This shows the output of several EFA functions from
workingfunctions.
Installation instructions for workingfunctions can be found here
model<-psych::fa(mtcars,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
plot_loadings(model=model,matrix_type="structure")cm<-matrix(c(1,.8,.8,.1,.1,.1,
.8,1,.8,.1,.1,.1,
.8,.8,1,.1,.1,.1,
.1,.1,.1,1,.8,.8,
.1,.1,.1,.8,1,.8,
.1,.1,.1,.8,.8,1),
ncol=6,nrow=6)
df1<-generate_correlation_matrix(cm,nrows=10000)
model1<-psych::fa(df1,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
plot_loadings(model=model1,matrix_type="pattern",base_size=10)cm<-matrix(c(1,.1,.1,.1,.1,.1,
.1,1,.1,.1,.1,.1,
.1,.1,1,.1,.1,.1,
.1,.1,.1,1,.8,.8,
.1,.1,.1,.8,1,.8,
.1,.1,.1,.8,.8,1),
ncol=6,nrow=6)
df1<-generate_correlation_matrix(cm,nrows=10000)
model2<-psych::fa(df1,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
plot_loadings(model=model2,matrix_type="pattern",base_size=10)cm<-matrix(c(1,.01,.01,.01,.01,.01,
.01,1,.01,.01,.01,.01,
.01,.01,1,.01,.01,.01,
.01,.01,.01,1,.01,.01,
.01,.01,.01,.01,1,.01,
.01,.01,.01,.01,.01,1),
ncol=6,nrow=6)
df1<-generate_correlation_matrix(cm,nrows=10000)
model3<-psych::fa(df1,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
plot_loadings(model=model3,matrix_type="pattern",base_size=10)model<-psych::fa(mtcars,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
model_loadings(model=model,cut=NULL,matrix_type="pattern")## Matrix variable PA1 PA2 ## qsec Pattern qsec -0.92 ## hp Pattern hp 0.89 ## carb Pattern carb 0.85 ## vs Pattern vs -0.8 ## cyl Pattern cyl ## mpg Pattern mpg ## am Pattern am 0.93 ## gear Pattern gear 0.93 ## drat Pattern drat 0.78 ## wt Pattern wt ## disp Pattern disp
## Matrix variable PA1 PA2 ## hp Structure hp 0.93 ## cyl Structure cyl 0.85 -0.68 ## vs Structure vs -0.83 ## qsec Structure qsec -0.82 ## carb Structure carb 0.78 ## mpg Structure mpg -0.76 0.72 ## am Structure am 0.89 ## gear Structure gear 0.87 ## drat Structure drat 0.83 ## wt Structure wt 0.61 -0.81 ## disp Structure disp 0.75 -0.77
## Matrix variable PA1 PA2 ## 1 Pattern mpg -0.61 0.55 ## 2 Pattern cyl 0.71 -0.48 ## 3 Pattern disp 0.58 -0.6 ## 4 Pattern hp 0.89 ## 5 Pattern drat 0.78 ## 6 Pattern wt 0.42 -0.7 ## 7 Pattern qsec -0.92 ## 8 Pattern vs -0.8 ## 9 Pattern am 0.93 ## 10 Pattern gear 0.93 ## 11 Pattern carb 0.85 ## 12 Structure mpg -0.76 0.72 ## 13 Structure cyl 0.85 -0.68 ## 14 Structure disp 0.75 -0.77 ## 15 Structure hp 0.93 ## 16 Structure drat 0.83 ## 17 Structure wt 0.61 -0.81 ## 18 Structure qsec -0.82 ## 19 Structure vs -0.83 ## 20 Structure am 0.89 ## 21 Structure gear 0.87 ## 22 Structure carb 0.78
model<-psych::fa(mtcars,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
compute_residual_stats(model)## residual_statistics value critical formula ## 1 Root Mean Squared Residual 0.04419293 NA sqrt(mean(residuals^2)) ## 2 Number of absolute residuals > 0.05 13.00000000 NA abs(residuals)>0.05 ## 3 Proportion of absolute residuals > 0.05 0.23636364 0.5 numberLargeResiduals/nrow(residuals)
cm<-matrix(c(1,.8,.8,.1,.1,.1,
.8,1,.8,.1,.1,.1,
.8,.8,1,.1,.1,.1,
.1,.1,.1,1,.8,.8,
.1,.1,.1,.8,1,.8,
.1,.1,.1,.8,.8,1),
ncol=6,nrow=6)
df1<-generate_correlation_matrix(cm,nrows=10000)
model<-psych::fa(df1,nfactors=2,rotate="oblimin",fm="pa",oblique.scores=TRUE)
result<-report_efa(model=model,df=df1)## $correlations ## type X1 X2 X3 X4 X5 X6 ## X1 reproduced correlations 8.029710e-01 8.022465e-01 8.026759e-01 8.079004e-02 7.968185e-02 9.059877e-02 ## X2 reproduced correlations 8.022465e-01 8.015498e-01 8.019680e-01 8.536400e-02 8.425188e-02 9.514245e-02 ## X3 reproduced correlations 8.026759e-01 8.019680e-01 8.023908e-01 8.355765e-02 8.244689e-02 9.334987e-02 ## X4 reproduced correlations 8.079004e-02 8.536400e-02 8.355765e-02 8.074858e-01 8.065270e-01 8.047871e-01 ## X5 reproduced correlations 7.968185e-02 8.425188e-02 8.244689e-02 8.065270e-01 8.055707e-01 8.038187e-01 ## X6 reproduced correlations 9.059877e-02 9.514245e-02 9.334987e-02 8.047871e-01 8.038187e-01 8.022253e-01 ## X11 observed correlations 1.000000e+00 8.022812e-01 8.027364e-01 8.144221e-02 7.922614e-02 9.040050e-02 ## X21 observed correlations 8.022812e-01 1.000000e+00 8.019934e-01 8.487331e-02 8.420571e-02 9.568204e-02 ## X31 observed correlations 8.027364e-01 8.019934e-01 1.000000e+00 8.339506e-02 8.294894e-02 9.300951e-02 ## X41 observed correlations 8.144221e-02 8.487331e-02 8.339506e-02 1.000000e+00 8.066169e-01 8.048166e-01 ## X51 observed correlations 7.922614e-02 8.420571e-02 8.294894e-02 8.066169e-01 1.000000e+00 8.038186e-01 ## X61 observed correlations 9.040050e-02 9.568204e-02 9.300951e-02 8.048166e-01 8.038186e-01 1.000000e+00 ## X12 residual correlations 1.970290e-01 3.461689e-05 6.051535e-05 6.521679e-04 -4.557042e-04 -1.982738e-04 ## X22 residual correlations 3.461689e-05 1.984502e-01 2.539922e-05 -4.906850e-04 -4.616466e-05 5.395892e-04 ## X32 residual correlations 6.051535e-05 2.539922e-05 1.976092e-01 -1.625891e-04 5.020468e-04 -3.403591e-04 ## X42 residual correlations 6.521679e-04 -4.906850e-04 -1.625891e-04 1.925142e-01 8.990569e-05 2.950289e-05 ## X52 residual correlations -4.557042e-04 -4.616466e-05 5.020468e-04 8.990569e-05 1.944293e-01 -1.330340e-07 ## X62 residual correlations -1.982738e-04 5.395892e-04 -3.403591e-04 2.950289e-05 -1.330340e-07 1.977747e-01 ## ## $npobs ## X1 X2 X3 X4 X5 X6 ## X1 10000 10000 10000 10000 10000 10000 ## X2 10000 10000 10000 10000 10000 10000 ## X3 10000 10000 10000 10000 10000 10000 ## X4 10000 10000 10000 10000 10000 10000 ## X5 10000 10000 10000 10000 10000 10000 ## X6 10000 10000 10000 10000 10000 10000 ## ## $residual_stats ## residual_statistics value critical formula ## 1 Root Mean Squared Residual 0.0003281413 NA sqrt(mean(residuals^2)) ## 2 Number of absolute residuals > 0.05 0.0000000000 NA abs(residuals)>0.05 ## 3 Proportion of absolute residuals > 0.05 0.0000000000 0.5 numberLargeResiduals/nrow(residuals) ## ## $determinant_test ## determinant above_critical ## 1 0.009986523 TRUE ## ## $bartlett_test ## x_squared[bartlett] df[bartlett] p[bartlett] ## 1 46047.53 15 0 ## ## $kmo_test ## Overall_MSA MSA Kaiser_1974 ## X1 0.7683298 0.7673630 Good ## X2 0.7683298 0.7688482 Good ## X3 0.7683298 0.7680652 Good ## X4 0.7683298 0.7665333 Good ## X5 0.7683298 0.7678210 Good ## X6 0.7683298 0.7713582 Good ## ## $loadings ## Matrix variable PA1 PA2 type row.names.model.Vaccounted. ## 1 Pattern X4 0.9000000 0.0000000## 2 Pattern X5 0.9000000 0.0000000 ## 3 Pattern X6 0.8900000 0.0100000 ## 4 Pattern X1 0.0000000 0.9000000 ## 5 Pattern X2 0.0000000 0.9000000 ## 6 Pattern X3 0.0000000 0.9000000 ## 7 Structure X4 0.9000000 0.0900000 ## 8 Structure X5 0.9000000 0.0900000 ## 9 Structure X6 0.9000000 0.1000000 ## 10 Structure X1 0.0900000 0.9000000 ## 11 Structure X2 0.1000000 0.9000000 ## 12 Structure X3 0.1000000 0.9000000 ## 13 2.4151943 2.4069989 variance accounted SS loadings ## 14 0.4025324 0.4011665 variance accounted Proportion Var ## 15 0.4025324 0.8036989 variance accounted Cumulative Var ## 16 0.5008498 0.4991502 variance accounted Proportion Explained ## 17 0.5008498 1.0000000 variance accounted Cumulative Proportion ## ## $instruction_loading_critical_values ## sample critical_loading ## 1 50 0.75 ## 2 60 0.70 ## 3 70 0.65 ## 4 85 0.60 ## 5 100 0.55 ## 6 120 0.50 ## 7 150 0.45 ## 8 200 0.40 ## 9 250 0.35 ## 10 350 0.30 ## ## $weights ## PA1 PA2 ## X1 -0.03563484 0.34879769 ## X2 -0.03330409 0.34562171 ## X3 -0.03429605 0.34741996 ## X4 0.35215475 -0.03618723 ## X5 0.34840281 -0.03623816 ## X6 0.34090284 -0.03065831