 Min. : 0.000 Min. : 0.000 Min. : 3.000
## 1st Qu.:15428 1st Qu.: 7.000 1st Qu.: 7.000 1st Qu.: 7.500
## Median :20880 Median :10.000 Median : 7.000 Median : 7.500
## Mean :23081 Mean : 9.251 Mean : 8.809 Mean : 8.624
## 3rd Qu.:28200 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:11.000
## Max. :96000 Max. :17.000 Max. :17.000 Max. :14.000
## city experience
## no :269 Min. : 0.00
## yes:484 1st Qu.: 4.00
## Median : 9.00
## Mean :10.63
## 3rd Qu.:15.00
## Max. :45.00
# ************************************
# Assignment 4 *
# ************************************
require(ggvis)
## Loading required package: ggvis
require(corrplot)
## Loading required package: corrplot
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(knitr)
## Loading required package: knitr
require(rmarkdown)
## Loading required package: rmarkdown
# 1. Select four continuous variables from Mroz.
Mroz4var<-Mroz%>% select(hoursw, agew, income, experience)
Mroz4var
## hoursw agew income experience
## 1 1610 32 16310 14
## 2 1656 30 21800 5
## 3 1980 35 21040 15
## 4 456 34 7300 6
## 5 1568 31 27300 7
## 6 2032 54 19495 33
## 7 1440 37 21152 11
## 8 1020 54 18900 35
## 9 1458 48 20405 24
## 10 1600 39 20425 21
## 11 1969 33 32300 15
## 12 1960 42 28700 14
## 13 240 30 15500 0
## 14 997 43 16860 14
## 15 1848 43 31431 6
## 16 1224 35 19180 9
## 17 1400 43 18600 20
## 18 640 39 19151 6
## 19 2000 45 18100 23
## 20 1324 35 20300 9
## 21 2215 42 30419 5
## 22 1680 30 14090 11
## 23 1600 48 22679 18
## 24 800 45 12160 15
## 25 1955 31 12487 4
## 26 660 43 29850 21
## 27 525 59 18100 31
## 28 1904 32 26000 9
## 29 1516 31 26100 7
## 30 346 42 17730 7
## 31 1040 50 6719 32
## 32 732 59 18550 11
## 33 1880 36 24600 16
## 34 1680 51 23100 14
## 35 2081 45 24656 27
## 36 690 42 15897 0
## 37 4210 46 20320 17
## 38 2205 46 21384 28
## 39 1952 51 25561 24
## 40 1302 30 36550 11
## 41 112 30 15810 1
## 42 893 57 25500 14
## 43 583 31 24000 6
## 44 480 48 22172 10
## 45 1900 30 17930 6
## 46 576 34 7000 4
## 47 2056 48 25300 10
## 48 1984 45 16212 22
## 49 2640 51 22650 16
## 50 240 30 6985 6
## 51 1173 46 30000 12
## 52 3640 58 18500 32
## 53 340 37 16658 15
## 54 500 52 10300 17
## 55 1599 52 11000 34
## 56 1830 31 19900 9
## 57 1920 55 32500 37
## 58 2052 34 37300 10
## 59 2312 55 30018 35
## 60 196 39 12807 6
## 61 2500 40 39500 19
## 62 1980 43 22050 10
## 63 1840 48 15500 11
## 64 320 47 13810 15
## 65 419 41 11950 12
## 66 1880 36 19175 12
## 67 72 46 17900 14
## 68 120 34 15850 11
## 69 1885 41 27017 9
## 70 240 51 18900 24
## 71 1729 33 21800 12
## 72 1850 52 33552 13
## 73 2033 58 22650 29
## 74 608 34 15200 11
## 75 1153 31 13120 13
## 76 2208 48 21660 19
## 77 252 32 18190 2
## 78 337 49 9600 24
## 79 90 32 13755 9
## 80 1174 58 35350 6
## 81 372 50 12405 22
## 82 30 60 12180 30
## 83 1800 50 22962 10
## 84 282 56 25700 6
## 85 720 51 3305 29
## 86 1440 54 32950 29
## 87 2100 59 17000 36
## 88 1000 46 13250 19
## 89 952 46 50750 8
## 90 1413 39 15632 13
## 91 2100 44 28316 16
## 92 120 33 17290 11
## 93 3000 33 33600 15
## 94 1000 48 29200 6
## 95 336 31 19870 13
## 96 1216 45 16225 22
## 97 988 45 28600 24
## 98 2581 32 30800 2
## 99 2030 47 25700 6
## 100 413 34 27000 2
## 101 782 37 12077 2
## 102 1388 36 29612 14
## 103 1450 47 24479 9
## 104 1720 48 79750 11
## 105 800 42 20050 9
## 106 360 33 21500 6
## 107 2000 46 16120 19
## 108 1176 47 24686 26
## 109 2058 44 24669 19
## 110 900 36 26400 3
## 111 215 31 16245 7
## 112 2000 55 23300 28
## 113 757 45 27200 13
## 114 1264 47 51000 9
## 115 2064 46 55000 15
## 116 1280 49 15389 20
## 117 1715 49 23150 29
## 118 2000 45 29774 9
## 119 12 38 91044 1
## 120 1528 47 28200 8
## 121 561 54 36150 19
## 122 2058 41 15652 23
## 123 1823 43 18900 3
## 124 1680 31 23600 13
## 125 1440 47 36200 8
## 126 4950 35 18700 17
## 127 1176 45 24125 4
## 128 1100 33 15800 15
## 129 1516 54 19742 11
## 130 900 35 22600 7
## 131 1080 31 17500 0
## 132 480 55 19820 0
## 133 288 34 20155 10
## 134 1875 38 37300 8
## 135 630 45 24860 2
## 136 234 47 21450 4
## 137 1600 39 29650 6
## 138 960 36 23000 18
## 139 120 33 21120 3
## 140 2025 50 26000 22
## 141 1809 58 28000 33
## 142 3087 49 45500 28
## 143 910 41 16000 23
## 144 1840 51 18232 27
## 145 784 53 28160 11
## 146 400 36 5965 6
## 147 1000 46 19000 11
## 148 1904 36 36872 14
## 149 1771 53 42000 17
## 150 1486 40 26900 17
## 151 740 42 30800 14
## 152 1820 33 21520 11
## 153 1275 43 24795 7
## 154 450 31 12900 8
## 155 1221 47 42700 6
## 156 1550 54 38800 8
## 157 180 33 2500 4
## 158 2090 43 26921 25
## 159 1960 46 18300 24
## 160 1440 35 17200 11
## 161 794 37 14209 19
## 162 993 37 32300 9
## 163 160 34 21400 19
## 164 105 43 14700 14
## 165 1200 46 25516 22
## 166 450 35 13300 6
## 167 996 46 31000 23
## 168 1052 46 48800 15
## 169 1128 43 15519 6
## 170 1840 30 19500 11
## 171 1910 41 14545 2
## 172 980 54 22897 22
## 173 2317 31 14300 10
## 174 1089 44 14884 14
## 175 800 32 27400 12
## 176 1230 47 16400 9
## 177 1158 46 25704 13
## 178 2272 37 12800 18
## 179 528 51 40000 8
## 180 1000 49 47000 11
## 181 520 36 25872 9
## 182 760 39 26868 9
## 183 1920 48 18000 14
## 184 1220 38 30200 9
## 185 200 40 26220 2
## 186 2480 39 40500 12
## 187 2750 37 33570 15
## 188 2014 49 16917 11
## 189 1355 33 18000 7
## 190 80 30 8337 9
## 191 1670 54 17100 19
## 192 520 39 17800 11
## 193 288 43 13740 8
## 194 2014 31 27000 13
## 195 800 33 32600 4
## 196 1984 40 28030 7
## 197 1823 36 23100 19
## 198 1500 51 24580 14
## 199 2261 44 29000 14
## 200 1728 42 42430 3
## 201 1960 40 41800 9
## 202 1578 34 39100 7
## 203 1316 30 31800 7
## 204 1530 54 22200 14
## 205 2220 51 19500 29
## 206 1336 44 14027 19
## 207 1008 43 21195 14
## 208 1944 34 19013 16
## 209 2000 45 20900 10
## 210 258 39 26820 12
## 211 1785 50 12800 24
## 212 480 52 7850 6
## 213 772 41 18600 9
## 214 900 59 5380 14
## 215 1428 52 6114 26
## 216 210 46 8234 7
## 217 239 41 20646 4
## 218 1878 33 16640 15
## 219 215 45 13900 23
## 220 2340 36 11500 1
## 221 1960 48 34000 29
## 222 532 47 28700 9
## 223 394 45 9563 6
## 224 675 37 20960 11
## 225 1515 46 38590 17
## 226 1030 43 27900 6
## 227 1250 42 25633 7
## 228 1158 34 35200 2
## 229 112 52 29500 24
## 230 336 37 10000 4
## 231 1984 37 19800 11
## 232 716 52 12900 25
## 233 1410 30 26080 11
## 234 1300 31 13066 2
## 235 1640 38 12500 19
## 236 1202 43 35600 7
## 237 489 49 19424 2
## 238 2076 55 26250 20
## 239 526 38 36525 10
## 240 1721 52 34700 19
## 241 1327 48 8311 17
## 242 584 32 28626 12
## 243 1376 32 24400 11
## 244 1040 38 14025 6
## 245 548 46 21367 10
## 246 15 40 14136 4
## 247 1980 31 19900 2
## 248 1520 43 37000 13
## 249 1880 51 18500 21
## 250 1260 30 34550 9
## 251 1092 52 49620 4
## 252 1587 30 10400 2
## 253 156 51 33000 19
## 254 1939 31 16200 4
## 255 1250 34 22660 9
## 256 610 49 16000 14
## 257 270 35 25780 6
## 258 660 53 20675 24
## 259 1000 32 40213 1
## 260 1920 38 15500 13
## 261 200 54 35207 3
## 262 1500 47 35702 10
## 263 868 45 17800 16
## 264 2318 47 50900 9
## 265 2000 59 17280 19
## 266 60 32 15150 4
## 267 1715 45 36200 10
## 268 550 40 17465 5
## 269 1960 47 45205 7
## 270 44 36 14500 3
## 271 1920 56 32011 38
## 272 2540 41 35200 16
## 273 156 48 13579 13
## 274 780 36 10455 1
## 275 3120 41 32600 7
## 276 2040 41 19150 15
## 277 1610 36 24400 10
## 278 215 37 21700 2
## 279 1120 38 26201 19
## 280 846 43 11920 25
## 281 3225 54 16300 25
## 282 1376 38 16500 7
## 283 980 30 30000 15
## 284 1838 49 62500 11
## 285 1494 45 58500 25
## 286 450 51 40900 19
## 287 1976 34 16308 4
## 288 2012 34 9300 14
## 289 561 41 35700 19
## 290 1715 49 35700 18
## 291 1912 32 24500 14
## 292 3686 32 13000 11
## 293 1080 32 52600 4
## 294 1799 47 25360 29
## 295 1984 39 9400 21
## 296 1839 49 26800 24
## 297 1579 37 33040 19
## 298 96 59 26350 31
## 299 1920 50 39000 28
## 300 1688 32 35100 15
## 301 1589 46 22502 27
## 302 345 43 21950 13
## 303 1521 37 13000 4
## 304 1490 32 18180 10
## 305 989 39 20957 8
## 306 600 34 13700 4
## 307 2646 39 20000 18
## 308 2149 45 12260 3
## 309 320 50 24850 11
## 310 1600 40 29150 8
## 311 2419 30 23591 10
## 312 2005 57 24717 33
## 313 1960 39 30455 19
## 314 2147 53 19600 35
## 315 1207 48 31875 21
## 316 2000 46 24055 7
## 317 1260 47 18795 18
## 318 90 43 12198 4
## 319 1800 47 52645 12
## 320 573 47 16600 16
## 321 1825 47 32590 14
## 322 75 46 10020 3
## 323 1348 34 12048 1
## 324 1880 48 39750 27
## 325 1240 30 15700 12
## 326 848 51 24250 6
## 327 150 52 43210 9
## 328 2000 37 37100 2
## 329 1952 32 23820 6
## 330 1456 36 31600 9
## 331 1740 35 24000 16
## 332 1400 45 30750 22
## 333 2000 56 11050 26
## 334 1750 40 12239 11
## 335 1101 45 12870 11
## 336 2000 32 17200 15
## 337 1877 45 23980 13
## 338 160 40 18600 6
## 339 1886 38 23920 20
## 340 1446 49 16084 17
## 341 1500 47 31100 8
## 342 860 52 20460 13
## 343 1848 34 36000 15
## 344 1678 44 17302 14
## 345 160 36 16450 14
## 346 108 50 41170 6
## 347 1738 45 20130 24
## 348 1170 44 9200 10
## 349 15 57 24751 2
## 350 2088 35 57300 9
## 351 2490 46 37200 23
## 352 135 30 14000 12
## 353 1944 42 20610 8
## 354 690 34 14800 16
## 355 608 45 40005 10
## 356 63 35 23750 7
## 357 154 40 35300 19
## 358 420 32 17350 2
## 359 651 54 21650 9
## 360 675 38 6740 14
## 361 1663 43 32275 9
## 362 1680 54 33220 16
## 363 180 39 26500 7
## 364 1581 37 38700 6
## 365 1200 46 15400 22
## 366 450 56 19007 9
## 367 547 41 16771 9
## 368 300 45 31100 14
## 369 975 44 66300 17
## 370 1621 50 43550 12
## 371 300 37 37250 13
## 372 1868 44 24900 8
## 373 1803 32 24200 10
## 374 2143 34 16200 16
## 375 1080 32 11431 1
## 376 1352 37 13200 6
## 377 537 44 15420 4
## 378 352 34 18400 8
## 379 200 33 43500 4
## 380 2045 43 21972 15
## 381 1253 35 7774 7
## 382 1960 43 24470 14
## 383 2000 34 13600 16
## 384 1960 36 22500 15
## 385 2000 41 13600 23
## 386 1568 41 90800 19
## 387 1225 35 10776 4
## 388 780 32 19007 12
## 389 480 30 23900 12
## 390 1923 43 26060 25
## 391 2000 54 13300 14
## 392 2110 35 15620 14
## 393 1664 50 16500 11
## 394 48 34 20880 7
## 395 1791 52 30600 18
## 396 1404 35 39000 4
## 397 1920 55 15428 37
## 398 2141 35 23300 13
## 399 1720 49 42100 14
## 400 3533 38 36430 17
## 401 2000 42 26000 5
## 402 800 48 62060 2
## 403 3000 51 28300 0
## 404 293 43 24149 3
## 405 1872 43 28141 21
## 406 2058 38 23057 20
## 407 1832 44 28900 19
## 408 120 36 24000 4
## 409 1632 38 13900 19
## 410 778 47 31810 11
## 411 1984 34 19840 14
## 412 225 40 25490 8
## 413 1960 31 20800 13
## 414 444 46 2400 24
## 415 384 36 32650 1
## 416 1170 39 16370 1
## 417 1330 36 35500 3
## 418 1350 37 15100 4
## 419 480 39 14100 21
## 420 1984 36 19600 10
## 421 1944 49 19434 13
## 422 50 45 23882 9
## 423 460 32 17300 14
## 424 680 36 19772 2
## 425 2450 40 35641 21
## 426 2144 43 34220 22
## 427 1760 33 30000 14
## 428 490 30 18000 7
## 429 0 49 21025 2
## 430 0 30 23600 5
## 431 0 30 22800 12
## 432 0 41 35910 1
## 433 0 45 21700 12
## 434 0 43 21823 4
## 435 0 42 31000 9
## 436 0 60 15300 9
## 437 0 57 12925 6
## 438 0 38 15830 5
## 439 0 56 30200 5
## 440 0 32 16600 8
## 441 0 49 11000 2
## 442 0 55 15000 6
## 443 0 36 20528 0
## 444 0 44 13126 3
## 445 0 44 15550 7
## 446 0 35 18010 3
## 447 0 44 18874 10
## 448 0 45 24800 3
## 449 0 34 17500 2
## 450 0 30 16150 12
## 451 0 39 15189 15
## 452 0 36 6000 5
## 453 0 38 37250 4
## 454 0 53 27760 10
## 455 0 36 9090 1
## 456 0 32 14500 8
## 457 0 51 19700 20
## 458 0 38 16788 4
## 459 0 33 18520 7
## 460 0 54 20950 10
## 461 0 38 7574 3
## 462 0 30 10027 5
## 463 0 34 5000 10
## 464 0 34 7040 0
## 465 0 50 40800 3
## 466 0 30 16050 10
## 467 0 38 33100 2
## 468 0 54 33856 10
## 469 0 30 20500 4
## 470 0 55 28600 0
## 471 0 51 18750 10
## 472 0 44 20300 5
## 473 0 53 13420 0
## 474 0 42 18400 0
## 475 0 38 16682 19
## 476 0 38 32685 2
## 477 0 41 7050 12
## 478 0 35 10867 5
## 479 0 33 18220 5
## 480 0 48 26613 5
## 481 0 47 25000 10
## 482 0 34 15700 0
## 483 0 33 40250 4
## 484 0 31 73600 3
## 485 0 58 10592 2
## 486 0 49 8000 1
## 487 0 55 13400 0
## 488 0 44 23700 1
## 489 0 44 18900 1
## 490 0 36 48300 6
## 491 0 38 24470 12
## 492 0 37 28630 6
## 493 0 47 25320 9
## 494 0 47 13530 14
## 495 0 32 14800 13
## 496 0 43 17400 8
## 497 0 42 15980 0
## 498 0 56 16576 1
## 499 0 38 21850 3
## 500 0 52 14600 13
## 501 0 50 21600 3
## 502 0 33 24000 8
## 503 0 44 20883 8
## 504 0 41 19500 18
## 505 0 45 42800 2
## 506 0 53 41500 3
## 507 0 53 18965 5
## 508 0 42 16100 2
## 509 0 32 14700 10
## 510 0 56 18800 30
## 511 0 37 14750 1
## 512 0 40 21000 5
## 513 0 54 35400 8
## 514 0 53 10700 0
## 515 0 48 24500 4
## 516 0 36 17045 2
## 517 0 57 18800 30
## 518 0 51 14000 25
## 519 0 33 18214 3
## 520 0 52 20177 20
## 521 0 56 8300 20
## 522 0 36 14200 0
## 523 0 36 21768 15
## 524 0 46 29553 10
## 525 0 31 4350 4
## 526 0 52 24000 3
## 527 0 46 18300 10
## 528 0 35 17200 9
## 529 0 59 16476 7
## 530 0 36 13400 12
## 531 0 51 44988 0
## 532 0 31 18200 16
## 533 0 31 28000 4
## 534 0 32 11550 7
## 535 0 35 28450 7
## 536 0 40 15096 14
## 537 0 33 8009 2
## 538 0 54 10040 20
## 539 0 36 16700 5
## 540 0 50 8400 10
## 541 0 54 13000 20
## 542 0 48 17970 10
## 543 0 41 18450 8
## 544 0 50 31000 11
## 545 0 46 24135 3
## 546 0 42 31700 6
## 547 0 31 10190 4
## 548 0 53 21574 4
## 549 0 51 26680 9
## 550 0 47 17700 10
## 551 0 50 29400 3
## 552 0 37 22159 2
## 553 0 30 35000 2
## 554 0 49 8630 0
## 555 0 52 17080 8
## 556 0 47 32500 6
## 557 0 49 16000 15
## 558 0 44 18850 15
## 559 0 53 17500 9
## 560 0 30 19392 8
## 561 0 54 14450 18
## 562 0 47 21800 3
## 563 0 56 7700 10
## 564 0 49 31800 6
## 565 0 48 17258 20
## 566 0 49 13399 8
## 567 0 56 16073 3
## 568 0 46 23260 4
## 569 0 45 37300 13
## 570 0 32 11000 4
## 571 0 43 13075 17
## 572 0 34 13700 4
## 573 0 30 25100 0
## 574 0 38 18600 15
## 575 0 33 29000 11
## 576 0 52 19237 23
## 577 0 43 19855 1
## 578 0 33 9450 5
## 579 0 45 30000 1
## 580 0 36 15000 5
## 581 0 34 24701 3
## 582 0 37 15900 3
## 583 0 46 16240 19
## 584 0 47 21100 20
## 585 0 31 23000 5
## 586 0 57 6340 0
## 587 0 30 42250 3
## 588 0 30 14694 3
## 589 0 44 21417 7
## 590 0 53 20200 7
## 591 0 51 12090 1
## 592 0 39 24760 13
## 593 0 52 23000 0
## 594 0 46 19365 0
## 595 0 47 5550 12
## 596 0 52 68035 0
## 597 0 45 29300 5
## 598 0 60 18500 45
## 599 0 41 22582 10
## 600 0 39 21500 2
## 601 0 49 28070 3
## 602 0 32 50300 1
## 603 0 33 23500 5
## 604 0 36 15500 10
## 605 0 37 13440 4
## 606 0 30 8100 7
## 607 0 44 9800 9
## 608 0 48 20300 5
## 609 0 40 15000 4
## 610 0 47 56100 11
## 611 0 36 22846 9
## 612 0 40 22225 4
## 613 0 46 17635 2
## 614 0 52 18500 23
## 615 0 44 13390 3
## 616 0 45 15150 15
## 617 0 30 16200 8
## 618 0 40 33920 3
## 619 0 43 14000 25
## 620 0 49 16736 2
## 621 0 46 30650 0
## 622 0 52 12400 19
## 623 0 31 19022 3
## 624 0 42 11203 7
## 625 0 33 19876 1
## 626 0 57 57000 9
## 627 0 49 18290 3
## 628 0 45 20220 8
## 629 0 56 22150 0
## 630 0 41 30623 5
## 631 0 56 9380 20
## 632 0 48 22000 3
## 633 0 52 23675 12
## 634 0 51 33671 5
## 635 0 35 12367 1
## 636 0 45 21950 0
## 637 0 54 32000 7
## 638 0 54 22610 13
## 639 0 31 12092 3
## 640 0 53 3777 0
## 641 0 35 36000 2
## 642 0 36 26900 0
## 643 0 59 32242 2
## 644 0 54 35020 1
## 645 0 37 37600 10
## 646 0 44 1500 10
## 647 0 34 96000 1
## 648 0 49 18150 3
## 649 0 49 15500 32
## 650 0 60 14000 0
## 651 0 51 14756 7
## 652 0 30 22000 5
## 653 0 47 24466 2
## 654 0 36 24400 5
## 655 0 35 24000 3
## 656 0 58 15500 25
## 657 0 41 30800 0
## 658 0 51 10660 3
## 659 0 47 13350 10
## 660 0 45 10090 10
## 661 0 60 55600 7
## 662 0 30 25700 5
## 663 0 55 29000 15
## 664 0 32 7286 1
## 665 0 36 37752 5
## 666 0 55 13072 9
## 667 0 47 7044 18
## 668 0 47 18200 1
## 669 0 37 27000 0
## 670 0 50 30300 6
## 671 0 30 12000 1
## 672 0 48 31500 2
## 673 0 43 27092 15
## 674 0 48 20968 25
## 675 0 41 27000 1
## 676 0 50 11225 0
## 677 0 58 37700 0
## 678 0 38 28200 0
## 679 0 37 34000 8
## 680 0 50 63200 22
## 681 0 42 7500 5
## 682 0 37 17410 10
## 683 0 41 51000 1
## 684 0 31 12916 1
## 685 0 51 21900 6
## 686 0 36 17640 4
## 687 0 54 20000 6
## 688 0 49 15000 0
## 689 0 48 14060 1
## 690 0 42 15825 3
## 691 0 41 16510 15
## 692 0 55 13000 33
## 693 0 42 10000 2
## 694 0 32 22000 1
## 695 0 43 29800 10
## 696 0 33 15000 0
## 697 0 48 22300 14
## 698 0 43 14550 15
## 699 0 47 19730 15
## 700 0 54 35000 10
## 701 0 51 21014 6
## 702 0 51 10876 18
## 703 0 43 27850 15
## 704 0 53 9560 30
## 705 0 34 30300 15
## 706 0 31 7720 10
## 707 0 56 10550 0
## 708 0 42 24106 0
## 709 0 32 22995 4
## 710 0 35 6000 0
## 711 0 30 24350 3
## 712 0 51 7608 20
## 713 0 47 28200 3
## 714 0 54 16150 1
## 715 0 31 51200 5
## 716 0 47 12646 7
## 717 0 47 19000 6
## 718 0 40 19000 2
## 719 0 48 14400 0
## 720 0 34 7232 10
## 721 0 38 21943 6
## 722 0 32 47500 4
## 723 0 48 28900 8
## 724 0 41 12400 18
## 725 0 49 6531 7
## 726 0 59 22422 15
## 727 0 58 22200 7
## 728 0 41 77000 8
## 729 0 45 88000 8
## 730 0 30 26040 3
## 731 0 41 63500 10
## 732 0 30 12100 9
## 733 0 53 17505 24
## 734 0 31 18000 12
## 735 0 43 28069 2
## 736 0 31 14000 6
## 737 0 51 8117 18
## 738 0 43 11895 17
## 739 0 31 45250 7
## 740 0 48 31106 6
## 741 0 31 4000 10
## 742 0 44 40500 5
## 743 0 48 21620 7
## 744 0 53 23426 11
## 745 0 42 26000 14
## 746 0 39 7840 5
## 747 0 32 6800 2
## 748 0 36 5330 4
## 749 0 40 28200 5
## 750 0 31 10000 14
## 751 0 43 9952 4
## 752 0 60 24984 15
## 753 0 39 28363 12
# 2. Estimate Pearson Product-Moment Correlations
# for four pairs of variables.
# Load the cormat functions
# Loaded this way because the cormat
# package is not available (for R version 3.2.2).
source("http://www.sthda.com/upload/rquery_cormat.r")
rquery.cormat(Mroz4var)
## $r
## hoursw experience agew income
## hoursw 1
## experience 0.4 1
## agew -0.033 0.33 1
## income 0.15 -0.028 0.052 1
##
## $p
## hoursw experience agew income
## hoursw 0
## experience 0 0
## agew 0.36 0 0
## income 5.6e-05 0.45 0.15 0
##
## $sym
## hoursw experience agew income
## hoursw 1
## experience . 1
## agew . 1
## income 1
## attr(,"legend")
## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
# 3. Test null hypotheses that the population
# correlations = 0 for the four pairs of
# variables you selected.
#The null hypotheses is that the four pairs of variables selected will have
#correlations of zero for all the correlation coefficients tested. Therefore,
# since none of the correlation coefficients equal zero then we must reject the null
#hypotheses that there is no correlation between the four pairs of variables we
#selected. Instead we must accept the alternative hypotheses that there is a
#correlation between all the four pairs of variables selected, even though some of
#the relations are small in size.
# 4. Using ggvis, plot scatterplots containing
# points and a smooth line for the four pairs of
# variable you selected.
require(ggvis)
#experience and hoursw scatterplots and smooth line
Mroz4var%>%ggvis(~experience, ~hoursw)%>%layer_points()%>%layer_smooths()
#experience and agew scatterplots and smooth line
Mroz4var%>%ggvis(~experience, ~agew)%>%layer_points()%>%layer_smooths()
#income and hoursw scatterplots and smooth line
Mroz4var%>%ggvis(~income, ~hoursw)%>%layer_points()%>%layer_smooths()
#income and agew scatterplots and smooth line
Mroz4var%>%ggvis(~income, ~agew)%>%layer_points()%>%layer_smooths()
# 5. Produce correlograms and heat maps for the
# four pairs of variables you selected.
#correlogram
rquery.cormat(Mroz4var)
## $r
## hoursw experience agew income
## hoursw 1
## experience 0.4 1
## agew -0.033 0.33 1
## income 0.15 -0.028 0.052 1
##
## $p
## hoursw experience agew income
## hoursw 0
## experience 0 0
## agew 0.36 0 0
## income 5.6e-05 0.45 0.15 0
##
## $sym
## hoursw experience agew income
## hoursw 1
## experience . 1
## agew . 1
## income 1
## attr(,"legend")
## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
#heatmap
cormat<-rquery.cormat(Mroz4var, graphType="heatmap")
# 6. Create an RMarkdown .Rmd file that documents the
# processes and outcomes for steps (1) through (5).
# 7. Create an RPubs html site from your .Rmd file.
# 8. In a private Piazza message to your instructors,
# post the URL to your RPubs file and upload your
# .Rmd file.
```