Timing: - CARES Act funds should have been received between July - November 2020 [https://dof.ca.gov/budget/covid-19-information/coronavirus-relief-fund-allocations-for-cities-and-counties/]
Distribution of Pct Change in Outlays
Seems like there are some pretty far right outliers
##
## Call:
## lm(formula = outlays_chng_20_21 ~ log_allocation, data = combined %>%
## filter(outlays_chng_20_21 < 2 & outlays_chng_20_21 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.84816 -0.07705 -0.01547 0.04885 1.66170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.016336 0.030186 -0.541 0.588
## log_allocation 0.003566 0.002265 1.574 0.116
##
## Residual standard error: 0.2178 on 1946 degrees of freedom
## Multiple R-squared: 0.001272, Adjusted R-squared: 0.0007587
## F-statistic: 2.478 on 1 and 1946 DF, p-value: 0.1156
##
## Call:
## lm(formula = outlays_chng_20_21 ~ log_allocation_per_pop, data = combined %>%
## filter(outlays_chng_20_21 < 2 & outlays_chng_20_21 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.84928 -0.07719 -0.01993 0.05212 1.66546
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.029923 0.005429 5.512 4.02e-08 ***
## log_allocation_per_pop 0.286543 1.036171 0.277 0.782
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2179 on 1946 degrees of freedom
## Multiple R-squared: 3.93e-05, Adjusted R-squared: -0.0004746
## F-statistic: 0.07647 on 1 and 1946 DF, p-value: 0.7822
##
## Call:
## lm(formula = outlays_chng_20_21 ~ log_allocation_per_pop, data = combined %>%
## filter(outlays_chng_20_21 < 5 & outlays_chng_20_21 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8538 -0.0807 -0.0235 0.0489 3.6965
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.032682 0.006022 5.427 6.45e-08 ***
## log_allocation_per_pop 0.823921 1.148588 0.717 0.473
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2418 on 1949 degrees of freedom
## Multiple R-squared: 0.0002639, Adjusted R-squared: -0.000249
## F-statistic: 0.5146 on 1 and 1949 DF, p-value: 0.4733
##
## Call:
## lm(formula = outlays_chng_20_22 ~ log_allocation, data = combined %>%
## filter(outlays_chng_20_22 < 2 & outlays_chng_20_22 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.94134 -0.12439 -0.03571 0.07766 1.84838
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.038844 0.038907 0.998 0.318
## log_allocation 0.003576 0.002918 1.225 0.221
##
## Residual standard error: 0.279 on 1933 degrees of freedom
## Multiple R-squared: 0.000776, Adjusted R-squared: 0.0002591
## F-statistic: 1.501 on 1 and 1933 DF, p-value: 0.2206
##
## Call:
## lm(formula = outlays_chng_20_22 ~ log_allocation_per_pop, data = combined %>%
## filter(outlays_chng_20_22 < 2 & outlays_chng_20_22 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93959 -0.12755 -0.03604 0.08071 1.85512
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.084334 0.006974 12.093 <2e-16 ***
## log_allocation_per_pop 0.708332 1.330865 0.532 0.595
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2791 on 1933 degrees of freedom
## Multiple R-squared: 0.0001465, Adjusted R-squared: -0.0003707
## F-statistic: 0.2833 on 1 and 1933 DF, p-value: 0.5946
##
## Call:
## lm(formula = outlays_chng_20_22 ~ log_allocation_per_pop, data = combined %>%
## filter(outlays_chng_20_22 < 5 & outlays_chng_20_22 > -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9620 -0.1458 -0.0564 0.0604 3.6834
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.106715 0.009466 11.274 <2e-16 ***
## log_allocation_per_pop 0.806718 1.810865 0.445 0.656
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.38 on 1948 degrees of freedom
## Multiple R-squared: 0.0001019, Adjusted R-squared: -0.0004114
## F-statistic: 0.1985 on 1 and 1948 DF, p-value: 0.656
##
## Call:
## lm(formula = police_exp_chng_20_22 ~ log_allocation, data = combined %>%
## filter(police_exp_chng_20_22 < 2 & police_exp_chng_20_22 >
## -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.05427 -0.08742 -0.02988 0.03890 1.78111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1020319 0.0351781 2.900 0.00377 **
## log_allocation -0.0007556 0.0026409 -0.286 0.77482
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.254 on 1941 degrees of freedom
## Multiple R-squared: 4.217e-05, Adjusted R-squared: -0.000473
## F-statistic: 0.08186 on 1 and 1941 DF, p-value: 0.7748
##
## Call:
## lm(formula = police_exp_chng_20_22 ~ log_allocation_per_pop,
## data = combined %>% filter(police_exp_chng_20_22 < 2 & police_exp_chng_20_22 >
## -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.05498 -0.08688 -0.03028 0.03956 1.78062
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09386 0.00634 14.803 <2e-16 ***
## log_allocation_per_pop -0.79784 1.20123 -0.664 0.507
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.254 on 1941 degrees of freedom
## Multiple R-squared: 0.0002272, Adjusted R-squared: -0.0002879
## F-statistic: 0.4411 on 1 and 1941 DF, p-value: 0.5067
##
## Call:
## lm(formula = police_exp_chng_20_22 ~ log_allocation_per_pop,
## data = combined %>% filter(police_exp_chng_20_22 < 5 & police_exp_chng_20_22 >
## -2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.06034 -0.09243 -0.03515 0.03629 2.77249
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.099702 0.006943 14.361 <2e-16 ***
## log_allocation_per_pop -1.099615 1.316623 -0.835 0.404
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2784 on 1945 degrees of freedom
## Multiple R-squared: 0.0003585, Adjusted R-squared: -0.0001555
## F-statistic: 0.6975 on 1 and 1945 DF, p-value: 0.4037