Below is a map representing the average rent price of a three-bedroom apartment in Rutherford County. The map is divided up by zip codes in the area.
# Getting and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
if (!require("leafpop"))
install.packages("leafpop")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("RColorBrewer"))
install.packages("RColorBrewer")
if (!require(leaflet.extras2))
install.packages("leaflket.extras2")
if (!require("leafsync"))
install.packages("leafsync")
library(tidyverse)
library(gtExtras)
library(sf)
library(mapview)
library(leafpop)
library(RColorBrewer)
library(leafsync)
# Reloading the rent data
FMR_RuCo <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/FMR_RuCo.csv")
# Downloading the ZIP code map file
download.file("https://www2.census.gov/geo/tiger/GENZ2020/shp/cb_2020_us_zcta520_500k.zip","ZCTAs2020.zip")
# Unzipping the ZIP code map file
unzip("ZCTAs2020.zip")
# Loading the ZIP code file into R as "ZCTAMap"
ZCTAMap <- read_sf("cb_2020_us_zcta520_500k.shp")
# Making ZIP a character variable
FMR_RuCo$ZIP <- as.character(FMR_RuCo$ZIP)
# Joining the files
FMR_RuCo_Map <- left_join(FMR_RuCo, ZCTAMap, by = c("ZIP" = "ZCTA5CE20"))
# Dropping unneeded columns
FMR_RuCo_Map <- FMR_RuCo_Map %>%
select(-c(AFFGEOID20, GEOID20, NAME20, LSAD20, ALAND20, AWATER20))
# Converting FMR_RuCo_Map
FMR_RuCo_Map <- st_as_sf(FMR_RuCo_Map)
# Making the map
Rent_Category_Map <- mapview(
FMR_RuCo_Map,
zcol = "BR3",
col.regions = brewer.pal(5, "Greens"),
layer.name = "Three-bedroom rent",
popup = popupTable(
FMR_RuCo_Map,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("ZIP", "Studio", "BR1", "BR2", "BR3", "BR4")))
# Showing the map
Rent_Category_Map