#librerias
library(tidyr)
library(ggplot2)
set.seed(1000376863)
datos30d = c(10, 12, 13, 14)
bootstrap_30d <- sample(datos30d, size = 500, replace = TRUE)
media_30d <- mean(datos30d)
sd_30d <- sd(datos30d)
normal_30d <- rnorm(500, mean = media_30d, sd = sd_30d)
summary(normal_30d)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.842 11.069 12.372 12.274 13.435 17.212
summary(bootstrap_30d)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.00 11.50 13.00 12.33 14.00 14.00
hist(normal_30d, col = "lightblue", main = "Simulación Normal", breaks = 20)

hist(bootstrap_30d, col = "lightgreen", main = "Simulación Bootstrap", breaks = 20)

datos_OG <- data.frame(
A30D = c(25, 27.5, 26.8, 26.2),
A40D = c(32.5, 34.5, 32.5, 31.8),
A50D = c(45.6, 44.5, 43.8, 43.6),
ICOL = c(10, 5, 2.5, 2.5),
SCOL = c(5, 5, 5, 2.5),
IPHY = c(5, 10, 7.5, 5),
SPHY = c(5, 5, 7.5, 5),
ISEP = c(10, 12.5, 12.5, 10),
SSEP = c(10, 10, 10, 12.5),
ICER = c(5, 10, 10, 10),
SCER = c(5, 2.5, 5, 2.5),
testA30D = c(25.6, 25.4, 25.8, 26),
testA40D = c(29.5, 30.5, 30.8, 29.5),
testA50D = c(39.6, 40, 40.6, 40.7),
testICOL = c(22.5, 15.8, 20, 22.5),
testSCOL = c(15, 15, 17.5, 15),
testIPHY = c(25, 20, 25, 25),
testSPHY = c(20, 22.5, 22.5, 25),
testISEP = c(22.5, 22.5, 20, 20),
testSSEP = c(15, 17.5, 20, 5),
testICER = c(15, 15, 20, 20),
testSCER = c(15, 12.5, 15, 20)
)
head(datos_OG)
simulaciones <- data.frame(
A30D = rnorm(500, mean = mean(datos_OG$A30D), sd = sd(datos_OG$A30D)),
A40D = rnorm(500, mean = mean(datos_OG$A40D), sd = sd(datos_OG$A40D)),
A50D = rnorm(500, mean = mean(datos_OG$A50D), sd = sd(datos_OG$A50D)),
ICOL= rnorm(500, mean = mean(datos_OG$ICOL), sd = sd(datos_OG$ICOL)),
SCOL = rnorm(500, mean = mean(datos_OG$SCOL), sd = sd(datos_OG$SCOL)),
IPHY = rnorm(500, mean = mean(datos_OG$IPHY), sd = sd(datos_OG$IPHY)),
SPHY = rnorm(500, mean = mean(datos_OG$SPHY), sd = sd(datos_OG$SPHY)),
ISEP = rnorm(500, mean = mean(datos_OG$ISEP), sd = sd(datos_OG$ISEP)),
SSEP = rnorm(500, mean = mean(datos_OG$SSEP), sd = sd(datos_OG$SSEP)),
ICER = rnorm(500, mean = mean(datos_OG$ICER), sd = sd(datos_OG$ICER)),
SCER = rnorm(500, mean = mean(datos_OG$SCER), sd = sd(datos_OG$SCER)),
testA30D = rnorm(500, mean = mean(datos_OG$testA30D), sd = sd(datos_OG$testA30D)),
testA40D = rnorm(500, mean = mean(datos_OG$testA40D), sd = sd(datos_OG$testA40D)),
testA50D = rnorm(500, mean = mean(datos_OG$testA50D), sd = sd(datos_OG$testA50D)),
testICOL = rnorm(500, mean = mean(datos_OG$testICOL), sd = sd(datos_OG$testICOL)),
testSCOL = rnorm(500, mean = mean(datos_OG$testSCOL), sd = sd(datos_OG$testSCOL)),
testIPHY = rnorm(500, mean = mean(datos_OG$testIPHY), sd = sd(datos_OG$testIPHY)),
testSPHY = rnorm(500, mean = mean(datos_OG$testSPHY), sd = sd(datos_OG$testSPHY)),
testISEP = rnorm(500, mean = mean(datos_OG$testISEP), sd = sd(datos_OG$testISEP)),
testSSEP = rnorm(500, mean = mean(datos_OG$testSSEP), sd = sd(datos_OG$testSSEP)),
testICER = rnorm(500, mean = mean(datos_OG$testICER), sd = sd(datos_OG$testICER)),
testSCER = rnorm(500, mean = mean(datos_OG$testSCER), sd = sd(datos_OG$testSCER))
)
head(simulaciones)
dim(datos_OG)
[1] 4 22
dim(simulaciones)
[1] 500 22
summary(datos_OG$A30D)
Min. 1st Qu. Median Mean 3rd Qu. Max.
25.00 25.90 26.50 26.38 26.98 27.50
summary(simulaciones$A30D)
Min. 1st Qu. Median Mean 3rd Qu. Max.
23.21 25.66 26.47 26.42 27.18 29.73
simulaciones_lg <- pivot_longer(simulaciones, cols = everything(), names_to = "Tratamiento", values_to = "Altura")
ggplot(simulaciones_lg, aes(x = Altura, fill = Tratamiento)) +
geom_histogram(alpha = 0.5, position = "identity", bins = 30) +
facet_wrap(~ Tratamiento, scales = "free") +
theme_minimal() +
labs(title = "Simulación de Mediciones para cada tratamiento",
x = "Medición",
y = "Frecuencia")

# Función para aplicar la prueba de Shapiro-Wilk a cada columna
normalidad <- sapply(simulaciones, function(x) shapiro.test(x)$p.value)
# Convertir a un data frame para mejor visualización
normalidad_df <- data.frame(Tratamiento = names(normalidad),
p_value = normalidad)
# Mostrar los resultados
print(normalidad_df)
# Interpretación: Si p-value > 0.05, no se rechaza la hipótesis nula de normalidad
normalidad_df$Normalidad <- ifelse(normalidad_df$p_value > 0.05, "Sí", "No")
print(normalidad_df)
colnames(simulaciones) <- paste0("T", 1:22)
# Comparación de medias entre columnas 1-11 con sus respectivas en 12-22
comparacion_medias <- data.frame(Columna1 = character(), Columna2 = character(), p_value = numeric())
for (i in 1:11) {
test <- t.test(simulaciones[[i]], simulaciones[[i + 11]])
comparacion_medias <- rbind(comparacion_medias,
data.frame(Columna1 = colnames(simulaciones)[i],
Columna2 = colnames(simulaciones)[i + 11],
p_value = test$p.value))
}
# Evaluar si hay diferencias significativas (p < 0.05)
comparacion_medias$Diferencia_Significativa <- ifelse(comparacion_medias$p_value < 0.05, "Sí", "No")
# Mostrar resultados
print(comparacion_medias)
comparacion_medias$Variable <- c(
"Altura (cm) 30 días",
"Altura (cm) 40 días",
"Altura (cm) 50 días",
"Incidencia Colletotrichum",
"Severidad Colletotrichum",
"Incidencia Phytophthora",
"Severidad Phytophthora",
"Incidencia Septoria",
"Severidad Septoria",
"Incidencia Cercospora",
"Severidad Cercospora"
)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCiNsaWJyZXJpYXMNCmxpYnJhcnkodGlkeXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KYGBge3J9DQpzZXQuc2VlZCgxMDAwMzc2ODYzKQ0KYGBgDQoNCg0KYGBge3J9DQpkYXRvczMwZCA9IGMoMTAsIDEyLCAxMywgMTQpDQpgYGANCg0KYGBge3J9DQpib290c3RyYXBfMzBkIDwtIHNhbXBsZShkYXRvczMwZCwgc2l6ZSA9IDUwMCwgcmVwbGFjZSA9IFRSVUUpDQpgYGANCg0KYGBge3J9DQptZWRpYV8zMGQgPC0gbWVhbihkYXRvczMwZCkNCnNkXzMwZCA8LSBzZChkYXRvczMwZCkNCm5vcm1hbF8zMGQgPC0gcm5vcm0oNTAwLCBtZWFuID0gbWVkaWFfMzBkLCBzZCA9IHNkXzMwZCkNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkobm9ybWFsXzMwZCkNCnN1bW1hcnkoYm9vdHN0cmFwXzMwZCkNCmBgYA0KDQpgYGB7cn0NCmhpc3Qobm9ybWFsXzMwZCwgY29sID0gImxpZ2h0Ymx1ZSIsIG1haW4gPSAiU2ltdWxhY2nDs24gTm9ybWFsIiwgYnJlYWtzID0gMjApDQpoaXN0KGJvb3RzdHJhcF8zMGQsIGNvbCA9ICJsaWdodGdyZWVuIiwgbWFpbiA9ICJTaW11bGFjacOzbiBCb290c3RyYXAiLCBicmVha3MgPSAyMCkNCmBgYA0KYGBge3J9DQpkYXRvc19PRyA8LSBkYXRhLmZyYW1lKA0KQTMwRCA9IGMoMjUsIDI3LjUsIDI2LjgsIDI2LjIpLA0KQTQwRCA9IGMoMzIuNSwgMzQuNSwgMzIuNSwgMzEuOCksDQpBNTBEID0gYyg0NS42LCA0NC41LCA0My44LCA0My42KSwNCklDT0wgPSBjKDEwLCA1LCAyLjUsIDIuNSksDQpTQ09MID0gYyg1LCA1LCA1LCAyLjUpLA0KSVBIWSA9IGMoNSwgMTAsIDcuNSwgNSksDQpTUEhZID0gYyg1LCA1LCA3LjUsIDUpLA0KSVNFUCA9IGMoMTAsIDEyLjUsIDEyLjUsIDEwKSwNClNTRVAgPSBjKDEwLCAxMCwgMTAsIDEyLjUpLA0KSUNFUiA9IGMoNSwgMTAsIDEwLCAxMCksDQpTQ0VSID0gYyg1LCAyLjUsIDUsIDIuNSksDQp0ZXN0QTMwRCA9IGMoMjUuNiwgMjUuNCwgMjUuOCwgMjYpLA0KdGVzdEE0MEQgPSBjKDI5LjUsIDMwLjUsIDMwLjgsIDI5LjUpLA0KdGVzdEE1MEQgPSBjKDM5LjYsIDQwLCA0MC42LCA0MC43KSwNCnRlc3RJQ09MID0gYygyMi41LCAxNS44LCAyMCwgMjIuNSksDQp0ZXN0U0NPTCA9IGMoMTUsIDE1LCAxNy41LCAxNSksDQp0ZXN0SVBIWSA9IGMoMjUsIDIwLCAyNSwgMjUpLA0KdGVzdFNQSFkgPSBjKDIwLCAyMi41LCAyMi41LCAyNSksDQp0ZXN0SVNFUCA9IGMoMjIuNSwgMjIuNSwgMjAsIDIwKSwNCnRlc3RTU0VQID0gYygxNSwgMTcuNSwgMjAsIDUpLA0KdGVzdElDRVIgPSBjKDE1LCAxNSwgMjAsIDIwKSwNCnRlc3RTQ0VSID0gYygxNSwgMTIuNSwgMTUsIDIwKQ0KKQ0KaGVhZChkYXRvc19PRykNCmBgYA0KDQpgYGB7cn0NCnNpbXVsYWNpb25lcyA8LSBkYXRhLmZyYW1lKA0KQTMwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckQTMwRCksIHNkID0gc2QoZGF0b3NfT0ckQTMwRCkpLA0KQTQwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckQTQwRCksIHNkID0gc2QoZGF0b3NfT0ckQTQwRCkpLA0KQTUwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckQTUwRCksIHNkID0gc2QoZGF0b3NfT0ckQTUwRCkpLA0KSUNPTD0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRJQ09MKSwgc2QgPSBzZChkYXRvc19PRyRJQ09MKSksDQpTQ09MID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRTQ09MKSwgc2QgPSBzZChkYXRvc19PRyRTQ09MKSksDQpJUEhZID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRJUEhZKSwgc2QgPSBzZChkYXRvc19PRyRJUEhZKSksDQpTUEhZID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRTUEhZKSwgc2QgPSBzZChkYXRvc19PRyRTUEhZKSksDQpJU0VQID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRJU0VQKSwgc2QgPSBzZChkYXRvc19PRyRJU0VQKSksDQpTU0VQID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRTU0VQKSwgc2QgPSBzZChkYXRvc19PRyRTU0VQKSksDQpJQ0VSID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRJQ0VSKSwgc2QgPSBzZChkYXRvc19PRyRJQ0VSKSksDQpTQ0VSID0gcm5vcm0oNTAwLCBtZWFuID0gbWVhbihkYXRvc19PRyRTQ0VSKSwgc2QgPSBzZChkYXRvc19PRyRTQ0VSKSksDQp0ZXN0QTMwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdEEzMEQpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RBMzBEKSksDQp0ZXN0QTQwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdEE0MEQpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RBNDBEKSksDQp0ZXN0QTUwRCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdEE1MEQpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RBNTBEKSksDQp0ZXN0SUNPTCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdElDT0wpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RJQ09MKSksDQp0ZXN0U0NPTCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdFNDT0wpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RTQ09MKSksDQp0ZXN0SVBIWSA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdElQSFkpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RJUEhZKSksDQp0ZXN0U1BIWSA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdFNQSFkpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RTUEhZKSksDQp0ZXN0SVNFUCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdElTRVApLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RJU0VQKSksDQp0ZXN0U1NFUCA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdFNTRVApLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RTU0VQKSksDQp0ZXN0SUNFUiA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdElDRVIpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RJQ0VSKSksDQp0ZXN0U0NFUiA9IHJub3JtKDUwMCwgbWVhbiA9IG1lYW4oZGF0b3NfT0ckdGVzdFNDRVIpLCBzZCA9IHNkKGRhdG9zX09HJHRlc3RTQ0VSKSkNCikNCmhlYWQoc2ltdWxhY2lvbmVzKQ0KYGBgDQpgYGB7cn0NCmRpbShkYXRvc19PRykNCmRpbShzaW11bGFjaW9uZXMpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShkYXRvc19PRyRBMzBEKQ0Kc3VtbWFyeShzaW11bGFjaW9uZXMkQTMwRCkNCmBgYA0KYGBge3J9DQpzaW11bGFjaW9uZXNfbGcgPC0gcGl2b3RfbG9uZ2VyKHNpbXVsYWNpb25lcywgY29scyA9IGV2ZXJ5dGhpbmcoKSwgbmFtZXNfdG8gPSAiVHJhdGFtaWVudG8iLCB2YWx1ZXNfdG8gPSAiQWx0dXJhIikNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChzaW11bGFjaW9uZXNfbGcsIGFlcyh4ID0gQWx0dXJhLCBmaWxsID0gVHJhdGFtaWVudG8pKSArDQogIGdlb21faGlzdG9ncmFtKGFscGhhID0gMC41LCBwb3NpdGlvbiA9ICJpZGVudGl0eSIsIGJpbnMgPSAzMCkgKw0KICBmYWNldF93cmFwKH4gVHJhdGFtaWVudG8sIHNjYWxlcyA9ICJmcmVlIikgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHRpdGxlID0gIlNpbXVsYWNpw7NuIGRlIE1lZGljaW9uZXMgcGFyYSBjYWRhIHRyYXRhbWllbnRvIiwNCiAgICAgICB4ID0gIk1lZGljacOzbiIsDQogICAgICAgeSA9ICJGcmVjdWVuY2lhIikNCmBgYA0KDQpgYGB7cn0NCiMgRnVuY2nDs24gcGFyYSBhcGxpY2FyIGxhIHBydWViYSBkZSBTaGFwaXJvLVdpbGsgYSBjYWRhIGNvbHVtbmENCm5vcm1hbGlkYWQgPC0gc2FwcGx5KHNpbXVsYWNpb25lcywgZnVuY3Rpb24oeCkgc2hhcGlyby50ZXN0KHgpJHAudmFsdWUpDQoNCiMgQ29udmVydGlyIGEgdW4gZGF0YSBmcmFtZSBwYXJhIG1lam9yIHZpc3VhbGl6YWNpw7NuDQpub3JtYWxpZGFkX2RmIDwtIGRhdGEuZnJhbWUoVHJhdGFtaWVudG8gPSBuYW1lcyhub3JtYWxpZGFkKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwX3ZhbHVlID0gbm9ybWFsaWRhZCkNCg0KIyBNb3N0cmFyIGxvcyByZXN1bHRhZG9zDQpwcmludChub3JtYWxpZGFkX2RmKQ0KDQojIEludGVycHJldGFjacOzbjogU2kgcC12YWx1ZSA+IDAuMDUsIG5vIHNlIHJlY2hhemEgbGEgaGlww7N0ZXNpcyBudWxhIGRlIG5vcm1hbGlkYWQNCm5vcm1hbGlkYWRfZGYkTm9ybWFsaWRhZCA8LSBpZmVsc2Uobm9ybWFsaWRhZF9kZiRwX3ZhbHVlID4gMC4wNSwgIlPDrSIsICJObyIpDQoNCnByaW50KG5vcm1hbGlkYWRfZGYpDQpgYGANCmBgYHtyfQ0KY29sbmFtZXMoc2ltdWxhY2lvbmVzKSA8LSBwYXN0ZTAoIlQiLCAxOjIyKQ0KDQojIENvbXBhcmFjacOzbiBkZSBtZWRpYXMgZW50cmUgY29sdW1uYXMgMS0xMSBjb24gc3VzIHJlc3BlY3RpdmFzIGVuIDEyLTIyDQpjb21wYXJhY2lvbl9tZWRpYXMgPC0gZGF0YS5mcmFtZShDb2x1bW5hMSA9IGNoYXJhY3RlcigpLCBDb2x1bW5hMiA9IGNoYXJhY3RlcigpLCBwX3ZhbHVlID0gbnVtZXJpYygpKQ0KDQpmb3IgKGkgaW4gMToxMSkgew0KICB0ZXN0IDwtIHQudGVzdChzaW11bGFjaW9uZXNbW2ldXSwgc2ltdWxhY2lvbmVzW1tpICsgMTFdXSkNCiAgDQogIGNvbXBhcmFjaW9uX21lZGlhcyA8LSByYmluZChjb21wYXJhY2lvbl9tZWRpYXMsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGF0YS5mcmFtZShDb2x1bW5hMSA9IGNvbG5hbWVzKHNpbXVsYWNpb25lcylbaV0sDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENvbHVtbmEyID0gY29sbmFtZXMoc2ltdWxhY2lvbmVzKVtpICsgMTFdLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwX3ZhbHVlID0gdGVzdCRwLnZhbHVlKSkNCn0NCg0KIyBFdmFsdWFyIHNpIGhheSBkaWZlcmVuY2lhcyBzaWduaWZpY2F0aXZhcyAocCA8IDAuMDUpDQpjb21wYXJhY2lvbl9tZWRpYXMkRGlmZXJlbmNpYV9TaWduaWZpY2F0aXZhIDwtIGlmZWxzZShjb21wYXJhY2lvbl9tZWRpYXMkcF92YWx1ZSA8IDAuMDUsICJTw60iLCAiTm8iKQ0KDQojIE1vc3RyYXIgcmVzdWx0YWRvcw0KcHJpbnQoY29tcGFyYWNpb25fbWVkaWFzKQ0KYGBgDQoNCmBgYHtyfQ0KY29tcGFyYWNpb25fbWVkaWFzJFZhcmlhYmxlIDwtIGMoDQogICJBbHR1cmEgKGNtKSAzMCBkw61hcyIsDQogICJBbHR1cmEgKGNtKSA0MCBkw61hcyIsDQogICJBbHR1cmEgKGNtKSA1MCBkw61hcyIsDQogICJJbmNpZGVuY2lhIENvbGxldG90cmljaHVtIiwNCiAgIlNldmVyaWRhZCBDb2xsZXRvdHJpY2h1bSIsDQogICJJbmNpZGVuY2lhIFBoeXRvcGh0aG9yYSIsDQogICJTZXZlcmlkYWQgUGh5dG9waHRob3JhIiwNCiAgIkluY2lkZW5jaWEgU2VwdG9yaWEiLA0KICAiU2V2ZXJpZGFkIFNlcHRvcmlhIiwNCiAgIkluY2lkZW5jaWEgQ2VyY29zcG9yYSIsDQogICJTZXZlcmlkYWQgQ2VyY29zcG9yYSINCikNCg0KYGBgDQpgYGB7cn0NCnByaW50KGNvbXBhcmFjaW9uX21lZGlhcykNCmBgYA0KDQoNCg==