Teoría

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre intragrupos, y validar modelos teóricos y empíricos.

1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grand-White).

La base de datos está incluida como paquete en R, e incluye las siguientes columnas: * sex: Género (1=male, 2=female) * x1: Percepción visual * x2: Juego con cubos * x3: Juego con pastillas (espacial) * x4: Comprensión de párrafos * x5: Completar oraciones * x6: Significado de palabras * x7: Sumas aceleradas * x8: Conteo acelerado de puntos * x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

Instalar paquetes y llamar librerías

#install.packages("lavaan") # Lavent Variable Analysis
library(lavaan)
#install.packages("lavaanPlot")
library(lavaanPlot)

Importar la base de datos

df1 <- HolzingerSwineford1939

Entender la base de datos

summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
head(df1)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5        x6
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333 5.75 1.2857143
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00 1.2857143
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75 0.4285714
## 4  4   1    13     2 Pasteur     7 5.333333 7.75 3.000 2.666667 4.50 2.4285714
## 5  5   2    12     2 Pasteur     7 4.833333 4.75 0.875 2.666667 4.00 2.5714286
## 6  6   2    14     1 Pasteur     7 5.333333 5.00 2.250 1.000000 3.00 0.8571429
##         x7   x8       x9
## 1 3.391304 5.75 6.361111
## 2 3.782609 6.25 7.916667
## 3 3.260870 3.90 4.416667
## 4 3.000000 5.30 4.861111
## 5 3.695652 6.30 5.916667
## 6 4.347826 6.65 7.500000

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Varianzas y Covarianzas (~~) Relaciones entre variables latentes y observada (Varianza: Entre sí misma, Covarianza: Entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Estructurar el Modelo

modelo1 <- ' # Regresiones
            # Variables Latentes
            visual =~ x1 + x2 + x3
            textual =~ x4 + x5 + x6
            velocidad =~ x7 + x8 + x9
            # Varianzas y Covarianzas
            visual ~~ visual
            textual ~~ textual
            velocidad ~~ velocidad
            visual ~~ textual + velocidad
            textual ~~ velocidad
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa1<-sem(modelo1,data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa1, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               918.852
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.931
##   Tucker-Lewis Index (TLI)                       0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3737.745
##   Loglikelihood unrestricted model (H1)      -3695.092
##                                                       
##   Akaike (AIC)                                7517.490
##   Bayesian (BIC)                              7595.339
##   Sample-size adjusted Bayesian (SABIC)       7528.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.092
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.840
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.90 y 0.95, Deficiente < 0.90

Conclusión: Aceptable

Ejercicio 1. Democracia Política e Industrialización

Contexto

La base de datos contiene distintas mediciones sobre la democracia política e industrialización en países en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposición política en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre libertad de prensa en 1965
  • y6: Libertad de la oposición política en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la fuerza laboral en la industria en 1960

Importar la base de datos

df2 <- PoliticalDemocracy

Librerías y paquetes

#install.packages("readxl")
library(readxl)

Entender la base de datos

summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...
head(df2)
##      y1       y2       y3       y4       y5       y6       y7       y8       x1
## 1  2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2  1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3  7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4  8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6  7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
##         x2       x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270

Estructurar el Modelo

modelo2 <- ' # Regresiones
            # Variables Latentes
            industrial =~ x1 + x2 + x3
            democracia_60 =~ y1 + y2 + y3 + y4
            democracia_65 =~ y5 + y6 + y7 + y8
            # Varianzas y Covarianzas
            democracia_60 ~~ democracia_60
            democracia_65 ~~ democracia_65
            industrial ~~ industrial
            industrial ~~ democracia_60 + democracia_65
            democracia_60 ~~ democracia_65
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa2<-sem(modelo2,data=df2)
summary(cfa2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   industrial =~                                       
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
##   democracia_60 =~                                    
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   democracia_65 =~                                    
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   industrial ~~                                       
##     democracia_60     0.660    0.206    3.202    0.001
##     democracia_65     0.774    0.208    3.715    0.000
##   democracia_60 ~~                                    
##     democracia_65     4.487    0.911    4.924    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     democracia_60     4.845    1.088    4.453    0.000
##     democracia_65     4.345    1.051    4.134    0.000
##     industrial        0.448    0.087    5.169    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
lavaanPlot(cfa2, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa2, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.953
##   Tucker-Lewis Index (TLI)                       0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3179.918
##   Bayesian (BIC)                              3237.855
##   Sample-size adjusted Bayesian (SABIC)       3159.062
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.101
##   90 Percent confidence interval - lower         0.061
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: RMSEA <= 0.050                    0.021
##   P-value H_0: RMSEA >= 0.080                    0.827
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   industrial =~                                       
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
##   democracia_60 =~                                    
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   democracia_65 =~                                    
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   industrial ~~                                       
##     democracia_60     0.660    0.206    3.202    0.001
##     democracia_65     0.774    0.208    3.715    0.000
##   democracia_60 ~~                                    
##     democracia_65     4.487    0.911    4.924    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     democracia_60     4.845    1.088    4.453    0.000
##     democracia_65     4.345    1.051    4.134    0.000
##     industrial        0.448    0.087    5.169    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.90 y 0.95, Deficiente < 0.90
# EXCELENTE

Actividad 3. Bienestar de los Trabajadores

#install.packages("readxl")
library(readxl)

Importar la base de datos

df3 <- read_excel("C:\\Users\\gamas\\Downloads\\Datos_SEM_Eng.xlsx")

Parte 1. Experiencias de recuperación

modelo31 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + control
            # Varianzas y Covarianza
            desapego ~~ desapego
            dominio ~~ dominio
            control ~~ control
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa31<-sem(modelo31,data=df3)
summary(cfa31)
## lavaan 0.6-19 ended normally after 49 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.786    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dominio ~~                                          
##     recuperacion      0.839    0.149    5.638    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##     dominio           1.980    0.317    6.246    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(cfa31, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa31, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 49 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.786    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dominio ~~                                          
##     recuperacion      0.839    0.149    5.638    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##     dominio           1.980    0.317    6.246    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##     recuperacion      0.978    0.202    4.833    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.85 y 0.95, Deficiente < 0.90
# ACEPTABLE

Parte 2. Energía recuperada

modelo32 <- ' # Regresiones
            # Variables Latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            # Varianzas y Covarianza
            energia ~~ energia
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa32<-sem(modelo32,data=df3)
summary(cfa32)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
lavaanPlot(cfa32, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa32, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.85 y 0.95, Deficiente < 0.90
# EXCELENTE

Parte 3. Engagement laboral

modelo33 <- ' # Regresiones
            # Variables Latentes
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02 + EAB03
            # Varianzas y Covarianza
            vigor ~~ vigor
            dedicacion ~~ dedicacion
            absorcion ~~ absorcion
            vigor ~~ dedicacion + absorcion
            dedicacion ~~ absorcion
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa33<-sem(modelo33,data=df3)
summary(cfa33)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa33, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa33, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.85 y 0.95, Deficiente < 0.90
# ACEPTABLE

Parte 4. Engagement laboral

modelo34 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + control
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02 + EAB03
            # Varianzas y Covarianza
            desapego ~~ desapego
            relajacion ~~ relajacion
            dominio ~~ dominio
            control ~~ control
            energia ~~ energia
            vigor ~~ vigor
            dedicacion ~~ dedicacion
            absorcion ~~ absorcion
            vigor ~~ dedicacion + absorcion
            dedicacion ~~ absorcion
            # Intercepto
          '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa34<-sem(modelo34,data=df3)
summary(cfa34)
## lavaan 0.6-19 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       112
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2439.471
##   Degrees of freedom                              1016
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.208    0.081   14.855    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.312    0.000
##     RPD06             1.083    0.089   12.223    0.000
##     RPD07             1.229    0.085   14.477    0.000
##     RPD08             1.157    0.086   13.385    0.000
##     RPD09             1.315    0.087   15.168    0.000
##     RPD10             1.343    0.088   15.254    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.274    0.000
##     RRE04             1.021    0.058   17.637    0.000
##     RRE05             1.052    0.056   18.705    0.000
##     RRE06             1.245    0.074   16.896    0.000
##     RRE07             1.121    0.071   15.818    0.000
##     RRE10             0.815    0.067   12.142    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.151    0.096   12.046    0.000
##     RMA04             1.178    0.089   13.275    0.000
##     RMA05             1.140    0.087   13.072    0.000
##     RMA06             0.647    0.075    8.622    0.000
##     RMA07             1.103    0.084   13.073    0.000
##     RMA08             1.110    0.085   13.020    0.000
##     RMA09             1.029    0.084   12.265    0.000
##     RMA10             1.055    0.088   12.052    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.137    0.000
##     RCO04             0.794    0.044   18.077    0.000
##     RCO05             0.815    0.043   18.923    0.000
##     RCO06             0.837    0.046   18.374    0.000
##     RCO07             0.837    0.046   18.193    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.070    0.120    8.925    0.000
##     control           1.413    0.155    9.106    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.512    0.000
##     EN04              0.997    0.044   22.896    0.000
##     EN05              0.994    0.042   23.866    0.000
##     EN06              0.982    0.041   23.908    0.000
##     EN07              1.045    0.045   23.091    0.000
##     EN08              1.031    0.042   24.415    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.870    0.000
##     EVI03             0.991    0.048   20.667    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.275    0.000
##     EDE03             0.580    0.037   15.830    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.922    0.000
##     EAB03             0.730    0.063   11.645    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.765    0.293    9.425    0.000
##     absorcion         2.133    0.248    8.614    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.317    0.000
##   dominio ~~                                          
##     recuperacion      0.851    0.149    5.702    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.009    0.191    5.291    0.000
##     dedicacion        0.989    0.207    4.777    0.000
##     absorcion         0.865    0.184    4.689    0.000
##   recuperacion ~~                                     
##     energia           1.357    0.196    6.911    0.000
##     vigor             0.996    0.165    6.032    0.000
##     dedicacion        1.045    0.180    5.809    0.000
##     absorcion         0.779    0.151    5.168    0.000
##   energia ~~                                          
##     vigor             2.044    0.249    8.221    0.000
##     dedicacion        1.851    0.259    7.137    0.000
##     absorcion         1.340    0.220    6.091    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.935    0.147    6.355    0.000
##    .relajacion        0.493    0.084    5.838    0.000
##     dominio           1.981    0.317    6.249    0.000
##    .control           0.686    0.127    5.402    0.000
##     energia           2.821    0.327    8.616    0.000
##     vigor             2.858    0.289    9.897    0.000
##     dedicacion        3.457    0.367    9.422    0.000
##     absorcion         2.596    0.301    8.637    0.000
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.986    0.107    9.208    0.000
##    .RPD03             1.434    0.147    9.730    0.000
##    .RPD05             0.974    0.109    8.943    0.000
##    .RPD06             1.834    0.184    9.979    0.000
##    .RPD07             1.169    0.125    9.382    0.000
##    .RPD08             1.483    0.152    9.738    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.043    0.116    8.980    0.000
##    .RRE02             0.624    0.067    9.258    0.000
##    .RRE03             0.649    0.072    8.986    0.000
##    .RRE04             0.490    0.056    8.825    0.000
##    .RRE05             0.381    0.047    8.189    0.000
##    .RRE06             0.884    0.097    9.134    0.000
##    .RRE07             0.932    0.098    9.466    0.000
##    .RRE10             1.135    0.112   10.087    0.000
##    .RMA02             1.739    0.175    9.935    0.000
##    .RMA03             1.501    0.156    9.598    0.000
##    .RMA04             0.858    0.098    8.791    0.000
##    .RMA05             0.902    0.100    8.985    0.000
##    .RMA06             1.627    0.158   10.281    0.000
##    .RMA07             0.844    0.094    8.984    0.000
##    .RMA08             0.879    0.097    9.029    0.000
##    .RMA09             1.090    0.115    9.501    0.000
##    .RMA10             1.258    0.131    9.596    0.000
##    .RCO02             0.981    0.104    9.395    0.000
##    .RCO03             0.494    0.058    8.479    0.000
##    .RCO04             0.468    0.052    9.015    0.000
##    .RCO05             0.391    0.045    8.606    0.000
##    .RCO06             0.480    0.054    8.887    0.000
##    .RCO07             0.504    0.056    8.967    0.000
##    .EN01              0.691    0.072    9.665    0.000
##    .EN02              0.440    0.048    9.072    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.943    0.000
##    .EN06              0.367    0.041    8.927    0.000
##    .EN07              0.501    0.054    9.206    0.000
##    .EN08              0.358    0.041    8.709    0.000
##    .EVI01             0.178    0.036    4.939    0.000
##    .EVI02             0.241    0.038    6.290    0.000
##    .EVI03             1.220    0.124    9.823    0.000
##    .EDE01             0.397    0.065    6.091    0.000
##    .EDE02             0.495    0.065    7.569    0.000
##    .EDE03             0.837    0.085    9.891    0.000
##    .EAB01             0.477    0.099    4.826    0.000
##    .EAB02             1.012    0.109    9.303    0.000
##    .EAB03             1.716    0.175    9.784    0.000
##     recuperacion      0.989    0.201    4.927    0.000
lavaanPlot(cfa34, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa34, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 89 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       112
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2439.471
##   Degrees of freedom                              1016
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15423.661
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31071.322
##   Bayesian (BIC)                             31452.926
##   Sample-size adjusted Bayesian (SABIC)      31097.984
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.386
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.068
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.208    0.081   14.855    0.000
##     RPD03             1.144    0.085   13.419    0.000
##     RPD05             1.313    0.086   15.312    0.000
##     RPD06             1.083    0.089   12.223    0.000
##     RPD07             1.229    0.085   14.477    0.000
##     RPD08             1.157    0.086   13.385    0.000
##     RPD09             1.315    0.087   15.168    0.000
##     RPD10             1.343    0.088   15.254    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.274    0.000
##     RRE04             1.021    0.058   17.637    0.000
##     RRE05             1.052    0.056   18.705    0.000
##     RRE06             1.245    0.074   16.896    0.000
##     RRE07             1.121    0.071   15.818    0.000
##     RRE10             0.815    0.067   12.142    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.151    0.096   12.046    0.000
##     RMA04             1.178    0.089   13.275    0.000
##     RMA05             1.140    0.087   13.072    0.000
##     RMA06             0.647    0.075    8.622    0.000
##     RMA07             1.103    0.084   13.073    0.000
##     RMA08             1.110    0.085   13.020    0.000
##     RMA09             1.029    0.084   12.265    0.000
##     RMA10             1.055    0.088   12.052    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.137    0.000
##     RCO04             0.794    0.044   18.077    0.000
##     RCO05             0.815    0.043   18.923    0.000
##     RCO06             0.837    0.046   18.374    0.000
##     RCO07             0.837    0.046   18.193    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.070    0.120    8.925    0.000
##     control           1.413    0.155    9.106    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.027    0.044   23.512    0.000
##     EN04              0.997    0.044   22.896    0.000
##     EN05              0.994    0.042   23.866    0.000
##     EN06              0.982    0.041   23.908    0.000
##     EN07              1.045    0.045   23.091    0.000
##     EN08              1.031    0.042   24.415    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.870    0.000
##     EVI03             0.991    0.048   20.667    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.275    0.000
##     EDE03             0.580    0.037   15.830    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.922    0.000
##     EAB03             0.730    0.063   11.645    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.765    0.293    9.425    0.000
##     absorcion         2.133    0.248    8.614    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.317    0.000
##   dominio ~~                                          
##     recuperacion      0.851    0.149    5.702    0.000
##     energia           1.326    0.209    6.355    0.000
##     vigor             1.009    0.191    5.291    0.000
##     dedicacion        0.989    0.207    4.777    0.000
##     absorcion         0.865    0.184    4.689    0.000
##   recuperacion ~~                                     
##     energia           1.357    0.196    6.911    0.000
##     vigor             0.996    0.165    6.032    0.000
##     dedicacion        1.045    0.180    5.809    0.000
##     absorcion         0.779    0.151    5.168    0.000
##   energia ~~                                          
##     vigor             2.044    0.249    8.221    0.000
##     dedicacion        1.851    0.259    7.137    0.000
##     absorcion         1.340    0.220    6.091    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.935    0.147    6.355    0.000
##    .relajacion        0.493    0.084    5.838    0.000
##     dominio           1.981    0.317    6.249    0.000
##    .control           0.686    0.127    5.402    0.000
##     energia           2.821    0.327    8.616    0.000
##     vigor             2.858    0.289    9.897    0.000
##     dedicacion        3.457    0.367    9.422    0.000
##     absorcion         2.596    0.301    8.637    0.000
##    .RPD01             1.168    0.119    9.781    0.000
##    .RPD02             0.986    0.107    9.208    0.000
##    .RPD03             1.434    0.147    9.730    0.000
##    .RPD05             0.974    0.109    8.943    0.000
##    .RPD06             1.834    0.184    9.979    0.000
##    .RPD07             1.169    0.125    9.382    0.000
##    .RPD08             1.483    0.152    9.738    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.043    0.116    8.980    0.000
##    .RRE02             0.624    0.067    9.258    0.000
##    .RRE03             0.649    0.072    8.986    0.000
##    .RRE04             0.490    0.056    8.825    0.000
##    .RRE05             0.381    0.047    8.189    0.000
##    .RRE06             0.884    0.097    9.134    0.000
##    .RRE07             0.932    0.098    9.466    0.000
##    .RRE10             1.135    0.112   10.087    0.000
##    .RMA02             1.739    0.175    9.935    0.000
##    .RMA03             1.501    0.156    9.598    0.000
##    .RMA04             0.858    0.098    8.791    0.000
##    .RMA05             0.902    0.100    8.985    0.000
##    .RMA06             1.627    0.158   10.281    0.000
##    .RMA07             0.844    0.094    8.984    0.000
##    .RMA08             0.879    0.097    9.029    0.000
##    .RMA09             1.090    0.115    9.501    0.000
##    .RMA10             1.258    0.131    9.596    0.000
##    .RCO02             0.981    0.104    9.395    0.000
##    .RCO03             0.494    0.058    8.479    0.000
##    .RCO04             0.468    0.052    9.015    0.000
##    .RCO05             0.391    0.045    8.606    0.000
##    .RCO06             0.480    0.054    8.887    0.000
##    .RCO07             0.504    0.056    8.967    0.000
##    .EN01              0.691    0.072    9.665    0.000
##    .EN02              0.440    0.048    9.072    0.000
##    .EN04              0.475    0.051    9.263    0.000
##    .EN05              0.380    0.043    8.943    0.000
##    .EN06              0.367    0.041    8.927    0.000
##    .EN07              0.501    0.054    9.206    0.000
##    .EN08              0.358    0.041    8.709    0.000
##    .EVI01             0.178    0.036    4.939    0.000
##    .EVI02             0.241    0.038    6.290    0.000
##    .EVI03             1.220    0.124    9.823    0.000
##    .EDE01             0.397    0.065    6.091    0.000
##    .EDE02             0.495    0.065    7.569    0.000
##    .EDE03             0.837    0.085    9.891    0.000
##    .EAB01             0.477    0.099    4.826    0.000
##    .EAB02             1.012    0.109    9.303    0.000
##    .EAB03             1.716    0.175    9.784    0.000
##     recuperacion      0.989    0.201    4.927    0.000
# Revisar los valores de comparativo fit index (CFI) y Tucker-Lewis (TLI)
# Excelente si es >= 0.95, Aceptable si entre 0.85 y 0.95, Deficiente < 0.90
# ACEPTABLE
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIg0KYXV0aG9yOiAiR2FtYWxpZWwgT3N0b3MgQTAxMjc3MDIzIg0KZGF0ZTogIjIwMjUtMDItMTkiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiBqb3VybmFsDQotLS0NCg0KIVtdKEM6XFVzZXJzXGdhbWFzXFBpY3R1cmVzXGVzY3VlbGEuZ2lmKQ0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlRlb3LDrWE8L3NwYW4+DQpMb3MgKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyAoU0VNKSoqIGVzIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGludHJhZ3J1cG9zLCB5IHZhbGlkYXIgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPjEuIEVzdHVkaW8gZGUgSG9semluZ2VyIHkgU3dpbmVmb3JkICgxOTM5KTwvc3Bhbj4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Q29udGV4dG88L3NwYW4+DQpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3wrAgeSA4wrAgZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpLiAgDQoNCkxhIGJhc2UgZGUgZGF0b3MgZXN0w6EgaW5jbHVpZGEgY29tbyBwYXF1ZXRlIGVuIFIsIGUgaW5jbHV5ZSBsYXMgc2lndWllbnRlcyBjb2x1bW5hczoNCiogc2V4OiBHw6luZXJvICgxPW1hbGUsIDI9ZmVtYWxlKQ0KKiB4MTogUGVyY2VwY2nDs24gdmlzdWFsDQoqIHgyOiBKdWVnbyBjb24gY3Vib3MNCiogeDM6IEp1ZWdvIGNvbiBwYXN0aWxsYXMgKGVzcGFjaWFsKQ0KKiB4NDogQ29tcHJlbnNpw7NuIGRlIHDDoXJyYWZvcw0KKiB4NTogQ29tcGxldGFyIG9yYWNpb25lcw0KKiB4NjogU2lnbmlmaWNhZG8gZGUgcGFsYWJyYXMNCiogeDc6IFN1bWFzIGFjZWxlcmFkYXMNCiogeDg6IENvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zDQoqIHg5OiBEaXNjcmltaW5hY2nDs24gYWNlbGVyYWRhIGRlIG1hecO6c2N1bGFzIHJlY3RhcyB5IGN1cnZhcyAgDQoNClNlIGJ1c2NhIGlkZW50aWZpY2FyIGxhcyByZWxhY2lvbmVzIGVudHJlIGxhcyBoYWJpbGlkYWRlcyB2aXN1YWwgKHgxLCB4MiwgeDMpLCB0ZXh0dWFsICh4NCwgeDUsIHg2KSB5IHZlbG9jaWRhZCAoeDcsIHg4LCB4OSkgZGUgbG9zIGFkb2xlc2NlbnRlcy4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuIikgIyBMYXZlbnQgVmFyaWFibGUgQW5hbHlzaXMNCmxpYnJhcnkobGF2YWFuKQ0KI2luc3RhbGwucGFja2FnZXMoImxhdmFhblBsb3QiKQ0KbGlicmFyeShsYXZhYW5QbG90KQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+DQpgYGB7cn0NCmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5DQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZjEpDQpzdHIoZGYxKQ0KaGVhZChkZjEpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+VGlwb3MgZGUgRsOzcm11bGFzPC9zcGFuPg0KMS4gUmVncmVzacOzbiAofikgVmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYXMuDQoyLiBWYXJpYWJsZXMgbGF0ZW50ZXMgKD1+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlLg0KMy4gVmFyaWFuemFzIHkgQ292YXJpYW56YXMgKH5+KSBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYSAoVmFyaWFuemE6IEVudHJlIHPDrSBtaXNtYSwgQ292YXJpYW56YTogRW50cmUgb3RyYXMpLg0KNC4gSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBzb24gY2Vyby4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXN0cnVjdHVyYXIgZWwgTW9kZWxvPC9zcGFuPg0KYGBge3J9DQptb2RlbG8xIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgIHZpc3VhbCA9fiB4MSArIHgyICsgeDMNCiAgICAgICAgICAgIHRleHR1YWwgPX4geDQgKyB4NSArIHg2DQogICAgICAgICAgICB2ZWxvY2lkYWQgPX4geDcgKyB4OCArIHg5DQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICB2aXN1YWwgfn4gdmlzdWFsDQogICAgICAgICAgICB0ZXh0dWFsIH5+IHRleHR1YWwNCiAgICAgICAgICAgIHZlbG9jaWRhZCB+fiB2ZWxvY2lkYWQNCiAgICAgICAgICAgIHZpc3VhbCB+fiB0ZXh0dWFsICsgdmVsb2NpZGFkDQogICAgICAgICAgICB0ZXh0dWFsIH5+IHZlbG9jaWRhZA0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgJw0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPg0KYGBge3J9DQpjZmExPC1zZW0obW9kZWxvMSxkYXRhPWRmMSkNCnN1bW1hcnkoY2ZhMSkNCmxhdmFhblBsb3QoY2ZhMSwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FdmFsdWFyIGVsIE1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShjZmExLCBmaXQubWVhc3VyZXM9VFJVRSkNCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBjb21wYXJhdGl2byBmaXQgaW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgKFRMSSkNCiMgRXhjZWxlbnRlIHNpIGVzID49IDAuOTUsIEFjZXB0YWJsZSBzaSBlbnRyZSAwLjkwIHkgMC45NSwgRGVmaWNpZW50ZSA8IDAuOTANCmBgYA0KQ29uY2x1c2nDs246ICoqQWNlcHRhYmxlKioNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FamVyY2ljaW8gMS4gRGVtb2NyYWNpYSBQb2zDrXRpY2EgZSBJbmR1c3RyaWFsaXphY2nDs248L3NwYW4+DQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkNvbnRleHRvPC9zcGFuPg0KTGEgYmFzZSBkZSBkYXRvcyBjb250aWVuZSBkaXN0aW50YXMgbWVkaWNpb25lcyBzb2JyZSBsYSBkZW1vY3JhY2lhIHBvbMOtdGljYSBlIGluZHVzdHJpYWxpemFjacOzbiBlbiBwYcOtc2VzIGVuIGRlc2Fycm9sbG8gZHVyYW50ZSAxOTYwIHkgMTk2NS4NCg0KTGEgdGFibGEgaW5jbHV5ZSBsb3Mgc2lndWllbnRlcyBkYXRvczoNCg0KKiB5MTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjANCiogeTI6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjANCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwDQoqIHk0OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2MA0KKiB5NTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjUNCiogeTY6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjUNCiogeTc6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTY1DQoqIHk4OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2NQ0KKiB4MTogUElCIHBlciBjw6FwaXRhIGVuIDE5NjANCiogeDI6IENvbnN1bW8gZGUgZW5lcmfDrWEgaW5hbmltYWRhIHBlciBjw6FwaXRhIGVuIDE5NjANCiogeDM6IFBvcmNlbnRhamUgZGUgbGEgZnVlcnphIGxhYm9yYWwgZW4gbGEgaW5kdXN0cmlhIGVuIDE5NjANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KZGYyIDwtIFBvbGl0aWNhbERlbW9jcmFjeQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkxpYnJlcsOtYXMgeSBwYXF1ZXRlczwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojaW5zdGFsbC5wYWNrYWdlcygicmVhZHhsIikNCmxpYnJhcnkocmVhZHhsKQ0KYGBgDQoNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShkZjIpDQpzdHIoZGYyKQ0KaGVhZChkZjIpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXN0cnVjdHVyYXIgZWwgTW9kZWxvPC9zcGFuPg0KYGBge3J9DQptb2RlbG8yIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgIGluZHVzdHJpYWwgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICBkZW1vY3JhY2lhXzYwID1+IHkxICsgeTIgKyB5MyArIHk0DQogICAgICAgICAgICBkZW1vY3JhY2lhXzY1ID1+IHk1ICsgeTYgKyB5NyArIHk4DQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgICBkZW1vY3JhY2lhXzYwIH5+IGRlbW9jcmFjaWFfNjANCiAgICAgICAgICAgIGRlbW9jcmFjaWFfNjUgfn4gZGVtb2NyYWNpYV82NQ0KICAgICAgICAgICAgaW5kdXN0cmlhbCB+fiBpbmR1c3RyaWFsDQogICAgICAgICAgICBpbmR1c3RyaWFsIH5+IGRlbW9jcmFjaWFfNjAgKyBkZW1vY3JhY2lhXzY1DQogICAgICAgICAgICBkZW1vY3JhY2lhXzYwIH5+IGRlbW9jcmFjaWFfNjUNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICcNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5HZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKTwvc3Bhbj4NCmBgYHtyfQ0KY2ZhMjwtc2VtKG1vZGVsbzIsZGF0YT1kZjIpDQpzdW1tYXJ5KGNmYTIpDQpsYXZhYW5QbG90KGNmYTIsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoY2ZhMiwgZml0Lm1lYXN1cmVzPVRSVUUpDQojIFJldmlzYXIgbG9zIHZhbG9yZXMgZGUgY29tcGFyYXRpdm8gZml0IGluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIChUTEkpDQojIEV4Y2VsZW50ZSBzaSBlcyA+PSAwLjk1LCBBY2VwdGFibGUgc2kgZW50cmUgMC45MCB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwDQojIEVYQ0VMRU5URQ0KYGBgDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+QWN0aXZpZGFkIDMuIEJpZW5lc3RhciBkZSBsb3MgVHJhYmFqYWRvcmVzPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCiNpbnN0YWxsLnBhY2thZ2VzKCJyZWFkeGwiKQ0KbGlicmFyeShyZWFkeGwpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KZGYzIDwtIHJlYWRfZXhjZWwoIkM6XFxVc2Vyc1xcZ2FtYXNcXERvd25sb2Fkc1xcRGF0b3NfU0VNX0VuZy54bHN4IikNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5QYXJ0ZSAxLiBFeHBlcmllbmNpYXMgZGUgcmVjdXBlcmFjacOzbjwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvMzEgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwDQogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICBkb21pbmlvID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMA0KICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBjb250cm9sDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgIGRlc2FwZWdvIH5+IGRlc2FwZWdvDQogICAgICAgICAgICBkb21pbmlvIH5+IGRvbWluaW8NCiAgICAgICAgICAgIGNvbnRyb2wgfn4gY29udHJvbA0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgJw0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPg0KYGBge3J9DQpjZmEzMTwtc2VtKG1vZGVsbzMxLGRhdGE9ZGYzKQ0Kc3VtbWFyeShjZmEzMSkNCmxhdmFhblBsb3QoY2ZhMzEsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoY2ZhMzEsIGZpdC5tZWFzdXJlcz1UUlVFKQ0KIyBSZXZpc2FyIGxvcyB2YWxvcmVzIGRlIGNvbXBhcmF0aXZvIGZpdCBpbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyAoVExJKQ0KIyBFeGNlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIHNpIGVudHJlIDAuODUgeSAwLjk1LCBEZWZpY2llbnRlIDwgMC45MA0KIyBBQ0VQVEFCTEUNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5QYXJ0ZSAyLiBFbmVyZ8OtYSByZWN1cGVyYWRhPC9zcGFuPg0KYGBge3J9DQptb2RlbG8zMiA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQ0KICAgICAgICAgICAgZW5lcmdpYSB+fiBlbmVyZ2lhDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAnDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+R2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+DQpgYGB7cn0NCmNmYTMyPC1zZW0obW9kZWxvMzIsZGF0YT1kZjMpDQpzdW1tYXJ5KGNmYTMyKQ0KbGF2YWFuUGxvdChjZmEzMiwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FdmFsdWFyIGVsIE1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShjZmEzMiwgZml0Lm1lYXN1cmVzPVRSVUUpDQojIFJldmlzYXIgbG9zIHZhbG9yZXMgZGUgY29tcGFyYXRpdm8gZml0IGluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIChUTEkpDQojIEV4Y2VsZW50ZSBzaSBlcyA+PSAwLjk1LCBBY2VwdGFibGUgc2kgZW50cmUgMC44NSB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwDQojIEVYQ0VMRU5URQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlBhcnRlIDMuIEVuZ2FnZW1lbnQgbGFib3JhbDwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvMzMgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgdmlnb3IgPX4gRVZJMDEgKyBFVkkwMiArIEVWSTAzDQogICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDIgKyBFQUIwMw0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphDQogICAgICAgICAgICB2aWdvciB+fiB2aWdvcg0KICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBkZWRpY2FjaW9uDQogICAgICAgICAgICBhYnNvcmNpb24gfn4gYWJzb3JjaW9uDQogICAgICAgICAgICB2aWdvciB+fiBkZWRpY2FjaW9uICsgYWJzb3JjaW9uDQogICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGFic29yY2lvbg0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgJw0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPg0KYGBge3J9DQpjZmEzMzwtc2VtKG1vZGVsbzMzLGRhdGE9ZGYzKQ0Kc3VtbWFyeShjZmEzMykNCmxhdmFhblBsb3QoY2ZhMzMsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXZhbHVhciBlbCBNb2RlbG88L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoY2ZhMzMsIGZpdC5tZWFzdXJlcz1UUlVFKQ0KIyBSZXZpc2FyIGxvcyB2YWxvcmVzIGRlIGNvbXBhcmF0aXZvIGZpdCBpbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyAoVExJKQ0KIyBFeGNlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIHNpIGVudHJlIDAuODUgeSAwLjk1LCBEZWZpY2llbnRlIDwgMC45MA0KIyBBQ0VQVEFCTEUNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5QYXJ0ZSA0LiBFbmdhZ2VtZW50IGxhYm9yYWw8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzM0IDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQogICAgICAgICAgICByZWN1cGVyYWNpb24gPX4gZGVzYXBlZ28gKyByZWxhamFjaW9uICsgY29udHJvbA0KICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4DQogICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgIGRlc2FwZWdvIH5+IGRlc2FwZWdvDQogICAgICAgICAgICByZWxhamFjaW9uIH5+IHJlbGFqYWNpb24NCiAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbw0KICAgICAgICAgICAgY29udHJvbCB+fiBjb250cm9sDQogICAgICAgICAgICBlbmVyZ2lhIH5+IGVuZXJnaWENCiAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yDQogICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGRlZGljYWNpb24NCiAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24NCiAgICAgICAgICAgIHZpZ29yIH5+IGRlZGljYWNpb24gKyBhYnNvcmNpb24NCiAgICAgICAgICAgIGRlZGljYWNpb24gfn4gYWJzb3JjaW9uDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAnDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+R2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+DQpgYGB7cn0NCmNmYTM0PC1zZW0obW9kZWxvMzQsZGF0YT1kZjMpDQpzdW1tYXJ5KGNmYTM0KQ0KbGF2YWFuUGxvdChjZmEzNCwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FdmFsdWFyIGVsIE1vZGVsbzwvc3Bhbj4NCmBgYHtyfQ0Kc3VtbWFyeShjZmEzNCwgZml0Lm1lYXN1cmVzPVRSVUUpDQojIFJldmlzYXIgbG9zIHZhbG9yZXMgZGUgY29tcGFyYXRpdm8gZml0IGluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIChUTEkpDQojIEV4Y2VsZW50ZSBzaSBlcyA+PSAwLjk1LCBBY2VwdGFibGUgc2kgZW50cmUgMC44NSB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwDQojIEFDRVBUQUJMRQ0KYGBg