Instalar y correr la paquetería
#install.packages("pacman")
library("pacman")
p_load("readr",
"dplyr",
"ggplot2")
Cargar la base de datos
PCR <- read.csv(file="https://raw.githubusercontent.com/ManuelLaraMVZ/Transcript-mica/main/datos_miRNAs.csv")
head(PCR)
## Gen Condicion Cx1 Cx2 Cx3 T1 T2 T3
## 1 U6 snRNA-001973 Control 13.7904 11.7446 11.9293 13.1954 12.9566 12.6417
## 2 ath-miR159a-000338 Target 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000
## 3 hsa-let-7a-000377 Target 20.4943 21.0031 21.0073 20.3820 19.5925 20.9335
## 4 hsa-let-7b-002619 Target 18.3545 19.0325 19.1368 18.2551 17.4500 18.9675
## 5 hsa-let-7c-000379 Target 22.1791 23.6921 23.7763 22.9127 21.9639 23.9877
## 6 hsa-let-7d-002283 Target 22.1898 22.6786 21.8660 21.9711 21.2081 21.9410
Aislar el control y solo seleccionar gen ref
Gen_ref <- PCR %>% filter(Condicion=="Control") %>%
select(-2) %>% filter(Gen=="U6 snRNA-001973")
Gen_ref
## Gen Cx1 Cx2 Cx3 T1 T2 T3
## 1 U6 snRNA-001973 13.7904 11.7446 11.9293 13.1954 12.9566 12.6417
Filtrar solo los genes de interés
Gen_int <- PCR %>%
filter(Condicion=="Target") %>%
select(-2)
head ( Gen_int)
## Gen Cx1 Cx2 Cx3 T1 T2 T3
## 1 ath-miR159a-000338 35.0000 35.0000 35.0000 35.0000 35.0000 35.0000
## 2 hsa-let-7a-000377 20.4943 21.0031 21.0073 20.3820 19.5925 20.9335
## 3 hsa-let-7b-002619 18.3545 19.0325 19.1368 18.2551 17.4500 18.9675
## 4 hsa-let-7c-000379 22.1791 23.6921 23.7763 22.9127 21.9639 23.9877
## 5 hsa-let-7d-002283 22.1898 22.6786 21.8660 21.9711 21.2081 21.9410
## 6 hsa-let-7e-002406 17.9679 18.3915 18.4673 18.0119 17.2932 18.5586
Sacar promedio de las tres repeticiones, y adjuntar nuevas columnas
Mean_ref <- Gen_ref %>%
mutate(Prom_Cx=(Cx1+Cx2+Cx3)/3,
Prom_Tx=(T1+T2+T3)/3) %>%
select("Gen","Prom_Cx","Prom_Tx")
Mean_ref
## Gen Prom_Cx Prom_Tx
## 1 U6 snRNA-001973 12.4881 12.93123
Mean_int <- Gen_int %>%
mutate(Prom_Cx=(Cx1+Cx2+Cx3)/3,
Prom_Tx=(T1+T2+T3)/3) %>%
select("Gen","Prom_Cx","Prom_Tx")
head(Mean_int)
## Gen Prom_Cx Prom_Tx
## 1 ath-miR159a-000338 35.00000 35.00000
## 2 hsa-let-7a-000377 20.83490 20.30267
## 3 hsa-let-7b-002619 18.84127 18.22420
## 4 hsa-let-7c-000379 23.21583 22.95477
## 5 hsa-let-7d-002283 22.24480 21.70673
## 6 hsa-let-7e-002406 18.27557 17.95457
Obtención de DosDCt
Analisis <- Mean_int %>%
mutate(DCT_Cx= Mean_int$Prom_Cx- Mean_ref$Prom_Cx,
DCT_Tx= Mean_int$Prom_Tx- Mean_ref$Prom_Tx,
DosDCT_Cx= 2^-(DCT_Cx),
DosDCT_Tx=2^-(DCT_Tx)) %>%
mutate(DosDDCT=DosDCT_Tx/DosDCT_Cx)
Creación de gráfica
Grafica_1 <- ggplot(Analisis,
mapping = aes(x=DosDCT_Cx,
y=DosDCT_Tx))+
geom_point(color="#a9ff41") +
theme_dark() +
labs(title = "Cambios de expresión de miRNAs",
subtitle = "Gráfica de dispersión",
caption = "Creado por Paulo Escobedo",
x="Condición control (2^-DCt)",
y="Condición tratamiento (2^-DCt)")+
geom_smooth(method = "lm",
color= "#ff41f1",
alpha= 0.005 ,
linewidth = 0.2)
Grafica_1
## `geom_smooth()` using formula = 'y ~ x'