require(Ecdat)
## Loading required package: Ecdat
## Loading required package: Ecfun
##
## Attaching package: 'Ecdat'
##
## The following object is masked from 'package:datasets':
##
## Orange
require(corrplot)
## Loading required package: corrplot
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
data(Mroz)
names(Mroz)
## [1] "work" "hoursw" "child6" "child618" "agew"
## [6] "educw" "hearnw" "wagew" "hoursh" "ageh"
## [11] "educh" "wageh" "income" "educwm" "educwf"
## [16] "unemprate" "city" "experience"
summary(Mroz)
## work hoursw child6 child618
## yes:325 Min. : 0.0 Min. :0.0000 Min. :0.000
## no :428 1st Qu.: 0.0 1st Qu.:0.0000 1st Qu.:0.000
## Median : 288.0 Median :0.0000 Median :1.000
## Mean : 740.6 Mean :0.2377 Mean :1.353
## 3rd Qu.:1516.0 3rd Qu.:0.0000 3rd Qu.:2.000
## Max. :4950.0 Max. :3.0000 Max. :8.000
## agew educw hearnw wagew
## Min. :30.00 Min. : 5.00 Min. : 0.000 Min. :0.00
## 1st Qu.:36.00 1st Qu.:12.00 1st Qu.: 0.000 1st Qu.:0.00
## Median :43.00 Median :12.00 Median : 1.625 Median :0.00
## Mean :42.54 Mean :12.29 Mean : 2.375 Mean :1.85
## 3rd Qu.:49.00 3rd Qu.:13.00 3rd Qu.: 3.788 3rd Qu.:3.58
## Max. :60.00 Max. :17.00 Max. :25.000 Max. :9.98
## hoursh ageh educh wageh
## Min. : 175 Min. :30.00 Min. : 3.00 Min. : 0.4121
## 1st Qu.:1928 1st Qu.:38.00 1st Qu.:11.00 1st Qu.: 4.7883
## Median :2164 Median :46.00 Median :12.00 Median : 6.9758
## Mean :2267 Mean :45.12 Mean :12.49 Mean : 7.4822
## 3rd Qu.:2553 3rd Qu.:52.00 3rd Qu.:15.00 3rd Qu.: 9.1667
## Max. :5010 Max. :60.00 Max. :17.00 Max. :40.5090
## income educwm educwf unemprate
## Min. : 1500 Min. : 0.000 Min. : 0.000 Min. : 3.000
## 1st Qu.:15428 1st Qu.: 7.000 1st Qu.: 7.000 1st Qu.: 7.500
## Median :20880 Median :10.000 Median : 7.000 Median : 7.500
## Mean :23081 Mean : 9.251 Mean : 8.809 Mean : 8.624
## 3rd Qu.:28200 3rd Qu.:12.000 3rd Qu.:12.000 3rd Qu.:11.000
## Max. :96000 Max. :17.000 Max. :17.000 Max. :14.000
## city experience
## no :269 Min. : 0.00
## yes:484 1st Qu.: 4.00
## Median : 9.00
## Mean :10.63
## 3rd Qu.:15.00
## Max. :45.00
Mroz <- tbl_df(Mroz)
morz <- Mroz %>% select(hoursh, income, experience, wageh)
morz
## Source: local data frame [753 x 4]
##
## hoursh income experience wageh
## 1 2708 16310 14 4.0288
## 2 2310 21800 5 8.4416
## 3 3072 21040 15 3.5807
## 4 1920 7300 6 3.5417
## 5 2000 27300 7 10.0000
## 6 1040 19495 33 6.7106
## 7 2670 21152 11 3.4277
## 8 4120 18900 35 2.5485
## 9 1995 20405 24 4.2206
## 10 2100 20425 21 5.7143
## .. ... ... ... ...
source("http://www.sthda.com/upload/rquery_cormat.r")
rquery.cormat(morz)
## $r
## income wageh hoursh experience
## income 1
## wageh 0.73 1
## hoursh 0.13 -0.24 1
## experience -0.028 -0.1 -0.099 1
##
## $p
## income wageh hoursh experience
## income 0
## wageh 0 0
## hoursh 0.00042 5.4e-11 0
## experience 0.45 0.0045 0.0064 0
##
## $sym
## income wageh hoursh experience
## income 1
## wageh , 1
## hoursh 1
## experience 1
## attr(,"legend")
## [1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
If alpha = .05, the table of p-value indicates that the p-values are less than alpha except for the p-value between income and experience. Therefore, we reject the null hypothesis that there are no correlations except for the pair of income and experience.
require(ggvis)
## Loading required package: ggvis
require(magrittr)
## Loading required package: magrittr
morz %>%
ggvis(x = ~wageh, y = ~income) %>%
layer_points() %>% layer_smooths()
morz %>%
ggvis(x = ~hoursh, y = ~income) %>%
layer_points() %>% layer_smooths()
morz %>%
ggvis(x = ~wageh, y = ~hoursh) %>%
layer_points() %>% layer_smooths()
morz %>%
ggvis(x = ~wageh, y = ~experience) %>%
layer_points() %>% layer_smooths()
require(corrgram)
## Loading required package: corrgram
cor.morz<-cor(morz)
corrgram(cor.morz, upper.panel = NULL)
cormat<-rquery.cormat(morz, graphType="heatmap")