1. load libraries

2. Perform DE analysis using Malignant_CD4Tcells_vs_Normal_CD4Tcells genes


Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("comparison_P1_vs_P3_with_mean_expression_filtered.csv", header = T)

3. Create the EnhancedVolcano plot


EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells,
                lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
                x = "avg_log2FC",
                y = "p_val_adj",
                title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
                pCutoff = 0.05,
                FCcutoff = 1.0)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells, 
                lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
                x = "avg_log2FC", 
                y = "p_val_adj",
                selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9', 
                              'CD80',  'IL1B', 'RPS4Y1', 
                              'IL7R', 'TCF7',  'MKI67', 'CD70', 
                              'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9', 
                              'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL', 
                              'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
                              'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4', 
                              'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
                title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
                xlab = bquote(~Log[2]~ 'fold change'),
                pCutoff = 0.05,
                FCcutoff = 1.5, 
                pointSize = 3.0,
                labSize = 5.0,
                boxedLabels = TRUE,
                colAlpha = 0.5,
                legendPosition = 'right',
                legendLabSize = 10,
                legendIconSize = 4.0,
                drawConnectors = TRUE,
                widthConnectors = 0.5,
                colConnectors = 'grey50',
                arrowheads = FALSE,
                max.overlaps = 30)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

library(dplyr)
library(EnhancedVolcano)

# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
  arrange(p_val_adj, desc(abs(avg_log2FC)))

# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_log2FC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 0.05,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Set to FALSE to remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]  # Only label significant genes
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_log2FC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
  subtitle = "Highlighting differentially expressed genes",
  pCutoff = 0.05,
  FCcutoff = 1.0,
  legendPosition = 'right',
  colAlpha = 0.8,  # Slight transparency for non-significant points
  col = c('grey70', 'black', 'blue', 'red'),  # Custom color scheme
  gridlines.major = TRUE,
  gridlines.minor = FALSE,
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]
) 
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

4. Enrichment Analysis-1


# Step-by-Step Guide for Gene Set Enrichment Analysis (GSEA) or Over-Representation Analysis (ORA)

# Load the necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)

# Get upregulated genes based on log2FC and p-value thresholds
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Get downregulated genes based on log2FC and p-value thresholds
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Gene Ontology (GO) Enrichment Analysis
# GO enrichment for upregulated genes
go_up <- enrichGO(gene = upregulated_genes$gene, 
                  OrgDb = org.Hs.eg.db, 
                  keyType = "SYMBOL", 
                  ont = "BP",   # Biological Process (BP), Molecular Function (MF), Cellular Component (CC)
                  pAdjustMethod = "BH", 
                  pvalueCutoff = 0.05)

# GO enrichment for downregulated genes
go_down <- enrichGO(gene = downregulated_genes$gene, 
                    OrgDb = org.Hs.eg.db, 
                    keyType = "SYMBOL", 
                    ont = "BP", 
                    pAdjustMethod = "BH", 
                    pvalueCutoff = 0.05)

# Visualize the top enriched GO terms
dotplot(go_up, showCategory = 10, title = "GO Enrichment for Upregulated Genes")

dotplot(go_down, showCategory = 10, title = "GO Enrichment for Downregulated Genes")


# KEGG Pathway Enrichment
# Convert gene symbols to Entrez IDs for KEGG analysis
upregulated_entrez <- bitr(upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:1 mapping between keys and columns
Warning: 2.54% of input gene IDs are fail to map...
downregulated_entrez <- bitr(downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:1 mapping between keys and columns
Warning: 3.43% of input gene IDs are fail to map...
# KEGG pathway enrichment for upregulated genes
kegg_up <- enrichKEGG(gene = upregulated_entrez, 
                      organism = "hsa", 
                      pvalueCutoff = 0.05)
Reading KEGG annotation online: "https://rest.kegg.jp/link/hsa/pathway"...
Reading KEGG annotation online: "https://rest.kegg.jp/list/pathway/hsa"...
# KEGG pathway enrichment for downregulated genes
kegg_down <- enrichKEGG(gene = downregulated_entrez, 
                        organism = "hsa", 
                        pvalueCutoff = 0.05)

# Visualize KEGG pathway results
dotplot(kegg_up, showCategory = 10, title = "KEGG Pathway Enrichment for Upregulated Genes")

dotplot(kegg_down, showCategory = 10, title = "KEGG Pathway Enrichment for Downregulated Genes")


# Reactome Pathway Enrichment
# Reactome pathway enrichment for upregulated genes
reactome_up <- enrichPathway(gene = upregulated_entrez, 
                             organism = "human", 
                             pvalueCutoff = 0.05)

# Reactome pathway enrichment for downregulated genes
reactome_down <- enrichPathway(gene = downregulated_entrez, 
                               organism = "human", 
                               pvalueCutoff = 0.05)

# Visualize Reactome pathways
dotplot(reactome_up, showCategory = 10, title = "Reactome Pathway Enrichment for Upregulated Genes")

dotplot(reactome_down, showCategory = 10, title = "Reactome Pathway Enrichment for Downregulated Genes")


# Gene Set Enrichment Analysis (GSEA)
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene  # Use the $gene column for gene symbols
gene_list <- sort(gene_list, decreasing = TRUE)

# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list), fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 2.68% of input gene IDs are fail to map...
# Ensure the gene list matches the Entrez IDs
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]

# Replace gene symbols with Entrez IDs
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]

# Run GSEA using KEGG pathways
gsea_kegg <- gseKEGG(geneList = gene_list, 
                     organism = "hsa", 
                     pvalueCutoff = 0.05)
using 'fgsea' for GSEA analysis, please cite Korotkevich et al (2019).

preparing geneSet collections...
GSEA analysis...
Warning: There are ties in the preranked stats (0.02% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.Warning: For some pathways, in reality P-values are less than 1e-10. You can set the `eps` argument to zero for better estimation.leading edge analysis...
done...
#Plot the GSEA results
gseaplot(gsea_kegg, geneSetID = 1, title = "Top KEGG Pathway")


# Extract the name of the top KEGG pathway
top_pathway <- gsea_kegg@result[1, "Description"]

# Plot GSEA with the top pathway's name as the title
gseaplot(gsea_kegg, geneSetID = 1, title = top_pathway)

NA
NA

4.2. Enrichment Analysis-2


# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)

# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H")  # "H" is for Hallmark gene sets

# Get upregulated and downregulated genes based on log2 fold change and adjusted p-value
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Convert gene symbols to uppercase for consistency
upregulated_genes$gene <- toupper(upregulated_genes$gene)
downregulated_genes$gene <- toupper(downregulated_genes$gene)

# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(downregulated_genes$gene, hallmark_sets$gene_symbol)

# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 146 
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 207 
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for upregulated genes using Hallmark gene sets
  hallmark_up <- enricher(gene = upregulated_in_hallmark, 
                          TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                          pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
    # Visualize results if available
    dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
  } else {
    cat("No significant enrichment found for upregulated genes.\n")
  }
} else {
  cat("No upregulated genes overlap with Hallmark gene sets.\n")
}


if (length(downregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for downregulated genes using Hallmark gene sets
  hallmark_down <- enricher(gene = downregulated_in_hallmark, 
                            TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                            pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
    # Visualize results if available
    dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
  } else {
    cat("No significant enrichment found for downregulated genes.\n")
  }
} else {
  cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
NA
NA
NA

4.3. Hallmark-GSEA

# Gene Set Enrichment Analysis (GSEA) for Hallmark Pathways
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene
gene_list <- sort(gene_list, decreasing = TRUE)

# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list), 
                fromType = "SYMBOL", 
                toType = "ENTREZID", 
                OrgDb = org.Hs.eg.db)
'select()' returned 1:1 mapping between keys and columns
Warning: 2.68% of input gene IDs are fail to map...
# Filter out genes without Entrez ID mappings
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]

# Replace gene symbols with Entrez IDs in the gene list
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]

# Run GSEA using Hallmark pathways
gsea_hallmark <- GSEA(geneList = gene_list, 
                      TERM2GENE = hallmark_sets[, c("gs_name", "entrez_gene")], 
                      pvalueCutoff = 0.05)
using 'fgsea' for GSEA analysis, please cite Korotkevich et al (2019).

preparing geneSet collections...
GSEA analysis...
Warning: There are ties in the preranked stats (0.02% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.leading edge analysis...
done...
# Check and visualize GSEA results
if (!is.null(gsea_hallmark) && nrow(gsea_hallmark) > 0) {
  # Visualize top GSEA results for Hallmark pathways
  dotplot(gsea_hallmark, showCategory = 20, title = "GSEA for Hallmark Pathways")
  
  # Plot enrichment score for the top pathway
  gseaplot(gsea_hallmark, geneSetID = 1, title = "Top Hallmark Pathway")
  
  # Extract the name of the top Hallmark pathway
  top_hallmark <- gsea_hallmark@result[1, "Description"]
  
  # Plot GSEA with the top pathway's name as the title
  gseaplot(gsea_hallmark, geneSetID = 1, title = top_hallmark)
} else {
  cat("No significant GSEA results for Hallmark pathways.\n")
}

NA
NA
NA

5. ggplot2 for Volcano

library(ggplot2)
library(ggrepel)

# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, ]

# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, "Upregulated genes",
                                                   ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, "Downregulated genes", "Nonsignificant"))

# Create a volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
  geom_point(aes(color = color), alpha = 0.7, size = 2) +
  
  # Add labels for top and bottom genes
  geom_text_repel(data = top_genes, aes(label = gene), color = "black", vjust = 1, fontface = "bold") +
  geom_text_repel(data = bottom_genes, aes(label = gene), color = "black", vjust = -1, fontface = "bold") +
  
  # Customize labels and title
  labs(title = "Volcano Plot",
       x = "log2 Fold Change",
       y = "-log10(p-value)") +
  
  # # Add significance threshold lines
   geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
   geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
  
  # Set colors for top and bottom genes
  scale_color_manual(values = c("Upregulated genes" = "red", "Downregulated genes" = "blue", "Nonsignificant" = "darkgrey")) +
  
  # Customize theme if needed
  theme_minimal()

NA
NA
NA
NA
NA

5. ggplot3 for Volcano

# Load necessary libraries
library(ggplot2)
library(ggrepel)

# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 4, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -4, ]

# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, 
                                                        "Upregulated genes",
                                                        ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, 
                                                               "Downregulated genes", 
                                                               "Nonsignificant"))

# Create the volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
  geom_point(aes(color = color), alpha = 0.7, size = 2) +
  
  # Add labels next to the dots without repel lines
  geom_text(data = top_genes, aes(label = gene), hjust = -0.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
  geom_text(data = bottom_genes, aes(label = gene), hjust = 1.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
  
  # Customize labels and title
  labs(title = "Volcano Plot",
       x = "log2 Fold Change",
       y = "-log10(p-value)") +
  
  # Add significance threshold lines
  geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
  geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
  
  # Set colors for top and bottom genes
  scale_color_manual(values = c("Upregulated genes" = "red", 
                                "Downregulated genes" = "blue", 
                                "Nonsignificant" = "darkgrey")) +
  
  # Customize theme
  theme_minimal()

NA
NA
LS0tCnRpdGxlOiAiR2VuZSBFbnJpY2htZW50IEFuYWx5c2lzIChQMV92c19QMylfb25fRmlsdGVyZWRfbWVhbkV4cCIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICAjcm1kZm9ybWF0czo6cmVhZHRoZWRvd24KICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKLS0tCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQpzdXBwcmVzc1BhY2thZ2VTdGFydHVwTWVzc2FnZXMoewpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShTZXVyYXRPYmplY3QpCmxpYnJhcnkoU2V1cmF0RGF0YSkKbGlicmFyeShwYXRjaHdvcmspCmxpYnJhcnkoaGFybW9ueSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGNvd3Bsb3QpCmxpYnJhcnkocmV0aWN1bGF0ZSkKbGlicmFyeShBemltdXRoKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFJ0c25lKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ3JpZEV4dHJhKQpsaWJyYXJ5KEVuaGFuY2VkVm9sY2FubykKICAKfSkKYGBgCgojIDIuIFBlcmZvcm0gREUgYW5hbHlzaXMgdXNpbmcgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIGdlbmVzCmBgYHtyIGRhdGExLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KCk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyA8LSByZWFkLmNzdigiY29tcGFyaXNvbl9QMV92c19QM193aXRoX21lYW5fZXhwcmVzc2lvbl9maWx0ZXJlZC5jc3YiLCBoZWFkZXIgPSBUKQpgYGAKCiMgMy4gQ3JlYXRlIHRoZSBFbmhhbmNlZFZvbGNhbm8gcGxvdApgYGB7ciBlbmhhbmNlZFYsIGZpZy5oZWlnaHQ9MTIsIGZpZy53aWR0aD0xNn0KCkVuaGFuY2VkVm9sY2FubyhNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsCiAgICAgICAgICAgICAgICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICAgICAgICAgICAgICAgIHggPSAiYXZnX2xvZzJGQyIsCiAgICAgICAgICAgICAgICB5ID0gInBfdmFsX2FkaiIsCiAgICAgICAgICAgICAgICB0aXRsZSA9ICJNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMiLAogICAgICAgICAgICAgICAgcEN1dG9mZiA9IDAuMDUsCiAgICAgICAgICAgICAgICBGQ2N1dG9mZiA9IDEuMCkKCgpFbmhhbmNlZFZvbGNhbm8oTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCAKICAgICAgICAgICAgICAgIGxhYiA9IE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lLAogICAgICAgICAgICAgICAgeCA9ICJhdmdfbG9nMkZDIiwgCiAgICAgICAgICAgICAgICB5ID0gInBfdmFsX2FkaiIsCiAgICAgICAgICAgICAgICBzZWxlY3RMYWIgPSBjKCdFUENBTScsICdCQ0FUMScsICdLSVIzREwyJywgJ0ZPWE0xJywgJ1RXSVNUMScsICdUTkZTRjknLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0NEODAnLCAgJ0lMMUInLCAnUlBTNFkxJywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDdSJywgJ1RDRjcnLCAgJ01LSTY3JywgJ0NENzAnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lMMlJBJywnVFJCVjYtMicsICdUUkJWMTAtMycsICdUUkJWNC0yJywgJ1RSQlY5JywgJ1RSQlY3LTknLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ1RSQVYxMi0xJywgJ0NEOEInLCAnRkNHUjNBJywgJ0dOTFknLCAnRk9YUDMnLCAnU0VMTCcsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnR0lNQVAxJywgJ1JJUE9SMicsICdMRUYxJywgJ0hPWEM5JywgJ1NQNScsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdDQ0wxNycsICdFVFY0JywgJ1RIWTEnLCAnRk9YQTInLCAnSVRHQUQnLCAnUzEwMFAnLCAnVEJYNCcsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUQxJywgJ1hDTDEnLCAnU09YMicsICdDRDI3JywgJ0NEMjgnLCdQTFMzJywnQ0Q3MCcsJ1JBQjI1JyAsICdUUkJWMjcnLCAnVFJCVjInKSwKICAgICAgICAgICAgICAgIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogICAgICAgICAgICAgICAgeGxhYiA9IGJxdW90ZSh+TG9nWzJdfiAnZm9sZCBjaGFuZ2UnKSwKICAgICAgICAgICAgICAgIHBDdXRvZmYgPSAwLjA1LAogICAgICAgICAgICAgICAgRkNjdXRvZmYgPSAxLjUsIAogICAgICAgICAgICAgICAgcG9pbnRTaXplID0gMy4wLAogICAgICAgICAgICAgICAgbGFiU2l6ZSA9IDUuMCwKICAgICAgICAgICAgICAgIGJveGVkTGFiZWxzID0gVFJVRSwKICAgICAgICAgICAgICAgIGNvbEFscGhhID0gMC41LAogICAgICAgICAgICAgICAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLAogICAgICAgICAgICAgICAgbGVnZW5kTGFiU2l6ZSA9IDEwLAogICAgICAgICAgICAgICAgbGVnZW5kSWNvblNpemUgPSA0LjAsCiAgICAgICAgICAgICAgICBkcmF3Q29ubmVjdG9ycyA9IFRSVUUsCiAgICAgICAgICAgICAgICB3aWR0aENvbm5lY3RvcnMgPSAwLjUsCiAgICAgICAgICAgICAgICBjb2xDb25uZWN0b3JzID0gJ2dyZXk1MCcsCiAgICAgICAgICAgICAgICBhcnJvd2hlYWRzID0gRkFMU0UsCiAgICAgICAgICAgICAgICBtYXgub3ZlcmxhcHMgPSAzMCkKCgpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KEVuaGFuY2VkVm9sY2FubykKCiMgQXNzdW1pbmcgeW91IGhhdmUgYSBkYXRhIGZyYW1lIG5hbWVkIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscwojIEZpbHRlciBnZW5lcyBiYXNlZCBvbiBsb3dlc3QgcC12YWx1ZXMgYnV0IGluY2x1ZGUgYWxsIGdlbmVzCmZpbHRlcmVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyAlPiUKICBhcnJhbmdlKHBfdmFsX2FkaiwgZGVzYyhhYnMoYXZnX2xvZzJGQykpKQoKIyBDcmVhdGUgdGhlIEVuaGFuY2VkVm9sY2FubyBwbG90IHdpdGggdGhlIGZpbHRlcmVkIGRhdGEKRW5oYW5jZWRWb2xjYW5vKAogIGZpbHRlcmVkX2dlbmVzLCAKICBsYWIgPSBpZmVsc2UoZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZzJGQykgPj0gMS4wLCBmaWx0ZXJlZF9nZW5lcyRnZW5lLCBOQSksCiAgeCA9ICJhdmdfbG9nMkZDIiwgCiAgeSA9ICJwX3ZhbF9hZGoiLAogIHRpdGxlID0gIk1hbGlnbmFudCBDRDQgVCBjZWxscyhjZWxsIGxpbmVzKSB2cyBub3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHBDdXRvZmYgPSAwLjA1LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywgCiAgbGFiQ29sID0gJ2JsYWNrJywKICBsYWJGYWNlID0gJ2JvbGQnLAogIGJveGVkTGFiZWxzID0gRkFMU0UsICAjIFNldCB0byBGQUxTRSB0byByZW1vdmUgYm94ZWQgbGFiZWxzCiAgcG9pbnRTaXplID0gMy4wLAogIGxhYlNpemUgPSA1LjAsCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbWl6ZSBwb2ludCBjb2xvcnMKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMF0gICMgT25seSBsYWJlbCBzaWduaWZpY2FudCBnZW5lcwopCgoKCkVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZzJGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMgKGNlbGwgbGluZXMpIHZzIE5vcm1hbCBDRDQgVCBjZWxscyIsCiAgc3VidGl0bGUgPSAiSGlnaGxpZ2h0aW5nIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCBnZW5lcyIsCiAgcEN1dG9mZiA9IDAuMDUsCiAgRkNjdXRvZmYgPSAxLjAsCiAgbGVnZW5kUG9zaXRpb24gPSAncmlnaHQnLAogIGNvbEFscGhhID0gMC44LCAgIyBTbGlnaHQgdHJhbnNwYXJlbmN5IGZvciBub24tc2lnbmlmaWNhbnQgcG9pbnRzCiAgY29sID0gYygnZ3JleTcwJywgJ2JsYWNrJywgJ2JsdWUnLCAncmVkJyksICAjIEN1c3RvbSBjb2xvciBzY2hlbWUKICBncmlkbGluZXMubWFqb3IgPSBUUlVFLAogIGdyaWRsaW5lcy5taW5vciA9IEZBTFNFLAogIHNlbGVjdExhYiA9IGZpbHRlcmVkX2dlbmVzJGdlbmVbZmlsdGVyZWRfZ2VuZXMkcF92YWxfYWRqIDw9IDAuMDUgJiBhYnMoZmlsdGVyZWRfZ2VuZXMkYXZnX2xvZzJGQykgPj0gMS4wXQopIAoKCmBgYAoKCiMgNC4gRW5yaWNobWVudCBBbmFseXNpcy0xCmBgYHtyICwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9OH0KCiMgU3RlcC1ieS1TdGVwIEd1aWRlIGZvciBHZW5lIFNldCBFbnJpY2htZW50IEFuYWx5c2lzIChHU0VBKSBvciBPdmVyLVJlcHJlc2VudGF0aW9uIEFuYWx5c2lzIChPUkEpCgojIExvYWQgdGhlIG5lY2Vzc2FyeSBsaWJyYXJpZXMKbGlicmFyeShjbHVzdGVyUHJvZmlsZXIpCmxpYnJhcnkob3JnLkhzLmVnLmRiKQpsaWJyYXJ5KGVucmljaHBsb3QpCmxpYnJhcnkoUmVhY3RvbWVQQSkKCiMgR2V0IHVwcmVndWxhdGVkIGdlbmVzIGJhc2VkIG9uIGxvZzJGQyBhbmQgcC12YWx1ZSB0aHJlc2hvbGRzCnVwcmVndWxhdGVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IDEgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSwgXQoKIyBHZXQgZG93bnJlZ3VsYXRlZCBnZW5lcyBiYXNlZCBvbiBsb2cyRkMgYW5kIHAtdmFsdWUgdGhyZXNob2xkcwpkb3ducmVndWxhdGVkX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA8IC0xICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUsIF0KCiMgR2VuZSBPbnRvbG9neSAoR08pIEVucmljaG1lbnQgQW5hbHlzaXMKIyBHTyBlbnJpY2htZW50IGZvciB1cHJlZ3VsYXRlZCBnZW5lcwpnb191cCA8LSBlbnJpY2hHTyhnZW5lID0gdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgCiAgICAgICAgICAgICAgICAgIE9yZ0RiID0gb3JnLkhzLmVnLmRiLCAKICAgICAgICAgICAgICAgICAga2V5VHlwZSA9ICJTWU1CT0wiLCAKICAgICAgICAgICAgICAgICAgb250ID0gIkJQIiwgICAjIEJpb2xvZ2ljYWwgUHJvY2VzcyAoQlApLCBNb2xlY3VsYXIgRnVuY3Rpb24gKE1GKSwgQ2VsbHVsYXIgQ29tcG9uZW50IChDQykKICAgICAgICAgICAgICAgICAgcEFkanVzdE1ldGhvZCA9ICJCSCIsIAogICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQoKIyBHTyBlbnJpY2htZW50IGZvciBkb3ducmVndWxhdGVkIGdlbmVzCmdvX2Rvd24gPC0gZW5yaWNoR08oZ2VuZSA9IGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgCiAgICAgICAgICAgICAgICAgICAgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIAogICAgICAgICAgICAgICAgICAgIGtleVR5cGUgPSAiU1lNQk9MIiwgCiAgICAgICAgICAgICAgICAgICAgb250ID0gIkJQIiwgCiAgICAgICAgICAgICAgICAgICAgcEFkanVzdE1ldGhvZCA9ICJCSCIsIAogICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSB0aGUgdG9wIGVucmljaGVkIEdPIHRlcm1zCmRvdHBsb3QoZ29fdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJHTyBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIpCmRvdHBsb3QoZ29fZG93biwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIkdPIEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQoKIyBLRUdHIFBhdGh3YXkgRW5yaWNobWVudAojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIEtFR0cgYW5hbHlzaXMKdXByZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIodXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpJEVOVFJFWklECmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIoZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikkRU5UUkVaSUQKCiMgS0VHRyBwYXRod2F5IGVucmljaG1lbnQgZm9yIHVwcmVndWxhdGVkIGdlbmVzCmtlZ2dfdXAgPC0gZW5yaWNoS0VHRyhnZW5lID0gdXByZWd1bGF0ZWRfZW50cmV6LCAKICAgICAgICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gImhzYSIsIAogICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgS0VHRyBwYXRod2F5IGVucmljaG1lbnQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMKa2VnZ19kb3duIDwtIGVucmljaEtFR0coZ2VuZSA9IGRvd25yZWd1bGF0ZWRfZW50cmV6LCAKICAgICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHNhIiwgCiAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSBLRUdHIHBhdGh3YXkgcmVzdWx0cwpkb3RwbG90KGtlZ2dfdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQpkb3RwbG90KGtlZ2dfZG93biwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIikKCiMgUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50CiMgUmVhY3RvbWUgcGF0aHdheSBlbnJpY2htZW50IGZvciB1cHJlZ3VsYXRlZCBnZW5lcwpyZWFjdG9tZV91cCA8LSBlbnJpY2hQYXRod2F5KGdlbmUgPSB1cHJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gImh1bWFuIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgUmVhY3RvbWUgcGF0aHdheSBlbnJpY2htZW50IGZvciBkb3ducmVndWxhdGVkIGdlbmVzCnJlYWN0b21lX2Rvd24gPC0gZW5yaWNoUGF0aHdheShnZW5lID0gZG93bnJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHVtYW4iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSBSZWFjdG9tZSBwYXRod2F5cwpkb3RwbG90KHJlYWN0b21lX3VwLCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIpCmRvdHBsb3QocmVhY3RvbWVfZG93biwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIlJlYWN0b21lIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCgojIEdlbmUgU2V0IEVucmljaG1lbnQgQW5hbHlzaXMgKEdTRUEpCiMgQ3JlYXRlIGEgcmFua2VkIGxpc3Qgb2YgZ2VuZXMgKGxvZzJGQyBhcyByYW5raW5nIG1ldHJpYykKZ2VuZV9saXN0IDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDCm5hbWVzKGdlbmVfbGlzdCkgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGdlbmUgICMgVXNlIHRoZSAkZ2VuZSBjb2x1bW4gZm9yIGdlbmUgc3ltYm9scwpnZW5lX2xpc3QgPC0gc29ydChnZW5lX2xpc3QsIGRlY3JlYXNpbmcgPSBUUlVFKQoKIyBDb252ZXJ0IGdlbmUgc3ltYm9scyB0byBFbnRyZXogSURzIGZvciBHU0VBCmdlbmVfZGYgPC0gYml0cihuYW1lcyhnZW5lX2xpc3QpLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikKCiMgRW5zdXJlIHRoZSBnZW5lIGxpc3QgbWF0Y2hlcyB0aGUgRW50cmV6IElEcwpnZW5lX2xpc3QgPC0gZ2VuZV9saXN0W25hbWVzKGdlbmVfbGlzdCkgJWluJSBnZW5lX2RmJFNZTUJPTF0KCiMgUmVwbGFjZSBnZW5lIHN5bWJvbHMgd2l0aCBFbnRyZXogSURzCm5hbWVzKGdlbmVfbGlzdCkgPC0gZ2VuZV9kZiRFTlRSRVpJRFttYXRjaChuYW1lcyhnZW5lX2xpc3QpLCBnZW5lX2RmJFNZTUJPTCldCgojIFJ1biBHU0VBIHVzaW5nIEtFR0cgcGF0aHdheXMKZ3NlYV9rZWdnIDwtIGdzZUtFR0coZ2VuZUxpc3QgPSBnZW5lX2xpc3QsIAogICAgICAgICAgICAgICAgICAgICBvcmdhbmlzbSA9ICJoc2EiLCAKICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiNQbG90IHRoZSBHU0VBIHJlc3VsdHMKZ3NlYXBsb3QoZ3NlYV9rZWdnLCBnZW5lU2V0SUQgPSAxLCB0aXRsZSA9ICJUb3AgS0VHRyBQYXRod2F5IikKCiMgRXh0cmFjdCB0aGUgbmFtZSBvZiB0aGUgdG9wIEtFR0cgcGF0aHdheQp0b3BfcGF0aHdheSA8LSBnc2VhX2tlZ2dAcmVzdWx0WzEsICJEZXNjcmlwdGlvbiJdCgojIFBsb3QgR1NFQSB3aXRoIHRoZSB0b3AgcGF0aHdheSdzIG5hbWUgYXMgdGhlIHRpdGxlCmdzZWFwbG90KGdzZWFfa2VnZywgZ2VuZVNldElEID0gMSwgdGl0bGUgPSB0b3BfcGF0aHdheSkKCgpgYGAKCgoKCiMgNC4yLiBFbnJpY2htZW50IEFuYWx5c2lzLTIKYGBge3IgLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShtc2lnZGJyKQpsaWJyYXJ5KGVucmljaHBsb3QpCgojIExvYWQgSGFsbG1hcmsgZ2VuZSBzZXRzIGZyb20gbXNpZ2RicgpoYWxsbWFya19zZXRzIDwtIG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJIIikgICMgIkgiIGlzIGZvciBIYWxsbWFyayBnZW5lIHNldHMKCiMgR2V0IHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzIGJhc2VkIG9uIGxvZzIgZm9sZCBjaGFuZ2UgYW5kIGFkanVzdGVkIHAtdmFsdWUKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjA1LCBdCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDIDwgLTEgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSwgXQoKIyBDb252ZXJ0IGdlbmUgc3ltYm9scyB0byB1cHBlcmNhc2UgZm9yIGNvbnNpc3RlbmN5CnVwcmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcih1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lKQpkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcihkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUpCgojIENoZWNrIGZvciBvdmVybGFwIGJldHdlZW4geW91ciB1cHJlZ3VsYXRlZC9kb3ducmVndWxhdGVkIGdlbmVzIGFuZCBIYWxsbWFyayBnZW5lIHNldHMKdXByZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KHVwcmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCmRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgaGFsbG1hcmtfc2V0cyRnZW5lX3N5bWJvbCkKCiMgUHJpbnQgdGhlIG51bWJlciBvZiBvdmVybGFwcGluZyBnZW5lcyBmb3IgYm90aCB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwpjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKHVwcmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQoKIyBJZiB0aGVyZSBhcmUgZ2VuZXMgdG8gYW5hbHl6ZSwgcHJvY2VlZCB3aXRoIGVucmljaG1lbnQgYW5hbHlzaXMKaWYgKGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIHVwcmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX3VwIDwtIGVucmljaGVyKGdlbmUgPSB1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya191cCkgJiYgbnJvdyhoYWxsbWFya191cCkgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgZG90cGxvdChoYWxsbWFya191cCwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIHVwcmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyB1cHJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKaWYgKGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya19kb3duIDwtIGVucmljaGVyKGdlbmUgPSBkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya19kb3duKSAmJiBucm93KGhhbGxtYXJrX2Rvd24pID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIGRvdHBsb3QoaGFsbG1hcmtfZG93biwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gZG93bnJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKCgoKCmBgYAojIDQuMy4gSGFsbG1hcmstR1NFQQpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIEdlbmUgU2V0IEVucmljaG1lbnQgQW5hbHlzaXMgKEdTRUEpIGZvciBIYWxsbWFyayBQYXRod2F5cwojIENyZWF0ZSBhIHJhbmtlZCBsaXN0IG9mIGdlbmVzIChsb2cyRkMgYXMgcmFua2luZyBtZXRyaWMpCmdlbmVfbGlzdCA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQwpuYW1lcyhnZW5lX2xpc3QpIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lCmdlbmVfbGlzdCA8LSBzb3J0KGdlbmVfbGlzdCwgZGVjcmVhc2luZyA9IFRSVUUpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIEdTRUEKZ2VuZV9kZiA8LSBiaXRyKG5hbWVzKGdlbmVfbGlzdCksIAogICAgICAgICAgICAgICAgZnJvbVR5cGUgPSAiU1lNQk9MIiwgCiAgICAgICAgICAgICAgICB0b1R5cGUgPSAiRU5UUkVaSUQiLCAKICAgICAgICAgICAgICAgIE9yZ0RiID0gb3JnLkhzLmVnLmRiKQoKIyBGaWx0ZXIgb3V0IGdlbmVzIHdpdGhvdXQgRW50cmV6IElEIG1hcHBpbmdzCmdlbmVfbGlzdCA8LSBnZW5lX2xpc3RbbmFtZXMoZ2VuZV9saXN0KSAlaW4lIGdlbmVfZGYkU1lNQk9MXQoKIyBSZXBsYWNlIGdlbmUgc3ltYm9scyB3aXRoIEVudHJleiBJRHMgaW4gdGhlIGdlbmUgbGlzdApuYW1lcyhnZW5lX2xpc3QpIDwtIGdlbmVfZGYkRU5UUkVaSURbbWF0Y2gobmFtZXMoZ2VuZV9saXN0KSwgZ2VuZV9kZiRTWU1CT0wpXQoKIyBSdW4gR1NFQSB1c2luZyBIYWxsbWFyayBwYXRod2F5cwpnc2VhX2hhbGxtYXJrIDwtIEdTRUEoZ2VuZUxpc3QgPSBnZW5lX2xpc3QsIAogICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZW50cmV6X2dlbmUiKV0sIAogICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgQ2hlY2sgYW5kIHZpc3VhbGl6ZSBHU0VBIHJlc3VsdHMKaWYgKCFpcy5udWxsKGdzZWFfaGFsbG1hcmspICYmIG5yb3coZ3NlYV9oYWxsbWFyaykgPiAwKSB7CiAgIyBWaXN1YWxpemUgdG9wIEdTRUEgcmVzdWx0cyBmb3IgSGFsbG1hcmsgcGF0aHdheXMKICBkb3RwbG90KGdzZWFfaGFsbG1hcmssIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJHU0VBIGZvciBIYWxsbWFyayBQYXRod2F5cyIpCiAgCiAgIyBQbG90IGVucmljaG1lbnQgc2NvcmUgZm9yIHRoZSB0b3AgcGF0aHdheQogIGdzZWFwbG90KGdzZWFfaGFsbG1hcmssIGdlbmVTZXRJRCA9IDEsIHRpdGxlID0gIlRvcCBIYWxsbWFyayBQYXRod2F5IikKICAKICAjIEV4dHJhY3QgdGhlIG5hbWUgb2YgdGhlIHRvcCBIYWxsbWFyayBwYXRod2F5CiAgdG9wX2hhbGxtYXJrIDwtIGdzZWFfaGFsbG1hcmtAcmVzdWx0WzEsICJEZXNjcmlwdGlvbiJdCiAgCiAgIyBQbG90IEdTRUEgd2l0aCB0aGUgdG9wIHBhdGh3YXkncyBuYW1lIGFzIHRoZSB0aXRsZQogIGdzZWFwbG90KGdzZWFfaGFsbG1hcmssIGdlbmVTZXRJRCA9IDEsIHRpdGxlID0gdG9wX2hhbGxtYXJrKQp9IGVsc2UgewogIGNhdCgiTm8gc2lnbmlmaWNhbnQgR1NFQSByZXN1bHRzIGZvciBIYWxsbWFyayBwYXRod2F5cy5cbiIpCn0KCgoKYGBgCgoKCiMgNS4gZ2dwbG90MiBmb3IgVm9sY2FubwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZ2dyZXBlbCkKCiMgSWRlbnRpZnkgdG9wIGFuZCBib3R0b20gZ2VuZXMKdG9wX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMC41LCBdCmJvdHRvbV9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA8IC0wLjUsIF0KCiMgQ3JlYXRlIGEgbmV3IGNvbHVtbiBmb3IgY29sb3IgYmFzZWQgb24gc2lnbmlmaWNhbmNlCk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRjb2xvciA8LSBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPiAwLjUsICJVcHJlZ3VsYXRlZCBnZW5lcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZShNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA8IC0wLjUsICJEb3ducmVndWxhdGVkIGdlbmVzIiwgIk5vbnNpZ25pZmljYW50IikpCgojIENyZWF0ZSBhIHZvbGNhbm8gcGxvdApnZ3Bsb3QoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCBhZXMoeCA9IGF2Z19sb2cyRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSkpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGNvbG9yKSwgYWxwaGEgPSAwLjcsIHNpemUgPSAyKSArCiAgCiAgIyBBZGQgbGFiZWxzIGZvciB0b3AgYW5kIGJvdHRvbSBnZW5lcwogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gdG9wX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgY29sb3IgPSAiYmxhY2siLCB2anVzdCA9IDEsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgZ2VvbV90ZXh0X3JlcGVsKGRhdGEgPSBib3R0b21fZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCBjb2xvciA9ICJibGFjayIsIHZqdXN0ID0gLTEsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgCiAgIyBDdXN0b21pemUgbGFiZWxzIGFuZCB0aXRsZQogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90IiwKICAgICAgIHggPSAibG9nMiBGb2xkIENoYW5nZSIsCiAgICAgICB5ID0gIi1sb2cxMChwLXZhbHVlKSIpICsKICAKICAjICMgQWRkIHNpZ25pZmljYW5jZSB0aHJlc2hvbGQgbGluZXMKICAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDAwMDEpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygtMC41LCAwLjUpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICAKICAjIFNldCBjb2xvcnMgZm9yIHRvcCBhbmQgYm90dG9tIGdlbmVzCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoIlVwcmVndWxhdGVkIGdlbmVzIiA9ICJyZWQiLCAiRG93bnJlZ3VsYXRlZCBnZW5lcyIgPSAiYmx1ZSIsICJOb25zaWduaWZpY2FudCIgPSAiZGFya2dyZXkiKSkgKwogIAogICMgQ3VzdG9taXplIHRoZW1lIGlmIG5lZWRlZAogIHRoZW1lX21pbmltYWwoKQoKCgoKCmBgYAoKCiMgNS4gZ2dwbG90MyBmb3IgVm9sY2FubwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZ2dyZXBlbCkKCiMgSWRlbnRpZnkgdG9wIGFuZCBib3R0b20gZ2VuZXMKdG9wX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wMDAwMSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gNCwgXQpib3R0b21fZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjAwMDAxICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtNCwgXQoKIyBDcmVhdGUgYSBuZXcgY29sdW1uIGZvciBjb2xvciBiYXNlZCBvbiBzaWduaWZpY2FuY2UKTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGNvbG9yIDwtIGlmZWxzZShNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IDAuNSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlVwcmVndWxhdGVkIGdlbmVzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkRvd25yZWd1bGF0ZWQgZ2VuZXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vbnNpZ25pZmljYW50IikpCgojIENyZWF0ZSB0aGUgdm9sY2FubyBwbG90CmdncGxvdChNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsIGFlcyh4ID0gYXZnX2xvZzJGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopKSkgKwogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gY29sb3IpLCBhbHBoYSA9IDAuNywgc2l6ZSA9IDIpICsKICAKICAjIEFkZCBsYWJlbHMgbmV4dCB0byB0aGUgZG90cyB3aXRob3V0IHJlcGVsIGxpbmVzCiAgZ2VvbV90ZXh0KGRhdGEgPSB0b3BfZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCBoanVzdCA9IC0wLjIsIHZqdXN0ID0gMCwgc2l6ZSA9IDMsIGNvbG9yID0gImJsYWNrIiwgZm9udGZhY2UgPSAiYm9sZCIpICsKICBnZW9tX3RleHQoZGF0YSA9IGJvdHRvbV9nZW5lcywgYWVzKGxhYmVsID0gZ2VuZSksIGhqdXN0ID0gMS4yLCB2anVzdCA9IDAsIHNpemUgPSAzLCBjb2xvciA9ICJibGFjayIsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgCiAgIyBDdXN0b21pemUgbGFiZWxzIGFuZCB0aXRsZQogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90IiwKICAgICAgIHggPSAibG9nMiBGb2xkIENoYW5nZSIsCiAgICAgICB5ID0gIi1sb2cxMChwLXZhbHVlKSIpICsKICAKICAjIEFkZCBzaWduaWZpY2FuY2UgdGhyZXNob2xkIGxpbmVzCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDAwMDEpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKC0wLjUsIDAuNSksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKwogIAogICMgU2V0IGNvbG9ycyBmb3IgdG9wIGFuZCBib3R0b20gZ2VuZXMKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygiVXByZWd1bGF0ZWQgZ2VuZXMiID0gInJlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJEb3ducmVndWxhdGVkIGdlbmVzIiA9ICJibHVlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vbnNpZ25pZmljYW50IiA9ICJkYXJrZ3JleSIpKSArCiAgCiAgIyBDdXN0b21pemUgdGhlbWUKICB0aGVtZV9taW5pbWFsKCkKCgpgYGAKCg==