R Markdown

# Membuat data frame dengan kolom kategori
data <- data.frame(
  Age = c(30.83, 58.67, 24.50, 27.83, 20.17),
  Debt = c(0.000, 4.460, 0.500, 1.540, 5.625),
  Married = c(1, 1, 1, 1, 1),
  BankCustomer = c(1, 1, 1, 1, 1),
  YearsEmployed = c(1.25, 3.04, 1.50, 3.75, 1.71),
  PriorDefault = c(1, 1, 1, 1, 1),
  Employed = c(1, 0, 0, 1, 0),
  CreditScore = c(1, 6, 0, 5, 0),
  DriversLicense = c(0, 0, 0, 1, 0),
  Citizen = c("ByBirth", "ByBirth", "ByBirth", "ByBirth", "ByOtherMeans"),
  ZipCode = c(202, 43, 280, 100, 120),
  Income = c(0, 560, 824, 3, 0),
  Approved = c(1, 1, 1, 1, 1),
  Industry = c("Industrials", "Materials", "Materials", "Industrials", "Industrials")
)
print(data)
##     Age  Debt Married BankCustomer YearsEmployed PriorDefault Employed
## 1 30.83 0.000       1            1          1.25            1        1
## 2 58.67 4.460       1            1          3.04            1        0
## 3 24.50 0.500       1            1          1.50            1        0
## 4 27.83 1.540       1            1          3.75            1        1
## 5 20.17 5.625       1            1          1.71            1        0
##   CreditScore DriversLicense      Citizen ZipCode Income Approved    Industry
## 1           1              0      ByBirth     202      0        1 Industrials
## 2           6              0      ByBirth      43    560        1   Materials
## 3           0              0      ByBirth     280    824        1   Materials
## 4           5              1      ByBirth     100      3        1 Industrials
## 5           0              0 ByOtherMeans     120      0        1 Industrials
# Memilih hanya kolom numerik
data_numeric <- data[, sapply(data, is.numeric)]
print(data_numeric)
##     Age  Debt Married BankCustomer YearsEmployed PriorDefault Employed
## 1 30.83 0.000       1            1          1.25            1        1
## 2 58.67 4.460       1            1          3.04            1        0
## 3 24.50 0.500       1            1          1.50            1        0
## 4 27.83 1.540       1            1          3.75            1        1
## 5 20.17 5.625       1            1          1.71            1        0
##   CreditScore DriversLicense ZipCode Income Approved
## 1           1              0     202      0        1
## 2           6              0      43    560        1
## 3           0              0     280    824        1
## 4           5              1     100      3        1
## 5           0              0     120      0        1
# Menghitung matriks kovarians
cov_matrix <- cov(data_numeric)
# Menghitung eigenvalue dan eigenvector
eigen_result <- eigen(cov_matrix)
print(eigen_result$values)  # Eigenvalues
##  [1]  1.529992e+05  7.738283e+03  7.501468e+01  4.805269e+00  3.749373e-12
##  [6]  1.124666e-12  6.384180e-16  3.953463e-16  4.549920e-17  0.000000e+00
## [11] -2.703328e-28 -1.242917e-12
print(eigen_result$vectors) # Eigenvectors
##                [,1]          [,2]          [,3]          [,4]          [,5]
##  [1,] -1.289707e-02 -0.1315593985  9.789852e-01  1.323413e-01  0.000000e+00
##  [2,]  8.188081e-04 -0.0196056439 -1.279454e-01  6.259308e-01 -4.531161e-01
##  [3,]  0.000000e+00  0.0000000000 -5.537237e-15  6.902881e-13 -6.439283e-01
##  [4,] -5.421011e-20  0.0000000000  0.000000e+00 -3.330669e-16 -1.674482e-04
##  [5,]  3.179452e-04 -0.0090247788 -1.843066e-02 -3.260510e-01  2.061046e-01
##  [6,]  0.000000e+00  0.0000000000  0.000000e+00  0.000000e+00 -6.938894e-17
##  [7,]  8.979960e-04  0.0015995422  2.667112e-02 -1.467340e-01 -1.649762e-01
##  [8,]  3.495333e-05 -0.0271354051  8.390325e-02 -6.569377e-01 -5.369565e-01
##  [9,]  4.535474e-04 -0.0008272575 -1.330900e-02 -1.766469e-01  1.468506e-01
## [10,] -8.349351e-02  0.9873790313  1.280551e-01  8.929661e-03 -2.136631e-02
## [11,] -9.964240e-01 -0.0810516636 -2.349159e-02 -2.286556e-03  1.383096e-03
## [12,]  0.000000e+00  0.0000000000  0.000000e+00  0.000000e+00  0.000000e+00
##                [,6]          [,7]          [,8]          [,9] [,10]
##  [1,]  0.0000000000  0.000000e+00  0.000000e+00  0.000000e+00     0
##  [2,] -0.3813129286  3.336325e-03  7.452735e-03 -5.477737e-03     0
##  [3,]  0.7650669619 -2.148602e-03 -4.921552e-03  9.702402e-05     0
##  [4,] -0.0003991872 -9.304003e-01  3.654914e-01 -2.777035e-02     0
##  [5,]  0.1750280249  7.222275e-02  2.198498e-01  4.700251e-01     0
##  [6,]  0.0000000000 -1.892153e-12 -2.077227e-13 -7.386453e-13     0
##  [7,] -0.1324045124  3.419945e-01  8.473592e-01 -3.027973e-01     0
##  [8,] -0.4537118949 -9.328227e-02 -2.342834e-01  5.157773e-02     0
##  [9,]  0.1221729050 -5.878479e-02 -2.122775e-01 -8.269822e-01     0
## [10,] -0.0180275113 -2.399060e-03 -5.731991e-03  5.324620e-03     0
## [11,]  0.0011734574  5.049939e-04  1.215391e-03 -9.481885e-04     0
## [12,]  0.0000000000  0.000000e+00  0.000000e+00  0.000000e+00     1
##               [,11]         [,12]
##  [1,]  0.000000e+00 -8.123723e-02
##  [2,]  3.808437e-15 -4.905559e-01
##  [3,] -5.140519e-15  1.057359e-12
##  [4,] -1.705074e-12 -4.440892e-16
##  [5,]  5.294686e-13 -7.387029e-01
##  [6,]  1.000000e+00  0.000000e+00
##  [7,]  5.992492e-13  7.963880e-02
##  [8,] -1.870205e-13 -1.514710e-02
##  [9,] -7.661419e-13 -4.468889e-01
## [10,] -1.795740e-15 -2.802053e-02
## [11,]  5.073119e-16  2.628416e-03
## [12,]  0.000000e+00  0.000000e+00
# Menampilkan matriks kovarians
print(cov_matrix)
##                        Age        Debt Married BankCustomer YearsEmployed
## Age             231.361400    9.345663       0            0      6.999375
## Debt              9.345663    6.187675       0            0      0.605225
## Married           0.000000    0.000000       0            0      0.000000
## BankCustomer      0.000000    0.000000       0            0      0.000000
## YearsEmployed     6.999375    0.605225       0            0      1.182050
## PriorDefault      0.000000    0.000000       0            0      0.000000
## Employed         -1.535000   -0.827500       0            0      0.125000
## CreditScore      33.300000    1.340000       0            0      2.810000
## DriversLicense   -1.142500   -0.221250       0            0      0.375000
## ZipCode        -831.032500 -161.461250       0            0    -73.207500
## Income         2046.972500 -112.313750       0            0    -42.775000
## Approved          0.000000    0.000000       0            0      0.000000
##                PriorDefault  Employed CreditScore DriversLicense    ZipCode
## Age                       0   -1.5350       33.30       -1.14250  -831.0325
## Debt                      0   -0.8275        1.34       -0.22125  -161.4613
## Married                   0    0.0000        0.00        0.00000     0.0000
## BankCustomer              0    0.0000        0.00        0.00000     0.0000
## YearsEmployed             0    0.1250        2.81        0.37500   -73.2075
## PriorDefault              0    0.0000        0.00        0.00000     0.0000
## Employed                  0    0.3000        0.30        0.15000     1.0000
## CreditScore               0    0.3000        8.30        0.65000  -207.0000
## DriversLicense            0    0.1500        0.65        0.20000   -12.2500
## ZipCode                   0    1.0000     -207.00      -12.25000  8612.0000
## Income                    0 -137.9500       11.55      -68.60000 12109.2500
## Approved                  0    0.0000        0.00        0.00000     0.0000
##                     Income Approved
## Age              2046.9725        0
## Debt             -112.3137        0
## Married             0.0000        0
## BankCustomer        0.0000        0
## YearsEmployed     -42.7750        0
## PriorDefault        0.0000        0
## Employed         -137.9500        0
## CreditScore        11.5500        0
## DriversLicense    -68.6000        0
## ZipCode         12109.2500        0
## Income         151957.8000        0
## Approved            0.0000        0
# Menampilkan matriks korelasi
cor_matrix <- cor(data_numeric)
## Warning in cor(data_numeric): the standard deviation is zero
print(cor_matrix)
##                       Age       Debt Married BankCustomer YearsEmployed
## Age             1.0000000  0.2470022      NA           NA     0.4232489
## Debt            0.2470022  1.0000000      NA           NA     0.2237872
## Married                NA         NA       1           NA            NA
## BankCustomer           NA         NA      NA            1            NA
## YearsEmployed   0.4232489  0.2237872      NA           NA     1.0000000
## PriorDefault           NA         NA      NA           NA            NA
## Employed       -0.1842478 -0.6073564      NA           NA     0.2099092
## CreditScore     0.7599058  0.1869829      NA           NA     0.8971175
## DriversLicense -0.1679561 -0.1988861      NA           NA     0.7712556
## ZipCode        -0.5887359 -0.6994434      NA           NA    -0.7255806
## Income          0.3452272 -0.1158264      NA           NA    -0.1009278
## Approved               NA         NA      NA           NA            NA
##                PriorDefault    Employed CreditScore DriversLicense     ZipCode
## Age                      NA -0.18424780  0.75990576     -0.1679561 -0.58873594
## Debt                     NA -0.60735642  0.18698295     -0.1988861 -0.69944336
## Married                  NA          NA          NA             NA          NA
## BankCustomer             NA          NA          NA             NA          NA
## YearsEmployed            NA  0.20990919  0.89711754      0.7712556 -0.72558057
## PriorDefault              1          NA          NA             NA          NA
## Employed                 NA  1.00000000  0.19011728      0.6123724  0.01967376
## CreditScore              NA  0.19011728  1.00000000      0.5044978 -0.77424657
## DriversLicense           NA  0.61237244  0.50449784      1.0000000 -0.29516787
## ZipCode                  NA  0.01967376 -0.77424657     -0.2951679  1.00000000
## Income                   NA -0.64609976  0.01028446     -0.3935026  0.33473701
## Approved                 NA          NA          NA             NA          NA
##                     Income Approved
## Age             0.34522724       NA
## Debt           -0.11582643       NA
## Married                 NA       NA
## BankCustomer            NA       NA
## YearsEmployed  -0.10092775       NA
## PriorDefault            NA       NA
## Employed       -0.64609976       NA
## CreditScore     0.01028446       NA
## DriversLicense -0.39350261       NA
## ZipCode         0.33473701       NA
## Income          1.00000000       NA
## Approved                NA        1