a <- 10
b <- 5
c <- a+b
c
## [1] 15
vektor <- c(1,2,3,4,5)
vektor
## [1] 1 2 3 4 5
nama <- c("Dea", "Zidan", "Negara", "Farid", "Dea","Farid","Zidan")
nama
## [1] "Dea" "Zidan" "Negara" "Farid" "Dea" "Farid" "Zidan"
nama_factor <- factor(nama)
str(nama_factor)
## Factor w/ 4 levels "Dea","Farid",..: 1 4 3 2 1 2 4
levels(nama_factor)
## [1] "Dea" "Farid" "Negara" "Zidan"
table(nama_factor)
## nama_factor
## Dea Farid Negara Zidan
## 2 2 1 2
data_list <- list(
angka = c(10, 20, 30, 40),
teks = c("A", "B", "C"),
kategori = factor(c("Keren", "Bagus", "Cemas"))
)
print(data_list)
## $angka
## [1] 10 20 30 40
##
## $teks
## [1] "A" "B" "C"
##
## $kategori
## [1] Keren Bagus Cemas
## Levels: Bagus Cemas Keren
data_list$angka
## [1] 10 20 30 40
data_list[[2]]
## [1] "A" "B" "C"
data_cewe <- data.frame(
Nama = c("Muti","Dea","Frida","Myiesha"),
Usia = c(19,21,20,17),
jabatan = factor(c("SSD","Baginda Ratu","MCC","MAN"))
)
print(data_cewe)
## Nama Usia jabatan
## 1 Muti 19 SSD
## 2 Dea 21 Baginda Ratu
## 3 Frida 20 MCC
## 4 Myiesha 17 MAN
summary(data_cewe)
## Nama Usia jabatan
## Length:4 Min. :17.00 Baginda Ratu:1
## Class :character 1st Qu.:18.50 MAN :1
## Mode :character Median :19.50 MCC :1
## Mean :19.25 SSD :1
## 3rd Qu.:20.25
## Max. :21.00
array_data <- array(1:24, dim = c(3, 4, 2))
print(array_data)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 1 4 7 10
## [2,] 2 5 8 11
## [3,] 3 6 9 12
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 13 16 19 22
## [2,] 14 17 20 23
## [3,] 15 18 21 24
dim(array_data)
## [1] 3 4 2
nilai <- c(90, 85, NA, 75, 80, NA, 95) # Membuat vektor dengan beberapa nilai NA
# Mengecek nilai yang hilang
is.na(nilai) # Mengecek apakah ada nilai NA dalam vektor
## [1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE
sum(is.na(nilai))
## [1] 2
x1 <- seq(0,10, length=5)
x1
## [1] 0.0 2.5 5.0 7.5 10.0
x2 <- seq(0,10,length=6)
x2
## [1] 0 2 4 6 8 10
x3 <- seq(0,10,length=7)
x3
## [1] 0.000000 1.666667 3.333333 5.000000 6.666667 8.333333 10.000000
round(x3)
## [1] 0 2 3 5 7 8 10
floor(x3)
## [1] 0 1 3 5 6 8 10
ceiling(x3)
## [1] 0 2 4 5 7 9 10
rep(c("A","B","C"),5)
## [1] "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C"
rep(c("A","B","C"),each=5)
## [1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "C" "C" "C" "C" "C"
rep(c("A", "B", "C"), each=2, 5)
## [1] "A" "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C" "A"
## [20] "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C"
rep(1:5,5)
## [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
rep(1:5,each=5)
## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
rep(1:5, each=2,5)
## [1] 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4
## [39] 5 5 1 1 2 2 3 3 4 4 5 5
x <- c(3, 4, 5, 6)
y <- c(2, 3, 4, 5, 6, 6)
min(x)
## [1] 3
max(x)
## [1] 6
mean(y)
## [1] 4.333333
var(y)
## [1] 2.666667
cor(x, y[1:length(x)])
## [1] 1
range(x)
## [1] 3 6
range(y)
## [1] 2 6
set.seed(123)
sample(0:1 , 30, replace=TRUE)
## [1] 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1
sample(c("A","G"),15, replace = TRUE)
## [1] "A" "G" "A" "G" "G" "A" "A" "A" "A" "G" "A" "G" "G" "A" "A"
sample(1:6, 30, replace = TRUE)
## [1] 1 1 2 3 4 5 5 3 6 1 2 5 5 4 5 2 1 1 3 1 6 5 1 2 4 4 6 6 3 6
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(data.table)
## Warning: package 'data.table' was built under R version 4.3.3
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
## between, first, last
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.3
data <- tbl_df(iris)
## Warning: `tbl_df()` was deprecated in dplyr 1.0.0.
## ℹ Please use `tibble::as_tibble()` instead.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
class(data)
## [1] "tbl_df" "tbl" "data.frame"
data
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # ℹ 140 more rows
data_slice <- slice(data, 1:10)
data_slice
## # A tibble: 10 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
arrange(data_slice, data_slice$Sepal.Length)
## # A tibble: 10 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 4.4 2.9 1.4 0.2 setosa
## 2 4.6 3.1 1.5 0.2 setosa
## 3 4.6 3.4 1.4 0.3 setosa
## 4 4.7 3.2 1.3 0.2 setosa
## 5 4.9 3 1.4 0.2 setosa
## 6 4.9 3.1 1.5 0.1 setosa
## 7 5 3.6 1.4 0.2 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 5.1 3.5 1.4 0.2 setosa
## 10 5.4 3.9 1.7 0.4 setosa
datatable <- data.table(iris)
datatable
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <num> <num> <num> <num> <fctr>
## 1: 5.1 3.5 1.4 0.2 setosa
## 2: 4.9 3.0 1.4 0.2 setosa
## 3: 4.7 3.2 1.3 0.2 setosa
## 4: 4.6 3.1 1.5 0.2 setosa
## 5: 5.0 3.6 1.4 0.2 setosa
## ---
## 146: 6.7 3.0 5.2 2.3 virginica
## 147: 6.3 2.5 5.0 1.9 virginica
## 148: 6.5 3.0 5.2 2.0 virginica
## 149: 6.2 3.4 5.4 2.3 virginica
## 150: 5.9 3.0 5.1 1.8 virginica
datatable$new_col <- datatable$Species
datatable$new_col
## [1] setosa setosa setosa setosa setosa setosa
## [7] setosa setosa setosa setosa setosa setosa
## [13] setosa setosa setosa setosa setosa setosa
## [19] setosa setosa setosa setosa setosa setosa
## [25] setosa setosa setosa setosa setosa setosa
## [31] setosa setosa setosa setosa setosa setosa
## [37] setosa setosa setosa setosa setosa setosa
## [43] setosa setosa setosa setosa setosa setosa
## [49] setosa setosa versicolor versicolor versicolor versicolor
## [55] versicolor versicolor versicolor versicolor versicolor versicolor
## [61] versicolor versicolor versicolor versicolor versicolor versicolor
## [67] versicolor versicolor versicolor versicolor versicolor versicolor
## [73] versicolor versicolor versicolor versicolor versicolor versicolor
## [79] versicolor versicolor versicolor versicolor versicolor versicolor
## [85] versicolor versicolor versicolor versicolor versicolor versicolor
## [91] versicolor versicolor versicolor versicolor versicolor versicolor
## [97] versicolor versicolor versicolor versicolor virginica virginica
## [103] virginica virginica virginica virginica virginica virginica
## [109] virginica virginica virginica virginica virginica virginica
## [115] virginica virginica virginica virginica virginica virginica
## [121] virginica virginica virginica virginica virginica virginica
## [127] virginica virginica virginica virginica virginica virginica
## [133] virginica virginica virginica virginica virginica virginica
## [139] virginica virginica virginica virginica virginica virginica
## [145] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica
setkey(datatable, Species)
key(datatable)
## [1] "Species"
datatable[,.(mean=mean(Sepal.Length), IQR=IQR(Sepal.Length), median=median(Sepal.Length)), by=Species]
## Key: <Species>
## Species mean IQR median
## <fctr> <num> <num> <num>
## 1: setosa 5.006 0.400 5.0
## 2: versicolor 5.936 0.700 5.9
## 3: virginica 6.588 0.675 6.5
plot_data <- ggplot(data,aes(x=Sepal.Length, y=Sepal.Width)) + geom_point(aes(colour=Species))
plot_data
nama_vector <- c(5, FALSE, "true", "8.3", "Statistika")
nama_vector
## [1] "5" "FALSE" "true" "8.3" "Statistika"
contoh_list <- list(5, FALSE, "true", "8.3", "Statistika")
contoh_list
## [[1]]
## [1] 5
##
## [[2]]
## [1] FALSE
##
## [[3]]
## [1] "true"
##
## [[4]]
## [1] "8.3"
##
## [[5]]
## [1] "Statistika"
kelompok_kkn <- data.frame(
nama = c("Alga", "Farid", "Dea", "Chandy", "Negara", "Desma", "Ibnu", "Raihan", "Frida", "Muti"),
nim = c("210001", "210002", "210003", "210004", "210005", "210006", "210007", "210008", "210009", "210010"),
prodi = c("Matematika", "Sains Data", "Informatika", "Sistem Informasi", "Komputasi Statistik", "Teknik Sipil", "Aktuaria", "Statistika", "Psikologi", "Manajemen")
)
kelompok_kkn
## nama nim prodi
## 1 Alga 210001 Matematika
## 2 Farid 210002 Sains Data
## 3 Dea 210003 Informatika
## 4 Chandy 210004 Sistem Informasi
## 5 Negara 210005 Komputasi Statistik
## 6 Desma 210006 Teknik Sipil
## 7 Ibnu 210007 Aktuaria
## 8 Raihan 210008 Statistika
## 9 Frida 210009 Psikologi
## 10 Muti 210010 Manajemen
# Pemanggilan Baris
kelompok_kkn[1, ] # Memanggil baris pertama
## nama nim prodi
## 1 Alga 210001 Matematika
# Pemanggilan Kolom
kelompok_kkn$nama # Memanggil kolom 'nama'
## [1] "Alga" "Farid" "Dea" "Chandy" "Negara" "Desma" "Ibnu" "Raihan"
## [9] "Frida" "Muti"
kelompok_kkn[, "nim"] # Memanggil kolom 'nim' dengan nama kolom
## [1] "210001" "210002" "210003" "210004" "210005" "210006" "210007" "210008"
## [9] "210009" "210010"
# Pemanggilan Elemen
kelompok_kkn[1, 1] # Memanggil elemen baris ke-1, kolom ke-1
## [1] "Alga"
na_kkn <- data.frame(
nama = c("Alga", "Farid", "Dea", NA, "Negara", NA, "Ibnu", "Raihan", "Frida", "Muti"),
nim = c("210001", "210002", "210003", "210004", "210005", "210006", NA, "210008", "210009", NA),
prodi = c("Matematika", NA, "Informatika", "Sistem Informasi", "Komputasi Statistik", "Teknik Sipil", "Aktuaria", "Statistika", NA, "Manajemen")
)
na_kkn
## nama nim prodi
## 1 Alga 210001 Matematika
## 2 Farid 210002 <NA>
## 3 Dea 210003 Informatika
## 4 <NA> 210004 Sistem Informasi
## 5 Negara 210005 Komputasi Statistik
## 6 <NA> 210006 Teknik Sipil
## 7 Ibnu <NA> Aktuaria
## 8 Raihan 210008 Statistika
## 9 Frida 210009 <NA>
## 10 Muti <NA> Manajemen
is.na(na_kkn)
## nama nim prodi
## [1,] FALSE FALSE FALSE
## [2,] FALSE FALSE TRUE
## [3,] FALSE FALSE FALSE
## [4,] TRUE FALSE FALSE
## [5,] FALSE FALSE FALSE
## [6,] TRUE FALSE FALSE
## [7,] FALSE TRUE FALSE
## [8,] FALSE FALSE FALSE
## [9,] FALSE FALSE TRUE
## [10,] FALSE TRUE FALSE
which(is.na(na_kkn), arr.ind = TRUE) #Menunjukkan total nilai NA
## row col
## [1,] 4 1
## [2,] 6 1
## [3,] 7 2
## [4,] 10 2
## [5,] 2 3
## [6,] 9 3
#Menghitung Nilai NA
sum(is.na(na_kkn))
## [1] 6