Memuat Data
Numerik
data <- data.frame(
Gender = c(0, 0, 0, 1, 1),
Age = c(30.83, 58.67, 24.50, 27.83, 20.17),
Debt = c(0.000, 4.460, 0.500, 1.540, 5.625),
Married = c(1, 1, 1, 1, 1),
BankCustomer = c(1, 1, 1, 1, 1),
YearsEmployed = c(1.25, 3.04, 1.50, 3.75, 1.71),
PriorDefault = c(1, 1, 1, 1, 1),
Employed = c(1, 1, 0, 1, 0),
CreditScore = c(1, 6, 0, 5, 0),
DriversLicense = c(0, 0, 0, 1, 0),
ZipCode = c(202, 43, 280, 100, 120),
Income = c(0, 560, 824, 3, 0),
Approved = c(1, 1, 1, 1, 1)
)
knitr::kable(data, caption = "Tabel: Data Numerik (termasuk variabel biner)")
Tabel: Data Numerik (termasuk variabel biner)
0 |
30.83 |
0.000 |
1 |
1 |
1.25 |
1 |
1 |
1 |
0 |
202 |
0 |
1 |
0 |
58.67 |
4.460 |
1 |
1 |
3.04 |
1 |
1 |
6 |
0 |
43 |
560 |
1 |
0 |
24.50 |
0.500 |
1 |
1 |
1.50 |
1 |
0 |
0 |
0 |
280 |
824 |
1 |
1 |
27.83 |
1.540 |
1 |
1 |
3.75 |
1 |
1 |
5 |
1 |
100 |
3 |
1 |
1 |
20.17 |
5.625 |
1 |
1 |
1.71 |
1 |
0 |
0 |
0 |
120 |
0 |
1 |
Variance-Covariance
Matrix
cov_matrix <- cov(data)
knitr::kable(round(cov_matrix, 2), caption = "Tabel: Variance-Covariance Matrix")
Tabel: Variance-Covariance Matrix
Gender |
0.30 |
-4.20 |
0.58 |
0 |
0 |
0.24 |
0 |
-0.05 |
0.05 |
0.15 |
-19.50 |
-137.95 |
0 |
Age |
-4.20 |
231.36 |
9.35 |
0 |
0 |
7.00 |
0 |
5.03 |
33.30 |
-1.14 |
-831.03 |
2046.97 |
0 |
Debt |
0.58 |
9.35 |
6.19 |
0 |
0 |
0.61 |
0 |
-0.32 |
1.34 |
-0.22 |
-161.46 |
-112.31 |
0 |
Married |
0.00 |
0.00 |
0.00 |
0 |
0 |
0.00 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0 |
BankCustomer |
0.00 |
0.00 |
0.00 |
0 |
0 |
0.00 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0 |
YearsEmployed |
0.24 |
7.00 |
0.61 |
0 |
0 |
1.18 |
0 |
0.32 |
2.81 |
0.38 |
-73.21 |
-42.77 |
0 |
PriorDefault |
0.00 |
0.00 |
0.00 |
0 |
0 |
0.00 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0 |
Employed |
-0.05 |
5.03 |
-0.32 |
0 |
0 |
0.32 |
0 |
0.30 |
1.20 |
0.10 |
-25.50 |
-67.30 |
0 |
CreditScore |
0.05 |
33.30 |
1.34 |
0 |
0 |
2.81 |
0 |
1.20 |
8.30 |
0.65 |
-207.00 |
11.55 |
0 |
DriversLicense |
0.15 |
-1.14 |
-0.22 |
0 |
0 |
0.38 |
0 |
0.10 |
0.65 |
0.20 |
-12.25 |
-68.60 |
0 |
ZipCode |
-19.50 |
-831.03 |
-161.46 |
0 |
0 |
-73.21 |
0 |
-25.50 |
-207.00 |
-12.25 |
8612.00 |
12109.25 |
0 |
Income |
-137.95 |
2046.97 |
-112.31 |
0 |
0 |
-42.77 |
0 |
-67.30 |
11.55 |
-68.60 |
12109.25 |
151957.80 |
0 |
Approved |
0.00 |
0.00 |
0.00 |
0 |
0 |
0.00 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0 |
Eigenvalue dan
Eigenvector
eigen_result <- eigen(cov_matrix)
print(round(eigen_result$values, 3))
## [1] 152999.262 7738.325 75.272 4.772 0.000 0.000
## [7] 0.000 0.000 0.000 0.000 0.000 0.000
## [13] 0.000
knitr::kable(round(eigen_result$vectors, 3), caption = "Tabel: Eigenvectors")
Tabel: Eigenvectors
0.001 |
-0.001 |
-0.046 |
-0.041 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
0 |
0.998 |
0.000 |
0.000 |
-0.013 |
-0.132 |
0.977 |
0.132 |
0.005 |
0.002 |
0.000 |
0.000 |
0 |
0 |
0.050 |
0.005 |
-0.086 |
0.001 |
-0.020 |
-0.128 |
0.628 |
-0.467 |
-0.015 |
-0.016 |
-0.001 |
0 |
0 |
0.020 |
-0.358 |
-0.492 |
0.000 |
0.000 |
0.000 |
0.000 |
0.616 |
0.013 |
-0.027 |
0.004 |
0 |
0 |
0.000 |
-0.787 |
-0.011 |
0.000 |
0.000 |
0.000 |
0.000 |
0.001 |
0.113 |
0.096 |
-0.989 |
0 |
0 |
0.000 |
-0.006 |
0.000 |
0.000 |
-0.009 |
-0.018 |
-0.327 |
0.170 |
0.145 |
0.590 |
0.073 |
0 |
0 |
-0.014 |
0.125 |
-0.688 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0 |
1 |
0.000 |
0.000 |
0.000 |
0.000 |
-0.003 |
0.045 |
-0.114 |
-0.336 |
0.789 |
0.255 |
0.116 |
0 |
0 |
-0.003 |
-0.263 |
0.319 |
0.000 |
-0.027 |
0.084 |
-0.659 |
-0.499 |
-0.349 |
-0.152 |
-0.052 |
0 |
0 |
-0.023 |
-0.390 |
-0.091 |
0.000 |
-0.001 |
-0.013 |
-0.177 |
0.109 |
0.470 |
-0.744 |
-0.019 |
0 |
0 |
-0.008 |
0.124 |
-0.407 |
-0.083 |
0.987 |
0.128 |
0.008 |
-0.022 |
-0.006 |
0.001 |
0.000 |
0 |
0 |
0.007 |
-0.017 |
-0.029 |
-0.996 |
-0.081 |
-0.024 |
-0.002 |
0.001 |
0.001 |
0.000 |
0.000 |
0 |
0 |
0.000 |
0.001 |
0.003 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
0.000 |
1 |
0 |
0.000 |
0.000 |
0.000 |
Correlation
Matrix
cor_matrix <- cor(data)
knitr::kable(round(cor_matrix, 2), caption = "Tabel: Correlation Matrix")
Tabel: Correlation Matrix
Gender |
1.00 |
-0.50 |
0.42 |
NA |
NA |
0.40 |
NA |
-0.17 |
0.03 |
0.61 |
-0.38 |
-0.65 |
NA |
Age |
-0.50 |
1.00 |
0.25 |
NA |
NA |
0.42 |
NA |
0.60 |
0.76 |
-0.17 |
-0.59 |
0.35 |
NA |
Debt |
0.42 |
0.25 |
1.00 |
NA |
NA |
0.22 |
NA |
-0.23 |
0.19 |
-0.20 |
-0.70 |
-0.12 |
NA |
Married |
NA |
NA |
NA |
1 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
BankCustomer |
NA |
NA |
NA |
NA |
1 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
YearsEmployed |
0.40 |
0.42 |
0.22 |
NA |
NA |
1.00 |
NA |
0.54 |
0.90 |
0.77 |
-0.73 |
-0.10 |
NA |
PriorDefault |
NA |
NA |
NA |
NA |
NA |
NA |
1 |
NA |
NA |
NA |
NA |
NA |
NA |
Employed |
-0.17 |
0.60 |
-0.23 |
NA |
NA |
0.54 |
NA |
1.00 |
0.76 |
0.41 |
-0.50 |
-0.32 |
NA |
CreditScore |
0.03 |
0.76 |
0.19 |
NA |
NA |
0.90 |
NA |
0.76 |
1.00 |
0.50 |
-0.77 |
0.01 |
NA |
DriversLicense |
0.61 |
-0.17 |
-0.20 |
NA |
NA |
0.77 |
NA |
0.41 |
0.50 |
1.00 |
-0.30 |
-0.39 |
NA |
ZipCode |
-0.38 |
-0.59 |
-0.70 |
NA |
NA |
-0.73 |
NA |
-0.50 |
-0.77 |
-0.30 |
1.00 |
0.33 |
NA |
Income |
-0.65 |
0.35 |
-0.12 |
NA |
NA |
-0.10 |
NA |
-0.32 |
0.01 |
-0.39 |
0.33 |
1.00 |
NA |
Approved |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
1 |
Visualisasi
Korelasi (Heatmap)
library(corrplot)
corrplot(cor_matrix, method = "color", type = "upper",
tl.col = "black", tl.srt = 45,
col = colorRampPalette(c("red", "white", "blue"))(200),
addCoef.col = "black")

Kesimpulan
- Eigenvalues: Menentukan dimensi paling signifikan
untuk representasi data.
- Eigenvectors: Menunjukkan arah variansi
maksimum.
- Variance-Covariance Matrix: Menunjukkan hubungan
linear antar variabel dan tingkat varians masing-masing.
- Correlation Matrix: Memberikan kekuatan dan arah
hubungan antar variabel.