1. load libraries
3. Create the EnhancedVolcano plot
EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant_CD4Tcells_vs_Normal_CD4Tcells",
pCutoff = 0.05,
FCcutoff = 1.0)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells,
lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
x = "avg_log2FC",
y = "p_val_adj",
selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9',
'CD80', 'IL1B', 'RPS4Y1',
'IL7R', 'TCF7', 'MKI67', 'CD70',
'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9',
'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL',
'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4',
'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
xlab = bquote(~Log[2]~ 'fold change'),
pCutoff = 0.05,
FCcutoff = 1.5,
pointSize = 3.0,
labSize = 5.0,
boxedLabels = TRUE,
colAlpha = 0.5,
legendPosition = 'right',
legendLabSize = 10,
legendIconSize = 4.0,
drawConnectors = TRUE,
widthConnectors = 0.5,
colConnectors = 'grey50',
arrowheads = FALSE,
max.overlaps = 30)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

library(dplyr)
library(EnhancedVolcano)
# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
arrange(p_val_adj, desc(abs(avg_log2FC)))
# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
pCutoff = 0.05,
FCcutoff = 1.0,
legendPosition = 'right',
labCol = 'black',
labFace = 'bold',
boxedLabels = FALSE, # Set to FALSE to remove boxed labels
pointSize = 3.0,
labSize = 5.0,
col = c('grey70', 'black', 'blue', 'red'), # Customize point colors
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0] # Only label significant genes
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(
filtered_genes,
lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
x = "avg_log2FC",
y = "p_val_adj",
title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
subtitle = "Highlighting differentially expressed genes",
pCutoff = 0.05,
FCcutoff = 1.0,
legendPosition = 'right',
colAlpha = 0.8, # Slight transparency for non-significant points
col = c('grey70', 'black', 'blue', 'red'), # Custom color scheme
gridlines.major = TRUE,
gridlines.minor = FALSE,
selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]
)
Warning: One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

4. Enrichment Analysis-1
# Step-by-Step Guide for Gene Set Enrichment Analysis (GSEA) or Over-Representation Analysis (ORA)
# Load the necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)
# Get upregulated genes based on log2FC and p-value thresholds
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 2 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
# Get downregulated genes based on log2FC and p-value thresholds
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
# Gene Ontology (GO) Enrichment Analysis
# GO enrichment for upregulated genes
go_up <- enrichGO(gene = upregulated_genes$gene,
OrgDb = org.Hs.eg.db,
keyType = "SYMBOL",
ont = "BP", # Biological Process (BP), Molecular Function (MF), Cellular Component (CC)
pAdjustMethod = "BH",
pvalueCutoff = 0.05)
# GO enrichment for downregulated genes
go_down <- enrichGO(gene = downregulated_genes$gene,
OrgDb = org.Hs.eg.db,
keyType = "SYMBOL",
ont = "BP",
pAdjustMethod = "BH",
pvalueCutoff = 0.05)
# Visualize the top enriched GO terms
dotplot(go_up, showCategory = 10, title = "GO Enrichment for Upregulated Genes")

dotplot(go_down, showCategory = 10, title = "GO Enrichment for Downregulated Genes")

# KEGG Pathway Enrichment
# Convert gene symbols to Entrez IDs for KEGG analysis
upregulated_entrez <- bitr(upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:many mapping between keys and columns
Warning: 12.32% of input gene IDs are fail to map...
downregulated_entrez <- bitr(downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:1 mapping between keys and columns
Warning: 4.89% of input gene IDs are fail to map...
# KEGG pathway enrichment for upregulated genes
kegg_up <- enrichKEGG(gene = upregulated_entrez,
organism = "hsa",
pvalueCutoff = 0.05)
# KEGG pathway enrichment for downregulated genes
kegg_down <- enrichKEGG(gene = downregulated_entrez,
organism = "hsa",
pvalueCutoff = 0.05)
# Visualize KEGG pathway results
#dotplot(kegg_up, showCategory = 10, title = "KEGG Pathway Enrichment for Upregulated Genes")
dotplot(kegg_down, showCategory = 10, title = "KEGG Pathway Enrichment for Downregulated Genes")

# Reactome Pathway Enrichment
# Reactome pathway enrichment for upregulated genes
reactome_up <- enrichPathway(gene = upregulated_entrez,
organism = "human",
pvalueCutoff = 0.05)
# Reactome pathway enrichment for downregulated genes
reactome_down <- enrichPathway(gene = downregulated_entrez,
organism = "human",
pvalueCutoff = 0.05)
# Visualize Reactome pathways
#dotplot(reactome_up, showCategory = 10, title = "Reactome Pathway Enrichment for Upregulated Genes")
dotplot(reactome_down, showCategory = 10, title = "Reactome Pathway Enrichment for Downregulated Genes")

# Gene Set Enrichment Analysis (GSEA)
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene # Use the $gene column for gene symbols
gene_list <- sort(gene_list, decreasing = TRUE)
# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list), fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning: 12.98% of input gene IDs are fail to map...
# Ensure the gene list matches the Entrez IDs
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]
# Replace gene symbols with Entrez IDs
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]
# Run GSEA using KEGG pathways
gsea_kegg <- gseKEGG(geneList = gene_list,
organism = "hsa",
pvalueCutoff = 0.05)
using 'fgsea' for GSEA analysis, please cite Korotkevich et al (2019).
preparing geneSet collections...
GSEA analysis...
Warning: There are ties in the preranked stats (0.58% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.no term enriched under specific pvalueCutoff...
# Plot the GSEA results
# gseaplot(gsea_kegg, geneSetID = 1, title = "Top KEGG Pathway")
#
# # Extract the name of the top KEGG pathway
# top_pathway <- gsea_kegg@result[1, "Description"]
#
# # Plot GSEA with the top pathway's name as the title
# gseaplot(gsea_kegg, geneSetID = 1, title = top_pathway)
#
4.2. Enrichment Analysis-2
# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H") # "H" is for Hallmark gene sets
# Get upregulated and downregulated genes based on log2 fold change and adjusted p-value
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 2 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -1 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
# Convert gene symbols to uppercase for consistency
upregulated_genes$gene <- toupper(upregulated_genes$gene)
downregulated_genes$gene <- toupper(downregulated_genes$gene)
# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(downregulated_genes$gene, hallmark_sets$gene_symbol)
# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 97
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 159
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
# Perform enrichment analysis for upregulated genes using Hallmark gene sets
hallmark_up <- enricher(gene = upregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
# Visualize results if available
dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
} else {
cat("No significant enrichment found for upregulated genes.\n")
}
} else {
cat("No upregulated genes overlap with Hallmark gene sets.\n")
}

if (length(downregulated_in_hallmark) > 0) {
# Perform enrichment analysis for downregulated genes using Hallmark gene sets
hallmark_down <- enricher(gene = downregulated_in_hallmark,
TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")], # Ensure TERM2GENE uses correct columns
pvalueCutoff = 0.05)
# Check if results exist
if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
# Visualize results if available
dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
} else {
cat("No significant enrichment found for downregulated genes.\n")
}
} else {
cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
NA
NA
NA
4.3. Hallmark-GSEA
# Gene Set Enrichment Analysis (GSEA) for Hallmark Pathways
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene
gene_list <- sort(gene_list, decreasing = TRUE)
# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list),
fromType = "SYMBOL",
toType = "ENTREZID",
OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Warning: 12.98% of input gene IDs are fail to map...
# Filter out genes without Entrez ID mappings
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]
# Replace gene symbols with Entrez IDs in the gene list
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]
# Run GSEA using Hallmark pathways
gsea_hallmark <- GSEA(geneList = gene_list,
TERM2GENE = hallmark_sets[, c("gs_name", "entrez_gene")],
pvalueCutoff = 0.05)
using 'fgsea' for GSEA analysis, please cite Korotkevich et al (2019).
preparing geneSet collections...
GSEA analysis...
Warning: There are ties in the preranked stats (0.58% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.leading edge analysis...
done...
# Check and visualize GSEA results
if (!is.null(gsea_hallmark) && nrow(gsea_hallmark) > 0) {
# Visualize top GSEA results for Hallmark pathways
dotplot(gsea_hallmark, showCategory = 20, title = "GSEA for Hallmark Pathways")
# Plot enrichment score for the top pathway
gseaplot(gsea_hallmark, geneSetID = 1, title = "Top Hallmark Pathway")
# Extract the name of the top Hallmark pathway
top_hallmark <- gsea_hallmark@result[1, "Description"]
# Plot GSEA with the top pathway's name as the title
gseaplot(gsea_hallmark, geneSetID = 1, title = top_hallmark)
} else {
cat("No significant GSEA results for Hallmark pathways.\n")
}

NA
NA
NA
5. ggplot2 for Volcano
library(ggplot2)
library(ggrepel)
# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, ]
# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, "Upregulated genes",
ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, "Downregulated genes", "Nonsignificant"))
# Create a volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
geom_point(aes(color = color), alpha = 0.7, size = 2) +
# Add labels for top and bottom genes
geom_text_repel(data = top_genes, aes(label = gene), color = "black", vjust = 1, fontface = "bold") +
geom_text_repel(data = bottom_genes, aes(label = gene), color = "black", vjust = -1, fontface = "bold") +
# Customize labels and title
labs(title = "Volcano Plot",
x = "log2 Fold Change",
y = "-log10(p-value)") +
# # Add significance threshold lines
geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
# Set colors for top and bottom genes
scale_color_manual(values = c("Upregulated genes" = "red", "Downregulated genes" = "blue", "Nonsignificant" = "darkgrey")) +
# Customize theme if needed
theme_minimal()

NA
NA
NA
NA
NA
5. ggplot3 for Volcano
# Load necessary libraries
library(ggplot2)
library(ggrepel)
# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 4, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -4, ]
# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5,
"Upregulated genes",
ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5,
"Downregulated genes",
"Nonsignificant"))
# Create the volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
geom_point(aes(color = color), alpha = 0.7, size = 2) +
# Add labels next to the dots without repel lines
geom_text(data = top_genes, aes(label = gene), hjust = -0.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
geom_text(data = bottom_genes, aes(label = gene), hjust = 1.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
# Customize labels and title
labs(title = "Volcano Plot",
x = "log2 Fold Change",
y = "-log10(p-value)") +
# Add significance threshold lines
geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
# Set colors for top and bottom genes
scale_color_manual(values = c("Upregulated genes" = "red",
"Downregulated genes" = "blue",
"Nonsignificant" = "darkgrey")) +
# Customize theme
theme_minimal()

NA
NA
LS0tCnRpdGxlOiAiR2VuZSBFbnJpY2htZW50IEFuYWx5c2lzIChQMl92c19QMykiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgI3JtZGZvcm1hdHM6OnJlYWR0aGVkb3duCiAgaHRtbF9ub3RlYm9vazoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCi0tLQoKIyAxLiBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Kc3VwcHJlc3NQYWNrYWdlU3RhcnR1cE1lc3NhZ2VzKHsKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdyaWRFeHRyYSkKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCiAgCn0pCmBgYAoKIyAyLiBQZXJmb3JtIERFIGFuYWx5c2lzIHVzaW5nIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyBnZW5lcwpgYGB7ciBkYXRhMSwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTJ9CgpNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgPC0gcmVhZC5jc3YoImNvbXBhcmlzb25fUDJfdnNfUDMuY3N2IiwgaGVhZGVyID0gVCkKYGBgCgojIDMuIENyZWF0ZSB0aGUgRW5oYW5jZWRWb2xjYW5vIHBsb3QKYGBge3IgZW5oYW5jZWRWLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9MTZ9CgpFbmhhbmNlZFZvbGNhbm8oTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLAogICAgICAgICAgICAgICAgbGFiID0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGdlbmUsCiAgICAgICAgICAgICAgICB4ID0gImF2Z19sb2cyRkMiLAogICAgICAgICAgICAgICAgeSA9ICJwX3ZhbF9hZGoiLAogICAgICAgICAgICAgICAgdGl0bGUgPSAiTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIiwKICAgICAgICAgICAgICAgIHBDdXRvZmYgPSAwLjA1LAogICAgICAgICAgICAgICAgRkNjdXRvZmYgPSAxLjApCgoKRW5oYW5jZWRWb2xjYW5vKE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywgCiAgICAgICAgICAgICAgICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICAgICAgICAgICAgICAgIHggPSAiYXZnX2xvZzJGQyIsIAogICAgICAgICAgICAgICAgeSA9ICJwX3ZhbF9hZGoiLAogICAgICAgICAgICAgICAgc2VsZWN0TGFiID0gYygnRVBDQU0nLCAnQkNBVDEnLCAnS0lSM0RMMicsICdGT1hNMScsICdUV0lTVDEnLCAnVE5GU0Y5JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdDRDgwJywgICdJTDFCJywgJ1JQUzRZMScsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUw3UicsICdUQ0Y3JywgICdNS0k2NycsICdDRDcwJywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDJSQScsJ1RSQlY2LTInLCAnVFJCVjEwLTMnLCAnVFJCVjQtMicsICdUUkJWOScsICdUUkJWNy05JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdUUkFWMTItMScsICdDRDhCJywgJ0ZDR1IzQScsICdHTkxZJywgJ0ZPWFAzJywgJ1NFTEwnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0dJTUFQMScsICdSSVBPUjInLCAnTEVGMScsICdIT1hDOScsICdTUDUnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnQ0NMMTcnLCAnRVRWNCcsICdUSFkxJywgJ0ZPWEEyJywgJ0lUR0FEJywgJ1MxMDBQJywgJ1RCWDQnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lEMScsICdYQ0wxJywgJ1NPWDInLCAnQ0QyNycsICdDRDI4JywnUExTMycsJ0NENzAnLCdSQUIyNScgLCAnVFJCVjI3JywgJ1RSQlYyJyksCiAgICAgICAgICAgICAgICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICAgICAgICAgICAgICAgIHhsYWIgPSBicXVvdGUofkxvZ1syXX4gJ2ZvbGQgY2hhbmdlJyksCiAgICAgICAgICAgICAgICBwQ3V0b2ZmID0gMC4wNSwKICAgICAgICAgICAgICAgIEZDY3V0b2ZmID0gMS41LCAKICAgICAgICAgICAgICAgIHBvaW50U2l6ZSA9IDMuMCwKICAgICAgICAgICAgICAgIGxhYlNpemUgPSA1LjAsCiAgICAgICAgICAgICAgICBib3hlZExhYmVscyA9IFRSVUUsCiAgICAgICAgICAgICAgICBjb2xBbHBoYSA9IDAuNSwKICAgICAgICAgICAgICAgIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICAgICAgICAgICAgICAgIGxlZ2VuZExhYlNpemUgPSAxMCwKICAgICAgICAgICAgICAgIGxlZ2VuZEljb25TaXplID0gNC4wLAogICAgICAgICAgICAgICAgZHJhd0Nvbm5lY3RvcnMgPSBUUlVFLAogICAgICAgICAgICAgICAgd2lkdGhDb25uZWN0b3JzID0gMC41LAogICAgICAgICAgICAgICAgY29sQ29ubmVjdG9ycyA9ICdncmV5NTAnLAogICAgICAgICAgICAgICAgYXJyb3doZWFkcyA9IEZBTFNFLAogICAgICAgICAgICAgICAgbWF4Lm92ZXJsYXBzID0gMzApCgoKbGlicmFyeShkcGx5cikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCgojIEFzc3VtaW5nIHlvdSBoYXZlIGEgZGF0YSBmcmFtZSBuYW1lZCBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMKIyBGaWx0ZXIgZ2VuZXMgYmFzZWQgb24gbG93ZXN0IHAtdmFsdWVzIGJ1dCBpbmNsdWRlIGFsbCBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGosIGRlc2MoYWJzKGF2Z19sb2cyRkMpKSkKCiMgQ3JlYXRlIHRoZSBFbmhhbmNlZFZvbGNhbm8gcGxvdCB3aXRoIHRoZSBmaWx0ZXJlZCBkYXRhCkVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZzJGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMC4wNSwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBTZXQgdG8gRkFMU0UgdG8gcmVtb3ZlIGJveGVkIGxhYmVscwogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b21pemUgcG9pbnQgY29sb3JzCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjBdICAjIE9ubHkgbGFiZWwgc2lnbmlmaWNhbnQgZ2VuZXMKKQoKCgpFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2cyRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzIChjZWxsIGxpbmVzKSB2cyBOb3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHN1YnRpdGxlID0gIkhpZ2hsaWdodGluZyBkaWZmZXJlbnRpYWxseSBleHByZXNzZWQgZ2VuZXMiLAogIHBDdXRvZmYgPSAwLjA1LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBjb2xBbHBoYSA9IDAuOCwgICMgU2xpZ2h0IHRyYW5zcGFyZW5jeSBmb3Igbm9uLXNpZ25pZmljYW50IHBvaW50cwogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b20gY29sb3Igc2NoZW1lCiAgZ3JpZGxpbmVzLm1ham9yID0gVFJVRSwKICBncmlkbGluZXMubWlub3IgPSBGQUxTRSwKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMF0KKSAKCgpgYGAKCgojIDQuIEVucmljaG1lbnQgQW5hbHlzaXMtMQpgYGB7ciAsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKIyBTdGVwLWJ5LVN0ZXAgR3VpZGUgZm9yIEdlbmUgU2V0IEVucmljaG1lbnQgQW5hbHlzaXMgKEdTRUEpIG9yIE92ZXItUmVwcmVzZW50YXRpb24gQW5hbHlzaXMgKE9SQSkKCiMgTG9hZCB0aGUgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkoZW5yaWNocGxvdCkKbGlicmFyeShSZWFjdG9tZVBBKQoKIyBHZXQgdXByZWd1bGF0ZWQgZ2VuZXMgYmFzZWQgb24gbG9nMkZDIGFuZCBwLXZhbHVlIHRocmVzaG9sZHMKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMiAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjA1LCBdCgojIEdldCBkb3ducmVndWxhdGVkIGdlbmVzIGJhc2VkIG9uIGxvZzJGQyBhbmQgcC12YWx1ZSB0aHJlc2hvbGRzCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDIDwgLTEgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSwgXQoKIyBHZW5lIE9udG9sb2d5IChHTykgRW5yaWNobWVudCBBbmFseXNpcwojIEdPIGVucmljaG1lbnQgZm9yIHVwcmVndWxhdGVkIGdlbmVzCmdvX3VwIDwtIGVucmljaEdPKGdlbmUgPSB1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAKICAgICAgICAgICAgICAgICAgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIAogICAgICAgICAgICAgICAgICBrZXlUeXBlID0gIlNZTUJPTCIsIAogICAgICAgICAgICAgICAgICBvbnQgPSAiQlAiLCAgICMgQmlvbG9naWNhbCBQcm9jZXNzIChCUCksIE1vbGVjdWxhciBGdW5jdGlvbiAoTUYpLCBDZWxsdWxhciBDb21wb25lbnQgKENDKQogICAgICAgICAgICAgICAgICBwQWRqdXN0TWV0aG9kID0gIkJIIiwgCiAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIEdPIGVucmljaG1lbnQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMKZ29fZG93biA8LSBlbnJpY2hHTyhnZW5lID0gZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCAKICAgICAgICAgICAgICAgICAgICBPcmdEYiA9IG9yZy5Icy5lZy5kYiwgCiAgICAgICAgICAgICAgICAgICAga2V5VHlwZSA9ICJTWU1CT0wiLCAKICAgICAgICAgICAgICAgICAgICBvbnQgPSAiQlAiLCAKICAgICAgICAgICAgICAgICAgICBwQWRqdXN0TWV0aG9kID0gIkJIIiwgCiAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgVmlzdWFsaXplIHRoZSB0b3AgZW5yaWNoZWQgR08gdGVybXMKZG90cGxvdChnb191cCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIkdPIEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIikKZG90cGxvdChnb19kb3duLCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSAiR08gRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCgojIEtFR0cgUGF0aHdheSBFbnJpY2htZW50CiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gRW50cmV6IElEcyBmb3IgS0VHRyBhbmFseXNpcwp1cHJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cih1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikkRU5UUkVaSUQKZG93bnJlZ3VsYXRlZF9lbnRyZXogPC0gYml0cihkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsIGZyb21UeXBlID0gIlNZTUJPTCIsIHRvVHlwZSA9ICJFTlRSRVpJRCIsIE9yZ0RiID0gb3JnLkhzLmVnLmRiKSRFTlRSRVpJRAoKIyBLRUdHIHBhdGh3YXkgZW5yaWNobWVudCBmb3IgdXByZWd1bGF0ZWQgZ2VuZXMKa2VnZ191cCA8LSBlbnJpY2hLRUdHKGdlbmUgPSB1cHJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHNhIiwgCiAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQoKIyBLRUdHIHBhdGh3YXkgZW5yaWNobWVudCBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcwprZWdnX2Rvd24gPC0gZW5yaWNoS0VHRyhnZW5lID0gZG93bnJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgICBvcmdhbmlzbSA9ICJoc2EiLCAKICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgVmlzdWFsaXplIEtFR0cgcGF0aHdheSByZXN1bHRzCiNkb3RwbG90KGtlZ2dfdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQpkb3RwbG90KGtlZ2dfZG93biwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIktFR0cgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIikKCiMgUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50CiMgUmVhY3RvbWUgcGF0aHdheSBlbnJpY2htZW50IGZvciB1cHJlZ3VsYXRlZCBnZW5lcwpyZWFjdG9tZV91cCA8LSBlbnJpY2hQYXRod2F5KGdlbmUgPSB1cHJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gImh1bWFuIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgUmVhY3RvbWUgcGF0aHdheSBlbnJpY2htZW50IGZvciBkb3ducmVndWxhdGVkIGdlbmVzCnJlYWN0b21lX2Rvd24gPC0gZW5yaWNoUGF0aHdheShnZW5lID0gZG93bnJlZ3VsYXRlZF9lbnRyZXosIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHVtYW4iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSBSZWFjdG9tZSBwYXRod2F5cwojZG90cGxvdChyZWFjdG9tZV91cCwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIlJlYWN0b21lIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQpkb3RwbG90KHJlYWN0b21lX2Rvd24sIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQoKIyBHZW5lIFNldCBFbnJpY2htZW50IEFuYWx5c2lzIChHU0VBKQojIENyZWF0ZSBhIHJhbmtlZCBsaXN0IG9mIGdlbmVzIChsb2cyRkMgYXMgcmFua2luZyBtZXRyaWMpCmdlbmVfbGlzdCA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQwpuYW1lcyhnZW5lX2xpc3QpIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lICAjIFVzZSB0aGUgJGdlbmUgY29sdW1uIGZvciBnZW5lIHN5bWJvbHMKZ2VuZV9saXN0IDwtIHNvcnQoZ2VuZV9saXN0LCBkZWNyZWFzaW5nID0gVFJVRSkKCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gRW50cmV6IElEcyBmb3IgR1NFQQpnZW5lX2RmIDwtIGJpdHIobmFtZXMoZ2VuZV9saXN0KSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpCgojIEVuc3VyZSB0aGUgZ2VuZSBsaXN0IG1hdGNoZXMgdGhlIEVudHJleiBJRHMKZ2VuZV9saXN0IDwtIGdlbmVfbGlzdFtuYW1lcyhnZW5lX2xpc3QpICVpbiUgZ2VuZV9kZiRTWU1CT0xdCgojIFJlcGxhY2UgZ2VuZSBzeW1ib2xzIHdpdGggRW50cmV6IElEcwpuYW1lcyhnZW5lX2xpc3QpIDwtIGdlbmVfZGYkRU5UUkVaSURbbWF0Y2gobmFtZXMoZ2VuZV9saXN0KSwgZ2VuZV9kZiRTWU1CT0wpXQoKIyBSdW4gR1NFQSB1c2luZyBLRUdHIHBhdGh3YXlzCmdzZWFfa2VnZyA8LSBnc2VLRUdHKGdlbmVMaXN0ID0gZ2VuZV9saXN0LCAKICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHNhIiwgCiAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFBsb3QgdGhlIEdTRUEgcmVzdWx0cwojIGdzZWFwbG90KGdzZWFfa2VnZywgZ2VuZVNldElEID0gMSwgdGl0bGUgPSAiVG9wIEtFR0cgUGF0aHdheSIpCiMgCiMgIyBFeHRyYWN0IHRoZSBuYW1lIG9mIHRoZSB0b3AgS0VHRyBwYXRod2F5CiMgdG9wX3BhdGh3YXkgPC0gZ3NlYV9rZWdnQHJlc3VsdFsxLCAiRGVzY3JpcHRpb24iXQojIAojICMgUGxvdCBHU0VBIHdpdGggdGhlIHRvcCBwYXRod2F5J3MgbmFtZSBhcyB0aGUgdGl0bGUKIyBnc2VhcGxvdChnc2VhX2tlZ2csIGdlbmVTZXRJRCA9IDEsIHRpdGxlID0gdG9wX3BhdGh3YXkpCiMgCgpgYGAKCgoKCiMgNC4yLiBFbnJpY2htZW50IEFuYWx5c2lzLTIKYGBge3IgLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShtc2lnZGJyKQpsaWJyYXJ5KGVucmljaHBsb3QpCgojIExvYWQgSGFsbG1hcmsgZ2VuZSBzZXRzIGZyb20gbXNpZ2RicgpoYWxsbWFya19zZXRzIDwtIG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJIIikgICMgIkgiIGlzIGZvciBIYWxsbWFyayBnZW5lIHNldHMKCiMgR2V0IHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzIGJhc2VkIG9uIGxvZzIgZm9sZCBjaGFuZ2UgYW5kIGFkanVzdGVkIHAtdmFsdWUKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMiAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjA1LCBdCmRvd25yZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDIDwgLTEgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSwgXQoKIyBDb252ZXJ0IGdlbmUgc3ltYm9scyB0byB1cHBlcmNhc2UgZm9yIGNvbnNpc3RlbmN5CnVwcmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcih1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lKQpkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUgPC0gdG91cHBlcihkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUpCgojIENoZWNrIGZvciBvdmVybGFwIGJldHdlZW4geW91ciB1cHJlZ3VsYXRlZC9kb3ducmVndWxhdGVkIGdlbmVzIGFuZCBIYWxsbWFyayBnZW5lIHNldHMKdXByZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KHVwcmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCmRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmsgPC0gaW50ZXJzZWN0KGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgaGFsbG1hcmtfc2V0cyRnZW5lX3N5bWJvbCkKCiMgUHJpbnQgdGhlIG51bWJlciBvZiBvdmVybGFwcGluZyBnZW5lcyBmb3IgYm90aCB1cHJlZ3VsYXRlZCBhbmQgZG93bnJlZ3VsYXRlZCBnZW5lcwpjYXQoIk51bWJlciBvZiB1cHJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKHVwcmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKY2F0KCJOdW1iZXIgb2YgZG93bnJlZ3VsYXRlZCBnZW5lcyBpbiBIYWxsbWFyayBnZW5lIHNldHM6IiwgbGVuZ3RoKGRvd25yZWd1bGF0ZWRfaW5faGFsbG1hcmspLCAiXG4iKQoKIyBJZiB0aGVyZSBhcmUgZ2VuZXMgdG8gYW5hbHl6ZSwgcHJvY2VlZCB3aXRoIGVucmljaG1lbnQgYW5hbHlzaXMKaWYgKGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIHVwcmVndWxhdGVkIGdlbmVzIHVzaW5nIEhhbGxtYXJrIGdlbmUgc2V0cwogIGhhbGxtYXJrX3VwIDwtIGVucmljaGVyKGdlbmUgPSB1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZ2VuZV9zeW1ib2wiKV0sICAjIEVuc3VyZSBURVJNMkdFTkUgdXNlcyBjb3JyZWN0IGNvbHVtbnMKICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya191cCkgJiYgbnJvdyhoYWxsbWFya191cCkgPiAwKSB7CiAgICAjIFZpc3VhbGl6ZSByZXN1bHRzIGlmIGF2YWlsYWJsZQogICAgZG90cGxvdChoYWxsbWFya191cCwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIHVwcmVndWxhdGVkIGdlbmVzLlxuIikKICB9Cn0gZWxzZSB7CiAgY2F0KCJObyB1cHJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKaWYgKGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSA+IDApIHsKICAjIFBlcmZvcm0gZW5yaWNobWVudCBhbmFseXNpcyBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya19kb3duIDwtIGVucmljaGVyKGdlbmUgPSBkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQogICMgQ2hlY2sgaWYgcmVzdWx0cyBleGlzdAogIGlmICghaXMubnVsbChoYWxsbWFya19kb3duKSAmJiBucm93KGhhbGxtYXJrX2Rvd24pID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIGRvdHBsb3QoaGFsbG1hcmtfZG93biwgc2hvd0NhdGVnb3J5ID0gMjAsIHRpdGxlID0gIkhhbGxtYXJrIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgRG93bnJlZ3VsYXRlZCBHZW5lcyIpCiAgfSBlbHNlIHsKICAgIGNhdCgiTm8gc2lnbmlmaWNhbnQgZW5yaWNobWVudCBmb3VuZCBmb3IgZG93bnJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gZG93bnJlZ3VsYXRlZCBnZW5lcyBvdmVybGFwIHdpdGggSGFsbG1hcmsgZ2VuZSBzZXRzLlxuIikKfQoKCgoKCmBgYAojIDQuMy4gSGFsbG1hcmstR1NFQQpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIEdlbmUgU2V0IEVucmljaG1lbnQgQW5hbHlzaXMgKEdTRUEpIGZvciBIYWxsbWFyayBQYXRod2F5cwojIENyZWF0ZSBhIHJhbmtlZCBsaXN0IG9mIGdlbmVzIChsb2cyRkMgYXMgcmFua2luZyBtZXRyaWMpCmdlbmVfbGlzdCA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQwpuYW1lcyhnZW5lX2xpc3QpIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lCmdlbmVfbGlzdCA8LSBzb3J0KGdlbmVfbGlzdCwgZGVjcmVhc2luZyA9IFRSVUUpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIEdTRUEKZ2VuZV9kZiA8LSBiaXRyKG5hbWVzKGdlbmVfbGlzdCksIAogICAgICAgICAgICAgICAgZnJvbVR5cGUgPSAiU1lNQk9MIiwgCiAgICAgICAgICAgICAgICB0b1R5cGUgPSAiRU5UUkVaSUQiLCAKICAgICAgICAgICAgICAgIE9yZ0RiID0gb3JnLkhzLmVnLmRiKQoKIyBGaWx0ZXIgb3V0IGdlbmVzIHdpdGhvdXQgRW50cmV6IElEIG1hcHBpbmdzCmdlbmVfbGlzdCA8LSBnZW5lX2xpc3RbbmFtZXMoZ2VuZV9saXN0KSAlaW4lIGdlbmVfZGYkU1lNQk9MXQoKIyBSZXBsYWNlIGdlbmUgc3ltYm9scyB3aXRoIEVudHJleiBJRHMgaW4gdGhlIGdlbmUgbGlzdApuYW1lcyhnZW5lX2xpc3QpIDwtIGdlbmVfZGYkRU5UUkVaSURbbWF0Y2gobmFtZXMoZ2VuZV9saXN0KSwgZ2VuZV9kZiRTWU1CT0wpXQoKIyBSdW4gR1NFQSB1c2luZyBIYWxsbWFyayBwYXRod2F5cwpnc2VhX2hhbGxtYXJrIDwtIEdTRUEoZ2VuZUxpc3QgPSBnZW5lX2xpc3QsIAogICAgICAgICAgICAgICAgICAgICAgVEVSTTJHRU5FID0gaGFsbG1hcmtfc2V0c1ssIGMoImdzX25hbWUiLCAiZW50cmV6X2dlbmUiKV0sIAogICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgQ2hlY2sgYW5kIHZpc3VhbGl6ZSBHU0VBIHJlc3VsdHMKaWYgKCFpcy5udWxsKGdzZWFfaGFsbG1hcmspICYmIG5yb3coZ3NlYV9oYWxsbWFyaykgPiAwKSB7CiAgIyBWaXN1YWxpemUgdG9wIEdTRUEgcmVzdWx0cyBmb3IgSGFsbG1hcmsgcGF0aHdheXMKICBkb3RwbG90KGdzZWFfaGFsbG1hcmssIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJHU0VBIGZvciBIYWxsbWFyayBQYXRod2F5cyIpCiAgCiAgIyBQbG90IGVucmljaG1lbnQgc2NvcmUgZm9yIHRoZSB0b3AgcGF0aHdheQogIGdzZWFwbG90KGdzZWFfaGFsbG1hcmssIGdlbmVTZXRJRCA9IDEsIHRpdGxlID0gIlRvcCBIYWxsbWFyayBQYXRod2F5IikKICAKICAjIEV4dHJhY3QgdGhlIG5hbWUgb2YgdGhlIHRvcCBIYWxsbWFyayBwYXRod2F5CiAgdG9wX2hhbGxtYXJrIDwtIGdzZWFfaGFsbG1hcmtAcmVzdWx0WzEsICJEZXNjcmlwdGlvbiJdCiAgCiAgIyBQbG90IEdTRUEgd2l0aCB0aGUgdG9wIHBhdGh3YXkncyBuYW1lIGFzIHRoZSB0aXRsZQogIGdzZWFwbG90KGdzZWFfaGFsbG1hcmssIGdlbmVTZXRJRCA9IDEsIHRpdGxlID0gdG9wX2hhbGxtYXJrKQp9IGVsc2UgewogIGNhdCgiTm8gc2lnbmlmaWNhbnQgR1NFQSByZXN1bHRzIGZvciBIYWxsbWFyayBwYXRod2F5cy5cbiIpCn0KCgoKYGBgCgoKCiMgNS4gZ2dwbG90MiBmb3IgVm9sY2FubwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZ2dyZXBlbCkKCiMgSWRlbnRpZnkgdG9wIGFuZCBib3R0b20gZ2VuZXMKdG9wX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wNSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMC41LCBdCmJvdHRvbV9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA8IC0wLjUsIF0KCiMgQ3JlYXRlIGEgbmV3IGNvbHVtbiBmb3IgY29sb3IgYmFzZWQgb24gc2lnbmlmaWNhbmNlCk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRjb2xvciA8LSBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPiAwLjUsICJVcHJlZ3VsYXRlZCBnZW5lcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZShNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA8IC0wLjUsICJEb3ducmVndWxhdGVkIGdlbmVzIiwgIk5vbnNpZ25pZmljYW50IikpCgojIENyZWF0ZSBhIHZvbGNhbm8gcGxvdApnZ3Bsb3QoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCBhZXMoeCA9IGF2Z19sb2cyRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSkpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGNvbG9yKSwgYWxwaGEgPSAwLjcsIHNpemUgPSAyKSArCiAgCiAgIyBBZGQgbGFiZWxzIGZvciB0b3AgYW5kIGJvdHRvbSBnZW5lcwogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gdG9wX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgY29sb3IgPSAiYmxhY2siLCB2anVzdCA9IDEsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgZ2VvbV90ZXh0X3JlcGVsKGRhdGEgPSBib3R0b21fZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCBjb2xvciA9ICJibGFjayIsIHZqdXN0ID0gLTEsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgCiAgIyBDdXN0b21pemUgbGFiZWxzIGFuZCB0aXRsZQogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90IiwKICAgICAgIHggPSAibG9nMiBGb2xkIENoYW5nZSIsCiAgICAgICB5ID0gIi1sb2cxMChwLXZhbHVlKSIpICsKICAKICAjICMgQWRkIHNpZ25pZmljYW5jZSB0aHJlc2hvbGQgbGluZXMKICAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDAwMDEpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygtMC41LCAwLjUpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICAKICAjIFNldCBjb2xvcnMgZm9yIHRvcCBhbmQgYm90dG9tIGdlbmVzCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoIlVwcmVndWxhdGVkIGdlbmVzIiA9ICJyZWQiLCAiRG93bnJlZ3VsYXRlZCBnZW5lcyIgPSAiYmx1ZSIsICJOb25zaWduaWZpY2FudCIgPSAiZGFya2dyZXkiKSkgKwogIAogICMgQ3VzdG9taXplIHRoZW1lIGlmIG5lZWRlZAogIHRoZW1lX21pbmltYWwoKQoKCgoKCmBgYAoKCiMgNS4gZ2dwbG90MyBmb3IgVm9sY2FubwpgYGB7ciAsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQojIExvYWQgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZ2dyZXBlbCkKCiMgSWRlbnRpZnkgdG9wIGFuZCBib3R0b20gZ2VuZXMKdG9wX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wMDAwMSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gNCwgXQpib3R0b21fZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjAwMDAxICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtNCwgXQoKIyBDcmVhdGUgYSBuZXcgY29sdW1uIGZvciBjb2xvciBiYXNlZCBvbiBzaWduaWZpY2FuY2UKTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGNvbG9yIDwtIGlmZWxzZShNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IDAuNSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlVwcmVndWxhdGVkIGdlbmVzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkRvd25yZWd1bGF0ZWQgZ2VuZXMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vbnNpZ25pZmljYW50IikpCgojIENyZWF0ZSB0aGUgdm9sY2FubyBwbG90CmdncGxvdChNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMsIGFlcyh4ID0gYXZnX2xvZzJGQywgeSA9IC1sb2cxMChwX3ZhbF9hZGopKSkgKwogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gY29sb3IpLCBhbHBoYSA9IDAuNywgc2l6ZSA9IDIpICsKICAKICAjIEFkZCBsYWJlbHMgbmV4dCB0byB0aGUgZG90cyB3aXRob3V0IHJlcGVsIGxpbmVzCiAgZ2VvbV90ZXh0KGRhdGEgPSB0b3BfZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCBoanVzdCA9IC0wLjIsIHZqdXN0ID0gMCwgc2l6ZSA9IDMsIGNvbG9yID0gImJsYWNrIiwgZm9udGZhY2UgPSAiYm9sZCIpICsKICBnZW9tX3RleHQoZGF0YSA9IGJvdHRvbV9nZW5lcywgYWVzKGxhYmVsID0gZ2VuZSksIGhqdXN0ID0gMS4yLCB2anVzdCA9IDAsIHNpemUgPSAzLCBjb2xvciA9ICJibGFjayIsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgCiAgIyBDdXN0b21pemUgbGFiZWxzIGFuZCB0aXRsZQogIGxhYnModGl0bGUgPSAiVm9sY2FubyBQbG90IiwKICAgICAgIHggPSAibG9nMiBGb2xkIENoYW5nZSIsCiAgICAgICB5ID0gIi1sb2cxMChwLXZhbHVlKSIpICsKICAKICAjIEFkZCBzaWduaWZpY2FuY2UgdGhyZXNob2xkIGxpbmVzCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gLWxvZzEwKDAuMDAwMDEpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKC0wLjUsIDAuNSksIGxpbmV0eXBlID0gImRhc2hlZCIsIGNvbG9yID0gImJsYWNrIikgKwogIAogICMgU2V0IGNvbG9ycyBmb3IgdG9wIGFuZCBib3R0b20gZ2VuZXMKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzID0gYygiVXByZWd1bGF0ZWQgZ2VuZXMiID0gInJlZCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJEb3ducmVndWxhdGVkIGdlbmVzIiA9ICJibHVlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vbnNpZ25pZmljYW50IiA9ICJkYXJrZ3JleSIpKSArCiAgCiAgIyBDdXN0b21pemUgdGhlbWUKICB0aGVtZV9taW5pbWFsKCkKCgpgYGAKCg==