q1<- inner_join(customers, orders, by = 'customer_id')
There are 4 rows
They did not have a match in the other table
q1
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
q2<- left_join(customers, orders, by = 'customer_id')
There are 6 rows
Because all customers are included in the table
q2
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q3<- right_join(customers, orders, by= 'customer_id')
There are 6 rows
Customer 6 and 7 have NULL they are present in orders table but not customers table
q3
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
q4<- full_join(customers, orders, by= 'customer_id')
there are 8
customer_id = 6 and customer_id = 7 are in the orders table but not in the customers table, so their name and city are NA
q4
## # A tibble: 8 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
## 7 6 <NA> <NA> 105 Camera 600
## 8 7 <NA> <NA> 106 Printer 150
q5<- semi_join(customers, orders, by= 'customer_id')
There are 3 rows
Inner join duplicates customers if they have multiple orders, while semi join only keeps unique customer records.
q5
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
q6<- anti_join(customers, orders, by= 'customer_id')
David and Eve
It tells us the customer id number and what city they are from
q6
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
Left Join because it ensures that all customers from the customers table are included in the result, even if they have never placed an order.
Inner join because it only returns records where there is a match between customers and orders on customer_id # Write the R code for both scenarios.
all_customers <- left_join(customers, orders, by = "customer_id")
print(all_customers)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
customers_with_orders <- inner_join(customers, orders, by = "customer_id")
print(customers_with_orders)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
customer_summary <- left_join(customers, orders, by = "customer_id") %>%
group_by(customer_id, name, city) %>%
summarize(
total_orders = n(),
total_spent = sum(amount, na.rm = TRUE),
.groups = "drop"
) %>%
mutate(
total_orders = ifelse(is.na(total_spent), 0, total_orders),
total_spent = replace_na(total_spent, 0)
)
print(customer_summary)
## # A tibble: 5 × 5
## customer_id name city total_orders total_spent
## <dbl> <chr> <chr> <int> <dbl>
## 1 1 Alice New York 1 1200
## 2 2 Bob Los Angeles 2 2300
## 3 3 Charlie Chicago 1 300
## 4 4 David Houston 1 0
## 5 5 Eve Phoenix 1 0