Statistika Deskriptif
Februari 22, 2025
Harga Saham (Rp) | Frekuensi (Fi) | Nilai Tengah (Mi) | Frek. Relatif (%) | Tk (u) | Fk (<) | Fk (>) |
---|---|---|---|---|---|---|
6.000 - 6.499 | 5 | 6.250 | 5.21 | 6.000 | 5 | 92 |
6.500 - 6.999 | 8 | 6.750 | 8.33 | 6.500 | 13 | 87 |
7.000 - 7.499 | 12 | 7.250 | 12.50 | 7.000 | 25 | 75 |
7.500 - 7.999 | 15 | 7.750 | 15.63 | 7.500 | 40 | 60 |
8.000 - 8.499 | 10 | 8.250 | 10.42 | 8.000 | 50 | 50 |
8.500 - 8.999 | 9 | 8.750 | 9.38 | 8.500 | 59 | 41 |
9.000 - 9.499 | 8 | 9.250 | 8.33 | 9.000 | 67 | 33 |
9.500 - 9.999 | 7 | 9.750 | 7.29 | 9.500 | 74 | 26 |
10.000 - 10.499 | 6 | 10.250 | 6.25 | 10.000 | 80 | 20 |
10.500 - 10.999 | 5 | 10.750 | 5.21 | 10.500 | 85 | 15 |
11.000 - 11.499 | 4 | 11.250 | 4.17 | 11.000 | 89 | 11 |
11.500 - 11.999 | 3 | 11.750 | 3.13 | 11.500 | 92 | 8 |
12.000 - 12.499 | 2 | 12.250 | 2.08 | 12.000 | 94 | 6 |
12.500 - 12.999 | 2 | 12.750 | 2.08 | 12.500 | 96 | 4 |
13.000 - 13.499 | 1 | 13.250 | 1.04 | 13.000 | 97 | 3 |
13.500 - 13.999 | 1 | 13.750 | 1.04 | 13.500 | 98 | 2 |
14.000 - 14.499 | 1 | 14.250 | 1.04 | 14.000 | 99 | 1 |
Total | 96 | 100 |
1 Mencari Interval
1. Menentukan Banyak Kelas \(k\) dengan Rumus Sturges
Rumus:
\[ k = 1 + 3.322 \log n \]
Substitusi nilai \[ n = 96 \]:
\[ = 1 + 3.322 \log(96) \]
\[ = 1 + 3.322 (1.982271) \]
\[ = 1 + 6.5815 \]
\[
= 7.5815 \approx 8
\]
Jadi, banyak kelas yang disarankan adalah 8 kelas.
2. Menentukan Range Data
Rumus:
\[
\text{Range} = X_{\text{maks}} - X_{\text{min}}
\]
Substitusi:
\[ = 14.499 - 6.000 \]
\[ = 8.499 \]
3. Menentukan Panjang Interval Kelas \(c\)
Rumus:
\[ c = \frac{\text{Range}}{k} \]
Substitusi:
\[ = \frac{8.499}{8} \]
\[ = 1.062 \]
\[ \approx 1.100 \quad \text{(dibulatkan ke ratusan terdekat)} \]
Jadi, panjang interval kelas yang digunakan adalah 1.100.
2 Hitung Mean (Rata-rata)
Rumus Mean
\[ \bar{X} = \frac{\sum f_i X_i}{\sum f_i} \]
Di mana:
- \(f_i\) = Frekuensi kelas
- \(X_i\) = Nilai tengah kelas
1. Menghitung \(\sum f_i X_i\)
Kita kalikan frekuensi dengan nilai tengah untuk setiap kelas:
\[ (5 \times 6.250) + (8 \times 6.750) + (12 \times 7.250) + (15 \times 7.750) + (10 \times 8.250) \]
\[ + (9 \times 8.750) + (8 \times 9.250) + (7 \times 9.750) + (6 \times 10.250) + (5 \times 10.750) \]
\[ + (4 \times 11.250) + (3 \times 11.750) + (2 \times 12.250) + (2 \times 12.750) + (1 \times 13.250) \]
\[ + (1 \times 13.750) + (1 \times 14.250) \]
2. Menghitung \(\sum f_i\)
\[ \sum f_i = 96 \]
(Total frekuensi sudah diketahui dari tabel)
3. Menghitung Mean \(\bar{X}\)
\[ \bar{X} = \frac{\sum f_i X_i}{\sum f_i} \]
\[ = \frac{878.75}{96} \]
Hitung hasil akhir
\[ \bar{X} = \frac{878.75}{96} = 9.154 \]
Jadi, Mean (rata-rata) harga saham berdasarkan data ini adalah Rp 9.154.
3 Frekuensi Relatif
Rumus Frekuensi Relatif
\[ \text{Frekuensi Relatif} = \left( \frac{f_i}{\sum f_i} \right) \times 100\% \]
Di mana:
- _i = Frekuensi kelas
- f_i = 96 (total frekuensi dari tabel)
Kita hitung untuk masing-masing kelas:
\[ \left( \frac{5}{96} \right) \times 100 = 5.21\% \]
\[ \left( \frac{8}{96} \right) \times 100 = 8.33\% \]
\[ \left( \frac{12}{96} \right) \times 100 = 12.50\% \]
\[ \left( \frac{15}{96} \right) \times 100 = 15.63\% \]
\[ \left( \frac{10}{96} \right) \times 100 = 10.42\% \]
\[ \left( \frac{9}{96} \right) \times 100 = 9.38\% \]
\[ \left( \frac{8}{96} \right) \times 100 = 8.33\% \]
\[ \left( \frac{7}{96} \right) \times 100 = 7.29\% \]
\[ \left( \frac{6}{96} \right) \times 100 = 6.25\% \]
\[ \left( \frac{5}{96} \right) \times 100 = 5.21\% \]
\[ \left( \frac{4}{96} \right) \times 100 = 4.17\% \]
\[ \left( \frac{3}{96} \right) \times 100 = 3.13\% \]
\[ \left( \frac{2}{96} \right) \times 100 = 2.08\% \]
\[ \left( \frac{2}{96} \right) \times 100 = 2.08\% \]
\[ \left( \frac{1}{96} \right) \times 100 = 1.04\% \]
\[ \left( \frac{1}{96} \right) \times 100 = 1.04\% \]
\[ \left( \frac{1}{96} \right) \times 100 = 1.04\% \]
4 Tepi Kelas (Tk)
Rumus Tepi Kelas
Tepi bawah:
\[
\text{Tk bawah} = \text{Batas bawah} - 0.5
\]
Tepi atas:
\[ \text{Tk atas} = \text{Batas atas} + 0.5 \]
Sekarang kita hitung untuk masing-masing kelas:
Kelas | Batas Bawah | Batas Atas | Tepi Bawah | Tepi Atas |
---|---|---|---|---|
6.000 - 6.499 | 6.000 | 6.499 | 5.999 | 6.500 |
6.500 - 6.999 | 6.500 | 6.999 | 6.499 | 7.000 |
7.000 - 7.499 | 7.000 | 7.499 | 6.999 | 7.500 |
7.500 - 7.999 | 7.500 | 7.999 | 7.499 | 8.000 |
8.000 - 8.499 | 8.000 | 8.499 | 7.999 | 8.500 |
8.500 - 8.999 | 8.500 | 8.999 | 8.499 | 9.000 |
9.000 - 9.499 | 9.000 | 9.499 | 8.999 | 9.500 |
9.500 - 9.999 | 9.500 | 9.999 | 9.499 | 10.000 |
10.000 - 10.499 | 10.000 | 10.499 | 9.999 | 10.500 |
10.500 - 10.999 | 10.500 | 10.999 | 10.499 | 11.000 |
11.000 - 11.499 | 11.000 | 11.499 | 10.999 | 11.500 |
11.500 - 11.999 | 11.500 | 11.999 | 11.499 | 12.000 |
12.000 - 12.499 | 12.000 | 12.499 | 11.999 | 12.500 |
12.500 - 12.999 | 12.500 | 12.999 | 12.499 | 13.000 |
13.000 - 13.499 | 13.000 | 13.499 | 12.999 | 13.500 |
13.500 - 13.999 | 13.500 | 13.999 | 13.499 | 14.000 |
14.000 - 14.499 | 14.000 | 14.499 | 13.999 | 14.500 |
5 Frekuensi Kumulatif
1. Frekuensi Kumulatif Kurang Dari \(F_k(<)\)
Frekuensi kumulatif kurang dari \(F_k(<)\) adalah jumlah frekuensi dari kelas sebelumnya ditambah frekuensi kelas saat ini.
Kelas | Frekuensi \(f_i\) | Frekuensi Kumulatif \(F_k(<)\) |
---|---|---|
6.000 - 6.499 | 5 | 5 |
6.500 - 6.999 | 8 | 5 + 8 = 13 |
7.000 - 7.499 | 12 | 13 + 12 = 25 |
7.500 - 7.999 | 15 | 25 + 15 = 40 |
8.000 - 8.499 | 10 | 40 + 10 = 50 |
8.500 - 8.999 | 9 | 50 + 9 = 59 |
9.000 - 9.499 | 8 | 59 + 8 = 67 |
9.500 - 9.999 | 7 | 67 + 7 = 74 |
10.000 - 10.499 | 6 | 74 + 6 = 80 |
10.500 - 10.999 | 5 | 80 + 5 = 85 |
11.000 - 11.499 | 4 | 85 + 4 = 89 |
11.500 - 11.999 | 3 | 89 + 3 = 92 |
12.000 - 12.499 | 2 | 92 + 2 = 94 |
12.500 - 12.999 | 2 | 94 + 2 = 96 |
13.000 - 13.499 | 1 | 96 + 1 = 97 |
13.500 - 13.999 | 1 | 97 + 1 = 98 |
14.000 - 14.499 | 1 | 98 + 1 = 99 |
6 Frekuensi Kumulatif
Frekuensi kumulatif lebih dari \(F_k(>)\) dihitung dengan mengurangkan total frekuensi \(96\) dengan \(F_k(<)\) kelas sebelumnya.
Kelas | Frekuensi Kumulatif \(F_k(>)\) |
---|---|
6.000 - 6.499 | 96 - 5 = 92 |
6.500 - 6.999 | 96 - 13 = 87 |
7.000 - 7.499 | 96 - 25 = 75 |
7.500 - 7.999 | 96 - 40 = 60 |
8.000 - 8.499 | 96 - 50 = 50 |
8.500 - 8.999 | 96 - 59 = 41 |
9.000 - 9.499 | 96 - 67 = 33 |
9.500 - 9.999 | 96 - 74 = 26 |
10.000 - 10.499 | 96 - 80 = 20 |
10.500 - 10.999 | 96 - 85 = 15 |
11.000 - 11.499 | 96 - 89 = 11 |
11.500 - 11.999 | 96 - 92 = 8 |
12.000 - 12.499 | 96 - 94 = 6 |
12.500 - 12.999 | 96 - 96 = 4 |
13.000 - 13.499 | 96 - 97 = 3 |
13.500 - 13.999 | 96 - 98 = 2 |
14.000 - 14.499 | 96 - 99 = 1 |