Teoría

El paquete CARET (Classification and Regression Training) es una herramienta poderosa para la implementación de modelos de MACHINE LEARNING.

Instalar paquetes y llamar librerias

#install.packages("caret") # Algoritmos de aprendizaje automático
library(caret)
#install.packages("datasets") # Para usar base de datos "iris"
library(datasets)
#install.packages("ggplot2") # Graficas con mejor diseño
library(ggplot2)
#install.packages("lattice") # Crear gráficos
library(lattice)
#install.packages("DataExplorer") # Análisis Descriptivo
library(DataExplorer)
#install.packages("kernlab")
library(kernlab)
#install.packages("randomForest")
library(randomForest)

Importar la base de datos

df <-data.frame(iris)

Análisis descriptivo

create_report(df)
##   |                                             |                                     |   0%  |                                             |.                                    |   2%                                   |                                             |..                                   |   5% [global_options]                  |                                             |...                                  |   7%                                   |                                             |....                                 |  10% [introduce]                       |                                             |....                                 |  12%                                   |                                             |.....                                |  14% [plot_intro]
##   |                                             |......                               |  17%                                   |                                             |.......                              |  19% [data_structure]                  |                                             |........                             |  21%                                   |                                             |.........                            |  24% [missing_profile]
##   |                                             |..........                           |  26%                                   |                                             |...........                          |  29% [univariate_distribution_header]  |                                             |...........                          |  31%                                   |                                             |............                         |  33% [plot_histogram]
##   |                                             |.............                        |  36%                                   |                                             |..............                       |  38% [plot_density]                    |                                             |...............                      |  40%                                   |                                             |................                     |  43% [plot_frequency_bar]
##   |                                             |.................                    |  45%                                   |                                             |..................                   |  48% [plot_response_bar]               |                                             |..................                   |  50%                                   |                                             |...................                  |  52% [plot_with_bar]                   |                                             |....................                 |  55%                                   |                                             |.....................                |  57% [plot_normal_qq]
##   |                                             |......................               |  60%                                   |                                             |.......................              |  62% [plot_response_qq]                |                                             |........................             |  64%                                   |                                             |.........................            |  67% [plot_by_qq]                      |                                             |..........................           |  69%                                   |                                             |..........................           |  71% [correlation_analysis]
##   |                                             |...........................          |  74%                                   |                                             |............................         |  76% [principal_component_analysis]
##   |                                             |.............................        |  79%                                   |                                             |..............................       |  81% [bivariate_distribution_header]   |                                             |...............................      |  83%                                   |                                             |................................     |  86% [plot_response_boxplot]           |                                             |.................................    |  88%                                   |                                             |.................................    |  90% [plot_by_boxplot]                 |                                             |..................................   |  93%                                   |                                             |...................................  |  95% [plot_response_scatterplot]       |                                             |.................................... |  98%                                   |                                             |.....................................| 100% [plot_by_scatterplot]           
## /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/pandoc +RTS -K512m -RTS /Users/mariadelbosque/Desktop/TEC/CONCENTRACION/R/report.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /Users/mariadelbosque/Desktop/TEC/CONCENTRACION/R/report.html --lua-filter /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 6 --template /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=yeti --mathjax --variable 'mathjax-url=https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML' --include-in-header /var/folders/fg/qsq_j5fx5wz0c1xt7brrw6fh0000gn/T//RtmpqvG4oe/rmarkdown-str29892a325748.html
plot_missing(df)

plot_histogram(df)

plot_correlation(df)

** NOTA: La variable que queremos predecir debe tener formato de FACTOR **

Partir los datos 80-20

set.seed(123)
renglones_entrenamiento <- createDataPartition(df$Species, p=0.8, list = FALSE)
entrenamiento <- iris[renglones_entrenamiento, ] 
prueba <- iris[-renglones_entrenamiento, ]

Distintos tipos de Métodos para Modelar

Los métodos más utilizados para modelar aprendizaje automático son:

  • SVM: Support Vector Machine o Máquina de Vectores de Soporte. Hay varios subtipos: Lineal (svmLinear), Radial(svmRadial), Polinómico(svmPoly), etc.
  • Árbol de Decision: rpart
  • Redes Neuronales: nnet
  • Random Forest o Bosques Aleatorios: rf

La validación cruzada (cross validation, cv) es una técnica para evaluar el rendimiento de un modelo, dividiendo los datos en múltiples subconjuntos, permitiendo medir su capacidad de generalización y evitar el sobreajuste u overfitting.

La matriz de confusión (Confusion Matrix) permite analizar qué tan bien funciona un modelo y qué tipos de erorres comete. Lo que hace es comparar las predicciones del modelo con los valores reales de la variable objetivo.

Si la precisión es muy alta en entrenamiento (95%-100%), pero baja en prueba (60%-70%), es una señal de sobreajuste u overfitting.

Modelo 1. SVM Linear

modelo1<- train(Species ~ ., data = entrenamiento,
                method = "svmLinear", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                tuneGrid = data.frame(C=1) #Cambiar hiperparámetros
                )
resultado_entrenamiento1 <- predict(modelo1, entrenamiento)
resultado_prueba1<- predict(modelo1, prueba)

#Matriz de Confusión del Entrenamiento
mcre1 <- confusionMatrix(resultado_entrenamiento1, entrenamiento$Species)
mcre1
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         0
##   virginica       0          1        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9917          
##                  95% CI : (0.9544, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9875          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           1.0000
## Specificity                 1.0000            1.0000           0.9875
## Pos Pred Value              1.0000            1.0000           0.9756
## Neg Pred Value              1.0000            0.9877           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3333
## Detection Prevalence        0.3333            0.3250           0.3417
## Balanced Accuracy           1.0000            0.9875           0.9938
#Matriz de Confusión del Resultado de la Prueba
mcrp1 <- confusionMatrix(resultado_prueba1, prueba$Species)
mcrp1
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         1
##   virginica       0          0         9
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.9000
## Specificity                 1.0000            0.9500           1.0000
## Pos Pred Value              1.0000            0.9091           1.0000
## Neg Pred Value              1.0000            1.0000           0.9524
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3000
## Detection Prevalence        0.3333            0.3667           0.3000
## Balanced Accuracy           1.0000            0.9750           0.9500

Modelo 2. SVM Radial

modelo2<- train(Species ~ ., data = entrenamiento,
                method = "svmRadial", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                tuneGrid = data.frame(sigma =1, C=1) #Cambiar hiperparámetros
                )
resultado_entrenamiento2 <- predict(modelo2, entrenamiento)
resultado_prueba2<- predict(modelo2, prueba)

#Matriz de Confusión del Entrenamiento
mcre2 <- confusionMatrix(resultado_entrenamiento2, entrenamiento$Species)
mcre2
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         0
##   virginica       0          1        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9917          
##                  95% CI : (0.9544, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9875          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           1.0000
## Specificity                 1.0000            1.0000           0.9875
## Pos Pred Value              1.0000            1.0000           0.9756
## Neg Pred Value              1.0000            0.9877           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3333
## Detection Prevalence        0.3333            0.3250           0.3417
## Balanced Accuracy           1.0000            0.9875           0.9938
#Matriz de Confusión del Resultado de la Prueba
mcrp2 <- confusionMatrix(resultado_prueba2, prueba$Species)
mcrp2
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Modelo 3. SVM Polinómico

modelo3<- train(Species ~ ., data = entrenamiento,
                method = "svmPoly", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                tuneGrid = data.frame(degree=1, scale =1, C=1) #Cambiar hiperparámetros
                )
resultado_entrenamiento3 <- predict(modelo3, entrenamiento)
resultado_prueba3 <- predict(modelo3, prueba)

#Matriz de Confusión del Entrenamiento
mcre3 <- confusionMatrix(resultado_entrenamiento3, entrenamiento$Species)
mcre3
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         0
##   virginica       0          1        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9917          
##                  95% CI : (0.9544, 0.9998)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9875          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           1.0000
## Specificity                 1.0000            1.0000           0.9875
## Pos Pred Value              1.0000            1.0000           0.9756
## Neg Pred Value              1.0000            0.9877           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3333
## Detection Prevalence        0.3333            0.3250           0.3417
## Balanced Accuracy           1.0000            0.9875           0.9938
#Matriz de Confusión del Resultado de la Prueba
mcrp3 <- confusionMatrix(resultado_prueba3, prueba$Species)
mcrp3
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         1
##   virginica       0          0         9
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.9000
## Specificity                 1.0000            0.9500           1.0000
## Pos Pred Value              1.0000            0.9091           1.0000
## Neg Pred Value              1.0000            1.0000           0.9524
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3000
## Detection Prevalence        0.3333            0.3667           0.3000
## Balanced Accuracy           1.0000            0.9750           0.9500

Modelo 4. Árbol de Decisión

modelo4<- train(Species ~ ., data = entrenamiento,
                method = "rpart", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                tuneLength = 10 #Cambiar hiperparámetros
                )
resultado_entrenamiento4 <- predict(modelo4, entrenamiento)
resultado_prueba4<- predict(modelo4, prueba)

#Matriz de Confusión del Entrenamiento
mcre4 <- confusionMatrix(resultado_entrenamiento4, entrenamiento$Species)
mcre4
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         39         3
##   virginica       0          1        37
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.9169, 0.9908)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9750           0.9250
## Specificity                 1.0000            0.9625           0.9875
## Pos Pred Value              1.0000            0.9286           0.9737
## Neg Pred Value              1.0000            0.9872           0.9634
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3250           0.3083
## Detection Prevalence        0.3333            0.3500           0.3167
## Balanced Accuracy           1.0000            0.9688           0.9563
#Matriz de Confusión del Resultado de la Prueba
mcrp4 <- confusionMatrix(resultado_prueba4, prueba$Species)
mcrp4
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Modelo 5. Redes Neuronales

modelo5<- train(Species ~ ., data = entrenamiento,
                method = "nnet", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                trace =FALSE
                )
resultado_entrenamiento5 <- predict(modelo5, entrenamiento)
resultado_prueba5<- predict(modelo5, prueba)

#Matriz de Confusión del Entrenamiento
mcre5 <- confusionMatrix(resultado_entrenamiento5, entrenamiento$Species)
mcre5
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         36         0
##   virginica       0          4        40
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.9169, 0.9908)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9000           1.0000
## Specificity                 1.0000            1.0000           0.9500
## Pos Pred Value              1.0000            1.0000           0.9091
## Neg Pred Value              1.0000            0.9524           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3000           0.3333
## Detection Prevalence        0.3333            0.3000           0.3667
## Balanced Accuracy           1.0000            0.9500           0.9750
#Matriz de Confusión del Resultado de la Prueba
mcrp5 <- confusionMatrix(resultado_prueba5, prueba$Species)
mcrp5
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0          9         0
##   virginica       0          1        10
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9000           1.0000
## Specificity                 1.0000            1.0000           0.9500
## Pos Pred Value              1.0000            1.0000           0.9091
## Neg Pred Value              1.0000            0.9524           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3000           0.3333
## Detection Prevalence        0.3333            0.3000           0.3667
## Balanced Accuracy           1.0000            0.9500           0.9750

Modelo 6. Random Forest

modelo6<- train(Species ~ ., data = entrenamiento,
                method = "rf", # Cambiar
                preProcess=c("scale","center"),
                trControl = trainControl(method = "cv", number = 10),
                #Cambiar hiperparámetros
                tuneGrid = expand.grid(mtry = c(2,4,6)) #Hiperparámetros
                )
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
## Warning in randomForest.default(x, y, mtry = param$mtry, ...): invalid mtry:
## reset to within valid range
resultado_entrenamiento6 <- predict(modelo6, entrenamiento)
resultado_prueba6<- predict(modelo6, prueba)

#Matriz de Confusión del Entrenamiento
mcre6 <- confusionMatrix(resultado_entrenamiento6, entrenamiento$Species)
mcre6
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         40         0
##   virginica       0          0        40
## 
## Overall Statistics
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9697, 1)
##     No Information Rate : 0.3333     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##                                      
##  Mcnemar's Test P-Value : NA         
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           1.0000
## Specificity                 1.0000            1.0000           1.0000
## Pos Pred Value              1.0000            1.0000           1.0000
## Neg Pred Value              1.0000            1.0000           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3333
## Detection Prevalence        0.3333            0.3333           0.3333
## Balanced Accuracy           1.0000            1.0000           1.0000
#Matriz de Confusión del Resultado de la Prueba
mcrp6 <- confusionMatrix(resultado_prueba6, prueba$Species)
mcrp6
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         2
##   virginica       0          0         8
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9333          
##                  95% CI : (0.7793, 0.9918)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 8.747e-12       
##                                           
##                   Kappa : 0.9             
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.8000
## Specificity                 1.0000            0.9000           1.0000
## Pos Pred Value              1.0000            0.8333           1.0000
## Neg Pred Value              1.0000            1.0000           0.9091
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.2667
## Detection Prevalence        0.3333            0.4000           0.2667
## Balanced Accuracy           1.0000            0.9500           0.9000

Resumen de Resultados

resultados <- data.frame(
  "SVM Lineal" = c(mcre1$overall["Accuracy"], mcrp1$overall["Accuracy"]),
  "SVM Radial" = c(mcre2$overall["Accuracy"], mcrp2$overall["Accuracy"]),
  "SVM Polinómico" = c(mcre3$overall["Accuracy"], mcrp3$overall["Accuracy"]),
  "Árbol de Decisión" = c(mcre4$overall["Accuracy"], mcrp4$overall["Accuracy"]),
  "Redes Neuronales" = c(mcre5$overall["Accuracy"], mcrp5$overall["Accuracy"]),
  "Bosques Aleatorios" = c(mcre6$overall["Accuracy"], mcrp6$overall["Accuracy"])
)
rownames(resultados) <- c("Precision de Entrenamiento", "Precision de Prueba")
resultados
##                            SVM.Lineal SVM.Radial SVM.Polinómico
## Precision de Entrenamiento  0.9916667  0.9916667      0.9916667
## Precision de Prueba         0.9666667  0.9333333      0.9666667
##                            Árbol.de.Decisión Redes.Neuronales
## Precision de Entrenamiento         0.9666667        0.9666667
## Precision de Prueba                0.9333333        0.9666667
##                            Bosques.Aleatorios
## Precision de Entrenamiento          1.0000000
## Precision de Prueba                 0.9333333
LS0tCnRpdGxlOiAiQ0FSRVQiCmF1dGhvcjogIk1hcmlhIERlbCBCb3NxdWUiCmRhdGU6ICIyMC1GRUItMjAyNSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiAidW5pdGVkIgogICAgaGlnaGxpZ2h0OiAiZXNwcmVzc28iCi0tLQoKIVtdKC9Vc2Vycy9tYXJpYWRlbGJvc3F1ZS9EZXNrdG9wL1RFQy9DT05DRU5UUkFDSU9OL1IvbGlyaW8uanBlZykKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5UZW9yw61hPC9zcGFuPgpFbCBwYXF1ZXRlIENBUkVUICgqQ2xhc3NpZmljYXRpb24gYW5kIFJlZ3Jlc3Npb24gVHJhaW5pbmcqKSBlcyB1bmEgaGVycmFtaWVudGEgcG9kZXJvc2EgcGFyYSBsYSBpbXBsZW1lbnRhY2nDs24gZGUgbW9kZWxvcyBkZSAqKk1BQ0hJTkUgTEVBUk5JTkcqKi4KCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOnB1cnBsZTsiPkluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcmlhczwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KI2luc3RhbGwucGFja2FnZXMoImNhcmV0IikgIyBBbGdvcml0bW9zIGRlIGFwcmVuZGl6YWplIGF1dG9tw6F0aWNvCmxpYnJhcnkoY2FyZXQpCiNpbnN0YWxsLnBhY2thZ2VzKCJkYXRhc2V0cyIpICMgUGFyYSB1c2FyIGJhc2UgZGUgZGF0b3MgImlyaXMiCmxpYnJhcnkoZGF0YXNldHMpCiNpbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikgIyBHcmFmaWNhcyBjb24gbWVqb3IgZGlzZcOxbwpsaWJyYXJ5KGdncGxvdDIpCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXR0aWNlIikgIyBDcmVhciBncsOhZmljb3MKbGlicmFyeShsYXR0aWNlKQojaW5zdGFsbC5wYWNrYWdlcygiRGF0YUV4cGxvcmVyIikgIyBBbsOhbGlzaXMgRGVzY3JpcHRpdm8KbGlicmFyeShEYXRhRXhwbG9yZXIpCiNpbnN0YWxsLnBhY2thZ2VzKCJrZXJubGFiIikKbGlicmFyeShrZXJubGFiKQojaW5zdGFsbC5wYWNrYWdlcygicmFuZG9tRm9yZXN0IikKbGlicmFyeShyYW5kb21Gb3Jlc3QpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmRmIDwtZGF0YS5mcmFtZShpcmlzKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5BbsOhbGlzaXMgZGVzY3JpcHRpdm88L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQpjcmVhdGVfcmVwb3J0KGRmKQpwbG90X21pc3NpbmcoZGYpCnBsb3RfaGlzdG9ncmFtKGRmKQpwbG90X2NvcnJlbGF0aW9uKGRmKQpgYGAKKiogTk9UQTogTGEgdmFyaWFibGUgcXVlIHF1ZXJlbW9zIHByZWRlY2lyIGRlYmUgdGVuZXIgZm9ybWF0byBkZSBGQUNUT1IgKioKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5QYXJ0aXIgbG9zIGRhdG9zIDgwLTIwPC9zcGFuPgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpzZXQuc2VlZCgxMjMpCnJlbmdsb25lc19lbnRyZW5hbWllbnRvIDwtIGNyZWF0ZURhdGFQYXJ0aXRpb24oZGYkU3BlY2llcywgcD0wLjgsIGxpc3QgPSBGQUxTRSkKZW50cmVuYW1pZW50byA8LSBpcmlzW3Jlbmdsb25lc19lbnRyZW5hbWllbnRvLCBdIApwcnVlYmEgPC0gaXJpc1stcmVuZ2xvbmVzX2VudHJlbmFtaWVudG8sIF0KYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+RGlzdGludG9zIHRpcG9zIGRlIE3DqXRvZG9zIHBhcmEgTW9kZWxhcjwvc3Bhbj4KTG9zIG3DqXRvZG9zIG3DoXMgdXRpbGl6YWRvcyBwYXJhIG1vZGVsYXIgYXByZW5kaXphamUgYXV0b23DoXRpY28gc29uOiAKCiogKipTVk0qKjogKlN1cHBvcnQgVmVjdG9yIE1hY2hpbmUqIG8gTcOhcXVpbmEgZGUgVmVjdG9yZXMgZGUgU29wb3J0ZS4gSGF5IHZhcmlvcyBzdWJ0aXBvczogTGluZWFsIChzdm1MaW5lYXIpLCBSYWRpYWwoc3ZtUmFkaWFsKSwgUG9saW7Ds21pY28oc3ZtUG9seSksIGV0Yy4gCiogKirDgXJib2wgZGUgRGVjaXNpb24qKjogcnBhcnQKKiAqKlJlZGVzIE5ldXJvbmFsZXMqKjogbm5ldAoqICoqUmFuZG9tIEZvcmVzdCoqIG8gQm9zcXVlcyBBbGVhdG9yaW9zOiByZgoKTGEgKip2YWxpZGFjacOzbiBjcnV6YWRhIChjcm9zcyB2YWxpZGF0aW9uLCBjdikqKiBlcyB1bmEgdMOpY25pY2EgcGFyYSBldmFsdWFyIGVsIHJlbmRpbWllbnRvIGRlIHVuIG1vZGVsbywgZGl2aWRpZW5kbyBsb3MgZGF0b3MgZW4gbcO6bHRpcGxlcyBzdWJjb25qdW50b3MsIHBlcm1pdGllbmRvIG1lZGlyIHN1IGNhcGFjaWRhZCBkZSBnZW5lcmFsaXphY2nDs24geSBldml0YXIgZWwgc29icmVhanVzdGUgdSAqKm92ZXJmaXR0aW5nKiouIAoKTGEgKiptYXRyaXogZGUgY29uZnVzacOzbioqICgqQ29uZnVzaW9uIE1hdHJpeCopIHBlcm1pdGUgYW5hbGl6YXIgcXXDqSB0YW4gYmllbiBmdW5jaW9uYSB1biBtb2RlbG8geSBxdcOpIHRpcG9zIGRlIGVyb3JyZXMgY29tZXRlLiBMbyBxdWUgaGFjZSBlcyBjb21wYXJhciBsYXMgcHJlZGljY2lvbmVzIGRlbCBtb2RlbG8gY29uIGxvcyB2YWxvcmVzIHJlYWxlcyBkZSBsYSB2YXJpYWJsZSBvYmpldGl2by4gCgpTaSBsYSBwcmVjaXNpw7NuIGVzIG11eSBhbHRhIGVuIGVudHJlbmFtaWVudG8gKDk1JS0xMDAlKSwgcGVybyBiYWphIGVuIHBydWViYSAoNjAlLTcwJSksIGVzIHVuYSBzZcOxYWwgZGUgKipzb2JyZWFqdXN0ZSoqIHUgKipvdmVyZml0dGluZyoqLiAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5Nb2RlbG8gMS4gU1ZNIExpbmVhcjwvc3Bhbj4KYGBge3J9Cm1vZGVsbzE8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YSA9IGVudHJlbmFtaWVudG8sCiAgICAgICAgICAgICAgICBtZXRob2QgPSAic3ZtTGluZWFyIiwgIyBDYW1iaWFyCiAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPWMoInNjYWxlIiwiY2VudGVyIiksCiAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kID0gImN2IiwgbnVtYmVyID0gMTApLAogICAgICAgICAgICAgICAgdHVuZUdyaWQgPSBkYXRhLmZyYW1lKEM9MSkgI0NhbWJpYXIgaGlwZXJwYXLDoW1ldHJvcwogICAgICAgICAgICAgICAgKQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzEgPC0gcHJlZGljdChtb2RlbG8xLCBlbnRyZW5hbWllbnRvKQpyZXN1bHRhZG9fcHJ1ZWJhMTwtIHByZWRpY3QobW9kZWxvMSwgcHJ1ZWJhKQoKI01hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBFbnRyZW5hbWllbnRvCm1jcmUxIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzEsIGVudHJlbmFtaWVudG8kU3BlY2llcykKbWNyZTEKCiNNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlIGxhIFBydWViYQptY3JwMSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTEsIHBydWViYSRTcGVjaWVzKQptY3JwMQpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPk1vZGVsbyAyLiBTVk0gUmFkaWFsPC9zcGFuPgpgYGB7cn0KbW9kZWxvMjwtIHRyYWluKFNwZWNpZXMgfiAuLCBkYXRhID0gZW50cmVuYW1pZW50bywKICAgICAgICAgICAgICAgIG1ldGhvZCA9ICJzdm1SYWRpYWwiLCAjIENhbWJpYXIKICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwKICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPSAxMCksCiAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGRhdGEuZnJhbWUoc2lnbWEgPTEsIEM9MSkgI0NhbWJpYXIgaGlwZXJwYXLDoW1ldHJvcwogICAgICAgICAgICAgICAgKQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzIgPC0gcHJlZGljdChtb2RlbG8yLCBlbnRyZW5hbWllbnRvKQpyZXN1bHRhZG9fcHJ1ZWJhMjwtIHByZWRpY3QobW9kZWxvMiwgcHJ1ZWJhKQoKI01hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBFbnRyZW5hbWllbnRvCm1jcmUyIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzIsIGVudHJlbmFtaWVudG8kU3BlY2llcykKbWNyZTIKCiNNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlIGxhIFBydWViYQptY3JwMiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTIsIHBydWViYSRTcGVjaWVzKQptY3JwMgpgYGAKIyA8c3BhbiBzdHlsZT0iY29sb3I6IHB1cnBsZTsiPk1vZGVsbyAzLiBTVk0gUG9saW7Ds21pY288L3NwYW4+CmBgYHtyfQptb2RlbG8zPC0gdHJhaW4oU3BlY2llcyB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLAogICAgICAgICAgICAgICAgbWV0aG9kID0gInN2bVBvbHkiLCAjIENhbWJpYXIKICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwKICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPSAxMCksCiAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGRhdGEuZnJhbWUoZGVncmVlPTEsIHNjYWxlID0xLCBDPTEpICNDYW1iaWFyIGhpcGVycGFyw6FtZXRyb3MKICAgICAgICAgICAgICAgICkKcmVzdWx0YWRvX2VudHJlbmFtaWVudG8zIDwtIHByZWRpY3QobW9kZWxvMywgZW50cmVuYW1pZW50bykKcmVzdWx0YWRvX3BydWViYTMgPC0gcHJlZGljdChtb2RlbG8zLCBwcnVlYmEpCgojTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIEVudHJlbmFtaWVudG8KbWNyZTMgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19lbnRyZW5hbWllbnRvMywgZW50cmVuYW1pZW50byRTcGVjaWVzKQptY3JlMwoKI01hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBSZXN1bHRhZG8gZGUgbGEgUHJ1ZWJhCm1jcnAzIDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fcHJ1ZWJhMywgcHJ1ZWJhJFNwZWNpZXMpCm1jcnAzCmBgYAojIDxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+TW9kZWxvIDQuIMOBcmJvbCBkZSBEZWNpc2nDs248L3NwYW4+CmBgYHtyfQptb2RlbG80PC0gdHJhaW4oU3BlY2llcyB+IC4sIGRhdGEgPSBlbnRyZW5hbWllbnRvLAogICAgICAgICAgICAgICAgbWV0aG9kID0gInJwYXJ0IiwgIyBDYW1iaWFyCiAgICAgICAgICAgICAgICBwcmVQcm9jZXNzPWMoInNjYWxlIiwiY2VudGVyIiksCiAgICAgICAgICAgICAgICB0ckNvbnRyb2wgPSB0cmFpbkNvbnRyb2wobWV0aG9kID0gImN2IiwgbnVtYmVyID0gMTApLAogICAgICAgICAgICAgICAgdHVuZUxlbmd0aCA9IDEwICNDYW1iaWFyIGhpcGVycGFyw6FtZXRyb3MKICAgICAgICAgICAgICAgICkKcmVzdWx0YWRvX2VudHJlbmFtaWVudG80IDwtIHByZWRpY3QobW9kZWxvNCwgZW50cmVuYW1pZW50bykKcmVzdWx0YWRvX3BydWViYTQ8LSBwcmVkaWN0KG1vZGVsbzQsIHBydWViYSkKCiNNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgRW50cmVuYW1pZW50bwptY3JlNCA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG80LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpCm1jcmU0CgojTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZSBsYSBQcnVlYmEKbWNycDQgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19wcnVlYmE0LCBwcnVlYmEkU3BlY2llcykKbWNycDQKYGBgCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5Nb2RlbG8gNS4gUmVkZXMgTmV1cm9uYWxlczwvc3Bhbj4KYGBge3J9Cm1vZGVsbzU8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YSA9IGVudHJlbmFtaWVudG8sCiAgICAgICAgICAgICAgICBtZXRob2QgPSAibm5ldCIsICMgQ2FtYmlhcgogICAgICAgICAgICAgICAgcHJlUHJvY2Vzcz1jKCJzY2FsZSIsImNlbnRlciIpLAogICAgICAgICAgICAgICAgdHJDb250cm9sID0gdHJhaW5Db250cm9sKG1ldGhvZCA9ICJjdiIsIG51bWJlciA9IDEwKSwKICAgICAgICAgICAgICAgIHRyYWNlID1GQUxTRQogICAgICAgICAgICAgICAgKQpyZXN1bHRhZG9fZW50cmVuYW1pZW50bzUgPC0gcHJlZGljdChtb2RlbG81LCBlbnRyZW5hbWllbnRvKQpyZXN1bHRhZG9fcHJ1ZWJhNTwtIHByZWRpY3QobW9kZWxvNSwgcHJ1ZWJhKQoKI01hdHJpeiBkZSBDb25mdXNpw7NuIGRlbCBFbnRyZW5hbWllbnRvCm1jcmU1IDwtIGNvbmZ1c2lvbk1hdHJpeChyZXN1bHRhZG9fZW50cmVuYW1pZW50bzUsIGVudHJlbmFtaWVudG8kU3BlY2llcykKbWNyZTUKCiNNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgUmVzdWx0YWRvIGRlIGxhIFBydWViYQptY3JwNSA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX3BydWViYTUsIHBydWViYSRTcGVjaWVzKQptY3JwNQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBwdXJwbGU7Ij5Nb2RlbG8gNi4gUmFuZG9tIEZvcmVzdDwvc3Bhbj4KYGBge3J9Cm1vZGVsbzY8LSB0cmFpbihTcGVjaWVzIH4gLiwgZGF0YSA9IGVudHJlbmFtaWVudG8sCiAgICAgICAgICAgICAgICBtZXRob2QgPSAicmYiLCAjIENhbWJpYXIKICAgICAgICAgICAgICAgIHByZVByb2Nlc3M9Yygic2NhbGUiLCJjZW50ZXIiKSwKICAgICAgICAgICAgICAgIHRyQ29udHJvbCA9IHRyYWluQ29udHJvbChtZXRob2QgPSAiY3YiLCBudW1iZXIgPSAxMCksCiAgICAgICAgICAgICAgICAjQ2FtYmlhciBoaXBlcnBhcsOhbWV0cm9zCiAgICAgICAgICAgICAgICB0dW5lR3JpZCA9IGV4cGFuZC5ncmlkKG10cnkgPSBjKDIsNCw2KSkgI0hpcGVycGFyw6FtZXRyb3MKICAgICAgICAgICAgICAgICkKcmVzdWx0YWRvX2VudHJlbmFtaWVudG82IDwtIHByZWRpY3QobW9kZWxvNiwgZW50cmVuYW1pZW50bykKcmVzdWx0YWRvX3BydWViYTY8LSBwcmVkaWN0KG1vZGVsbzYsIHBydWViYSkKCiNNYXRyaXogZGUgQ29uZnVzacOzbiBkZWwgRW50cmVuYW1pZW50bwptY3JlNiA8LSBjb25mdXNpb25NYXRyaXgocmVzdWx0YWRvX2VudHJlbmFtaWVudG82LCBlbnRyZW5hbWllbnRvJFNwZWNpZXMpCm1jcmU2CgojTWF0cml6IGRlIENvbmZ1c2nDs24gZGVsIFJlc3VsdGFkbyBkZSBsYSBQcnVlYmEKbWNycDYgPC0gY29uZnVzaW9uTWF0cml4KHJlc3VsdGFkb19wcnVlYmE2LCBwcnVlYmEkU3BlY2llcykKbWNycDYKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogcHVycGxlOyI+UmVzdW1lbiBkZSBSZXN1bHRhZG9zPC9zcGFuPgpgYGB7cn0KcmVzdWx0YWRvcyA8LSBkYXRhLmZyYW1lKAogICJTVk0gTGluZWFsIiA9IGMobWNyZTEkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDEkb3ZlcmFsbFsiQWNjdXJhY3kiXSksCiAgIlNWTSBSYWRpYWwiID0gYyhtY3JlMiRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwMiRvdmVyYWxsWyJBY2N1cmFjeSJdKSwKICAiU1ZNIFBvbGluw7NtaWNvIiA9IGMobWNyZTMkb3ZlcmFsbFsiQWNjdXJhY3kiXSwgbWNycDMkb3ZlcmFsbFsiQWNjdXJhY3kiXSksCiAgIsOBcmJvbCBkZSBEZWNpc2nDs24iID0gYyhtY3JlNCRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwNCRvdmVyYWxsWyJBY2N1cmFjeSJdKSwKICAiUmVkZXMgTmV1cm9uYWxlcyIgPSBjKG1jcmU1JG92ZXJhbGxbIkFjY3VyYWN5Il0sIG1jcnA1JG92ZXJhbGxbIkFjY3VyYWN5Il0pLAogICJCb3NxdWVzIEFsZWF0b3Jpb3MiID0gYyhtY3JlNiRvdmVyYWxsWyJBY2N1cmFjeSJdLCBtY3JwNiRvdmVyYWxsWyJBY2N1cmFjeSJdKQopCnJvd25hbWVzKHJlc3VsdGFkb3MpIDwtIGMoIlByZWNpc2lvbiBkZSBFbnRyZW5hbWllbnRvIiwgIlByZWNpc2lvbiBkZSBQcnVlYmEiKQpyZXN1bHRhZG9zCmBgYAoK