Instalar y correr la paquetería
#install.packages("pacman")
library("pacman")
## Warning: package 'pacman' was built under R version 4.2.3
p_load("readr",
"dplyr",
"ggplot2")
Cargar la base de datos
PCR <- read.csv(file="https://raw.githubusercontent.com/ManuelLaraMVZ/Transcript-mica/main/datos_miRNAs.csv")
PCR
Aislar el control y seleccionar solo a U6
Gen_ref <- PCR %>%
filter(Condicion == "Control") %>%
select(-2) %>%
filter(Gen == "U6 snRNA-001973")
Gen_ref
Gen_int <- PCR %>%
filter(Condicion == "Target") %>%
select(-2)
Gen_int
Mean_ref <- Gen_ref %>%
mutate(Prom_Cx = (Cx1+Cx2+Cx3)/3,
Prom_Tx = (T1+T2+T3)/3) %>%
select("Gen", "Prom_Cx", "Prom_Tx")
Mean_ref
Mean_int <- Gen_int %>%
mutate(Prom_Cx = (Cx1+Cx2+Cx3)/3,
Prom_Tx = (T1+T2+T3)/3) %>%
select("Gen", "Prom_Cx", "Prom_Tx")
Mean_int
Analisis <- Mean_int %>%
mutate(DCT_Cx = Mean_int$Prom_Cx-Mean_ref$Prom_Cx,
DCT_Tx = Mean_int$Prom_Tx-Mean_ref$Prom_Tx,
DosDCT_Cx = 2^-(DCT_Cx),
DosDCT_Tx = 2^-(DCT_Tx)) %>%
mutate(DosDDCT = DosDCT_Tx/DosDCT_Cx)
Analisis
Grafica_1 <- ggplot(Analisis,
mapping = aes(x = DosDCT_Cx ,
y = DosDCT_Tx)) +
geom_point(color = "orange") +
theme_classic() +
labs(title = "Cambios de expresión de miRNAs",
subtitle = "Gráfica de dispersión",
caption = "Creo: Manuel Lara Lozano",
x = "Condición control (2^-DCt)",
y = "Tratamiento (2^-DCt)")+
geom_smooth(method = "lm",
color = "blue",
alpha = 0.05,
linewidth = 0.5)
Grafica_1
## `geom_smooth()` using formula = 'y ~ x'