Teoría

Los Modelos de ecuaciones estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizara patrones compolejos de realaciones entres variables, realizar comapraciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7˚ y 8˚ de dos escuales (Pasteur y Grande-White).

La base de datos está incluida como paquete en R, e incluye las siguientes columnas:

  • sex: Género (1=male,2=female)
  • x1: Percepción visual
  • x2: Juevo con cubos
  • x3: juevo con pastillas/espacial
  • x4: Comrpesión de párrafos
  • x5: Completar oraciones
  • x6: Significados de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas recta y curvas

se busca identificar las relaciones entre las habilidades visual (x1, x2, x3), textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

Instalar paquetes y llamar librerías

#install.packages("lavaan")
library(lavaan)

#install.packages("lavaanPlot")
library(lavaanPlot)

Importar la base de datos

df1 <- HolzingerSwineford1939

Entender la base de datos

summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
head(df1)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5        x6
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333 5.75 1.2857143
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00 1.2857143
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75 0.4285714
## 4  4   1    13     2 Pasteur     7 5.333333 7.75 3.000 2.666667 4.50 2.4285714
## 5  5   2    12     2 Pasteur     7 4.833333 4.75 0.875 2.666667 4.00 2.5714286
## 6  6   2    14     1 Pasteur     7 5.333333 5.00 2.250 1.000000 3.00 0.8571429
##         x7   x8       x9
## 1 3.391304 5.75 6.361111
## 2 3.782609 6.25 7.916667
## 3 3.260870 3.90 4.416667
## 4 3.000000 5.30 4.861111
## 5 3.695652 6.30 5.916667
## 6 4.347826 6.65 7.500000
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...

Tipos de Fórmulas

  1. Regresión (~) variable que depende de otras.
  2. Variables latentes (=~) no se oberva, se infiere
  3. Vairanzas y covarianzas (~~) relaciones entre variables latentes y observada (Varianza: Entre si misma, covarianza: entre otras).
  4. Interceptos (~1) valor esperado cuando las demas variables con cero.

Estrcuturar el modelo

modelo1 <- ' # Regresiones
            # Variables Latentes
            visual =~ x1 + x2 + x3 
            textual =~ x4 + x5 + x6
            velocidad =~ x7 + x8 + x9
            # Varianzas y Covarianzas
            visual ~~ visual
            textual ~~ textual
            velocidad ~~ velocidad 
            visual ~~ textual + velocidad
            textual ~~ velocidad 
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa1 <- sem(modelo1, data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa1, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               918.852
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.931
##   Tucker-Lewis Index (TLI)                       0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3737.745
##   Loglikelihood unrestricted model (H1)      -3695.092
##                                                       
##   Akaike (AIC)                                7517.490
##   Bayesian (BIC)                              7595.339
##   Sample-size adjusted Bayesian (SABIC)       7528.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.092
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.840
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)
# Revisar si es >=0.95. Aceptable entre .90 y .95, deficiente <0.90

Conclusiòn: Modelo Aceptable

Ejemplo 2. Democracia politica e industrializacion en paises en desarrollo (1960 y 1965)

Contexto

La base de datos contiened distintas mediciones sobre la democracia politica e industrializacion en paises en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:

  • y1: Calificaciones sobre libertada de prensa en 1960
  • y2: Libertada de la posicio2n politica en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: Calificaciones sobre libertada de prensa en 1965
  • y6: Libertada de la posicio2n politica en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per capita en 1960
  • x2: Consumo de energia inanimada per capita en 1965
  • x3: Porcentaje de la fuerza laboral en la industria en 1965

Importar la base de datos

df2 <- PoliticalDemocracy

Entender la base de datos

summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
head(df2)
##      y1       y2       y3       y4       y5       y6       y7       y8       x1
## 1  2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2  1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3  7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4  8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6  7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
##         x2       x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...

Estrcuturar el modelo

modelo2 <- ' # Regresiones
            # Variables Latentes
            politica_1965 =~ y1 + y2 + y3 + y4
            politica_1960 =~ y5 + y6 + y7 + y8
            industrializacion_1960 =~ x1 + x2
            industrializacion_1965 =~ x3
            
            # Varianzas y Covarianzas
            politica_1965 ~~ politica_1965
            politica_1960 ~~ politica_1960
            industrializacion_1960 ~~ industrializacion_1960
            industrializacion_1965 ~~ industrializacion_1965
            
            politica_1965 ~~ industrializacion_1960 + industrializacion_1960 + industrializacion_1965
            politica_1960 ~~ industrializacion_1960 + industrializacion_1965 
            industrializacion_1960 ~~ industrializacion_1965             

            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa2 <- sem(modelo2, data=df2)
summary(cfa2)
## lavaan 0.6-19 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        27
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                71.865
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.001
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                             Estimate  Std.Err  z-value  P(>|z|)
##   politica_1965 =~                                             
##     y1                         1.000                           
##     y2                         1.350    0.174    7.750    0.000
##     y3                         1.044    0.149    6.991    0.000
##     y4                         1.296    0.138    9.418    0.000
##   politica_1960 =~                                             
##     y5                         1.000                           
##     y6                         1.258    0.164    7.654    0.000
##     y7                         1.282    0.157    8.143    0.000
##     y8                         1.309    0.153    8.530    0.000
##   industrializacion_1960 =~                                    
##     x1                         1.000                           
##     x2                         2.171    0.138   15.774    0.000
##   industrializacion_1965 =~                                    
##     x3                         1.000                           
## 
## Covariances:
##                             Estimate  Std.Err  z-value  P(>|z|)
##   politica_1965 ~~                                             
##     indstrlzc_1960             0.674    0.208    3.239    0.001
##     indstrlzc_1965             1.085    0.404    2.686    0.007
##   politica_1960 ~~                                             
##     indstrlzc_1960             0.785    0.210    3.738    0.000
##     indstrlzc_1965             1.327    0.402    3.301    0.001
##   industrializacion_1960 ~~                                    
##     indstrlzc_1965             0.819    0.151    5.439    0.000
##   politica_1965 ~~                                             
##     politica_1960              4.496    0.912    4.929    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     politica_1965     4.859    1.089    4.464    0.000
##     politica_1960     4.348    1.051    4.137    0.000
##     indstrlzc_1960    0.450    0.087    5.191    0.000
##     indstrlzc_1965    1.950    0.318    6.124    0.000
##    .y1                1.927    0.393    4.899    0.000
##    .y2                6.520    1.189    5.486    0.000
##    .y3                5.320    0.940    5.660    0.000
##    .y4                2.909    0.613    4.749    0.000
##    .y5                2.387    0.446    5.350    0.000
##    .y6                4.345    0.796    5.457    0.000
##    .y7                3.508    0.668    5.252    0.000
##    .y8                2.946    0.587    5.023    0.000
##    .x1                0.080    0.019    4.163    0.000
##    .x2                0.130    0.070    1.867    0.062
##    .x3                0.000
lavaanPlot(cfa2, coef=TRUE, cov=TRUE)

Actividad 3. Bienestar de los Trabajadores

Instalar paquetes y llamar librerías

#install.packages("readxl")
library(readxl)

Importar la base de datos

df3 <- read_excel("/Users/gilmenchaca/Documents/OTROS/TEC/SEMESTRE 8/RAUL/SEM/Datos_SEM_Eng.xlsx")

Entender la base de datos

summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
head(df3)
## # A tibble: 6 × 51
##      ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1    22    45     5     1     3     2     3     1     3     2     4
## 2     2     1    22    44     4     4     6     5     3     2     3     4     4
## 3     3     1    30    52     7     7     7     7     7     6     7     7     7
## 4     4     1    17    41     5     5     1     1     3     5     3     2     2
## 5     5     1    23    51     7     6     7     6     7     6     7     6     6
## 6     6     0    31    52     3     4     5     4     3     5     4     4     4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## #   RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## #   RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## #   RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## #   RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## #   EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## #   EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …
str(df3)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...

Parte 1. Experiencias de Recuperación

modelo3 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            # Varianzas y Covarianzas
          desapego ~~ desapego
          relajacion ~~ relajacion
          dominio ~~ dominio
          control ~~ control
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa3 <- sem(modelo3, data=df3)
summary(cfa3)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa3, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)
# Revisar si es >=0.95. Aceptable entre .90 y .95, deficiente <0.90

Parte 2. Energia recuperada

modelo32 <- ' # Regresiones
            # Variables Latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07+ EN08
            # Varianzas y Covarianzas
            energia ~~ energia
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa32 <- sem(modelo32, data=df3)
summary(cfa32)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa32, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)
# Revisar si es >=0.95. Aceptable entre .90 y .95, deficiente <0.90

Parte 3. Engagement Laboral

modelo33 <- ' # Regresiones
            # Variables Latentes
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02 + EAB03
            # Varianzas y Covarianzas
            vigor ~~ vigor
            dedicacion ~~ dedicacion
            absorcion ~~ absorcion
            vigor ~~ dedicacion + absorcion
            dedicacion ~~ absorcion
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa33 <- sem(modelo33, data=df3)
summary(cfa33)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa33 <- sem(modelo33, data=df3)
summary(cfa33)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Parte 4. Modelo Completo

modelo34 <- ' # Regresiones
            # Variables Latentes
            desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
            control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion + dominio + control
            vigor =~ EVI01 + EVI02 + EVI03
            dedicacion =~ EDE01 + EDE02 + EDE03
            absorcion =~ EAB01 + EAB02 + EAB03
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07+ EN08
            # Varianzas y Covarianzas
            desapego ~~ desapego
            relajacion ~~ relajacion
            dominio ~~ dominio
            control ~~ control
            energia ~~ energia
            vigor ~~ vigor
            dedicacion ~~ dedicacion
            absorcion ~~ absorcion
            vigor ~~ dedicacion + absorcion
            dedicacion ~~ absorcion
            recuperacion ~~ energia + vigor + dedicacion +absorcion
            energia ~~ vigor + dedicacion + absorcion
            # Intercepto
            '

Generar el Análisis Factorial Confirmatorio

# Para revisar las varianzas y covarianzas 
cfa34 <- sem(modelo34, data=df3)
summary(cfa34)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.858    0.000
##     RPD03             1.144    0.085   13.413    0.000
##     RPD05             1.313    0.086   15.311    0.000
##     RPD06             1.083    0.089   12.218    0.000
##     RPD07             1.229    0.085   14.481    0.000
##     RPD08             1.157    0.086   13.376    0.000
##     RPD09             1.316    0.087   15.162    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.303    0.000
##     RRE04             1.020    0.058   17.611    0.000
##     RRE05             1.051    0.056   18.690    0.000
##     RRE06             1.245    0.074   16.916    0.000
##     RRE07             1.122    0.071   15.848    0.000
##     RRE10             0.815    0.067   12.147    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.178    0.089   13.262    0.000
##     RMA05             1.141    0.087   13.054    0.000
##     RMA06             0.648    0.075    8.623    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.002    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.158    0.000
##     RCO04             0.794    0.044   18.081    0.000
##     RCO05             0.815    0.043   18.912    0.000
##     RCO06             0.837    0.046   18.395    0.000
##     RCO07             0.837    0.046   18.199    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071    0.121    8.858    0.000
##     dominio           0.900    0.129    6.965    0.000
##     control           1.421    0.157    9.066    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.896    0.000
##     EVI03             0.990    0.048   20.656    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.219    0.000
##     EDE03             0.580    0.037   15.851    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.915    0.000
##     EAB03             0.730    0.063   11.619    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.558    0.000
##     EN04              0.996    0.043   22.912    0.000
##     EN05              0.994    0.042   23.892    0.000
##     EN06              0.981    0.041   23.944    0.000
##     EN07              1.044    0.045   23.105    0.000
##     EN08              1.031    0.042   24.449    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767    0.293    9.427    0.000
##     absorcion         2.132    0.248    8.613    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.316    0.000
##   recuperacion ~~                                     
##     energia           1.367    0.197    6.938    0.000
##     vigor             1.007    0.165    6.098    0.000
##     dedicacion        1.049    0.179    5.852    0.000
##     absorcion         0.796    0.151    5.281    0.000
##   vigor ~~                                            
##     energia           2.045    0.249    8.223    0.000
##   dedicacion ~~                                       
##     energia           1.852    0.259    7.139    0.000
##   absorcion ~~                                        
##     energia           1.340    0.220    6.091    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951    0.149    6.400    0.000
##    .relajacion        0.510    0.085    6.021    0.000
##    .dominio           1.191    0.200    5.958    0.000
##    .control           0.699    0.125    5.583    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.859    0.289    9.900    0.000
##     dedicacion        3.458    0.367    9.424    0.000
##     absorcion         2.595    0.301    8.628    0.000
##    .RPD01             1.169    0.120    9.782    0.000
##    .RPD02             0.984    0.107    9.204    0.000
##    .RPD03             1.435    0.147    9.730    0.000
##    .RPD05             0.973    0.109    8.940    0.000
##    .RPD06             1.835    0.184    9.979    0.000
##    .RPD07             1.166    0.124    9.378    0.000
##    .RPD08             1.485    0.152    9.739    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.044    0.116    8.982    0.000
##    .RRE02             0.623    0.067    9.253    0.000
##    .RRE03             0.646    0.072    8.974    0.000
##    .RRE04             0.494    0.056    8.837    0.000
##    .RRE05             0.384    0.047    8.203    0.000
##    .RRE06             0.882    0.097    9.126    0.000
##    .RRE07             0.929    0.098    9.458    0.000
##    .RRE10             1.134    0.112   10.086    0.000
##    .RMA02             1.742    0.175    9.935    0.000
##    .RMA03             1.500    0.156    9.595    0.000
##    .RMA04             0.857    0.098    8.786    0.000
##    .RMA05             0.904    0.101    8.985    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.843    0.094    8.978    0.000
##    .RMA08             0.881    0.098    9.029    0.000
##    .RMA09             1.089    0.115    9.498    0.000
##    .RMA10             1.256    0.131    9.591    0.000
##    .RCO02             0.980    0.104    9.394    0.000
##    .RCO03             0.493    0.058    8.473    0.000
##    .RCO04             0.468    0.052    9.019    0.000
##    .RCO05             0.393    0.046    8.620    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.504    0.056    8.969    0.000
##    .EVI01             0.177    0.036    4.919    0.000
##    .EVI02             0.242    0.038    6.298    0.000
##    .EVI03             1.222    0.124    9.826    0.000
##    .EDE01             0.395    0.065    6.060    0.000
##    .EDE02             0.498    0.066    7.579    0.000
##    .EDE03             0.836    0.085    9.887    0.000
##    .EAB01             0.478    0.099    4.805    0.000
##    .EAB02             1.010    0.109    9.283    0.000
##    .EAB03             1.718    0.176    9.778    0.000
##    .EN01              0.689    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.066    0.000
##    .EN04              0.476    0.051    9.266    0.000
##    .EN05              0.381    0.043    8.945    0.000
##    .EN06              0.367    0.041    8.925    0.000
##    .EN07              0.502    0.055    9.210    0.000
##    .EN08              0.358    0.041    8.708    0.000
##     recuperacion      0.972    0.199    4.896    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Evaluar el Modelo

summary(cfa34, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15426.580
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31069.161
##   Bayesian (BIC)                             31437.135
##   Sample-size adjusted Bayesian (SABIC)      31094.870
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.369
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.858    0.000
##     RPD03             1.144    0.085   13.413    0.000
##     RPD05             1.313    0.086   15.311    0.000
##     RPD06             1.083    0.089   12.218    0.000
##     RPD07             1.229    0.085   14.481    0.000
##     RPD08             1.157    0.086   13.376    0.000
##     RPD09             1.316    0.087   15.162    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.303    0.000
##     RRE04             1.020    0.058   17.611    0.000
##     RRE05             1.051    0.056   18.690    0.000
##     RRE06             1.245    0.074   16.916    0.000
##     RRE07             1.122    0.071   15.848    0.000
##     RRE10             0.815    0.067   12.147    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.178    0.089   13.262    0.000
##     RMA05             1.141    0.087   13.054    0.000
##     RMA06             0.648    0.075    8.623    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.002    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.158    0.000
##     RCO04             0.794    0.044   18.081    0.000
##     RCO05             0.815    0.043   18.912    0.000
##     RCO06             0.837    0.046   18.395    0.000
##     RCO07             0.837    0.046   18.199    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071    0.121    8.858    0.000
##     dominio           0.900    0.129    6.965    0.000
##     control           1.421    0.157    9.066    0.000
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.896    0.000
##     EVI03             0.990    0.048   20.656    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.219    0.000
##     EDE03             0.580    0.037   15.851    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.915    0.000
##     EAB03             0.730    0.063   11.619    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.558    0.000
##     EN04              0.996    0.043   22.912    0.000
##     EN05              0.994    0.042   23.892    0.000
##     EN06              0.981    0.041   23.944    0.000
##     EN07              1.044    0.045   23.105    0.000
##     EN08              1.031    0.042   24.449    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767    0.293    9.427    0.000
##     absorcion         2.132    0.248    8.613    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.316    0.000
##   recuperacion ~~                                     
##     energia           1.367    0.197    6.938    0.000
##     vigor             1.007    0.165    6.098    0.000
##     dedicacion        1.049    0.179    5.852    0.000
##     absorcion         0.796    0.151    5.281    0.000
##   vigor ~~                                            
##     energia           2.045    0.249    8.223    0.000
##   dedicacion ~~                                       
##     energia           1.852    0.259    7.139    0.000
##   absorcion ~~                                        
##     energia           1.340    0.220    6.091    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951    0.149    6.400    0.000
##    .relajacion        0.510    0.085    6.021    0.000
##    .dominio           1.191    0.200    5.958    0.000
##    .control           0.699    0.125    5.583    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.859    0.289    9.900    0.000
##     dedicacion        3.458    0.367    9.424    0.000
##     absorcion         2.595    0.301    8.628    0.000
##    .RPD01             1.169    0.120    9.782    0.000
##    .RPD02             0.984    0.107    9.204    0.000
##    .RPD03             1.435    0.147    9.730    0.000
##    .RPD05             0.973    0.109    8.940    0.000
##    .RPD06             1.835    0.184    9.979    0.000
##    .RPD07             1.166    0.124    9.378    0.000
##    .RPD08             1.485    0.152    9.739    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.044    0.116    8.982    0.000
##    .RRE02             0.623    0.067    9.253    0.000
##    .RRE03             0.646    0.072    8.974    0.000
##    .RRE04             0.494    0.056    8.837    0.000
##    .RRE05             0.384    0.047    8.203    0.000
##    .RRE06             0.882    0.097    9.126    0.000
##    .RRE07             0.929    0.098    9.458    0.000
##    .RRE10             1.134    0.112   10.086    0.000
##    .RMA02             1.742    0.175    9.935    0.000
##    .RMA03             1.500    0.156    9.595    0.000
##    .RMA04             0.857    0.098    8.786    0.000
##    .RMA05             0.904    0.101    8.985    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.843    0.094    8.978    0.000
##    .RMA08             0.881    0.098    9.029    0.000
##    .RMA09             1.089    0.115    9.498    0.000
##    .RMA10             1.256    0.131    9.591    0.000
##    .RCO02             0.980    0.104    9.394    0.000
##    .RCO03             0.493    0.058    8.473    0.000
##    .RCO04             0.468    0.052    9.019    0.000
##    .RCO05             0.393    0.046    8.620    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.504    0.056    8.969    0.000
##    .EVI01             0.177    0.036    4.919    0.000
##    .EVI02             0.242    0.038    6.298    0.000
##    .EVI03             1.222    0.124    9.826    0.000
##    .EDE01             0.395    0.065    6.060    0.000
##    .EDE02             0.498    0.066    7.579    0.000
##    .EDE03             0.836    0.085    9.887    0.000
##    .EAB01             0.478    0.099    4.805    0.000
##    .EAB02             1.010    0.109    9.283    0.000
##    .EAB03             1.718    0.176    9.778    0.000
##    .EN01              0.689    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.066    0.000
##    .EN04              0.476    0.051    9.266    0.000
##    .EN05              0.381    0.043    8.945    0.000
##    .EN06              0.367    0.041    8.925    0.000
##    .EN07              0.502    0.055    9.210    0.000
##    .EN08              0.358    0.041    8.708    0.000
##     recuperacion      0.972    0.199    4.896    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)
# Revisar si es >=0.95. Aceptable entre .90 y .95, deficiente <0.90
LS0tCnRpdGxlOiAiU0VNIgphdXRob3I6IEdpbGJlcnRvIE1lbmNhaGNhIEEwMTE3Nzg5OQpkYXRlOiAiMjAyNS0wMi0xNyIKb3V0cHV0OgogICAgaHRtbF9kb2N1bWVudDoKICAgICAgdG9jOiBUUlVFCiAgICAgIHRvY19mbG9hdDogVFJVRQogICAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICAgIHRoZW1lOiBqb3VybmFsCi0tLQoKIVtdKC9Vc2Vycy9naWxtZW5jaGFjYS9Eb2N1bWVudHMvT1RST1MvVEVDL1NFTUVTVFJFIDgvUkFVTC9TRU0vU2Nob29sLWVkdWNhdGlvbi1sZWFybmluZy0xNzUwNTg3LWguanBnKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBUZW9yw61hIDwvc3Bhbj4KTG9zICoqTW9kZWxvcyBkZSBlY3VhY2lvbmVzIGVzdHJ1Y3R1cmFsZXMgKFNFTSkqKiBlcyB1bmEgdMOpY25pY2EgZGUgYW7DoWxpc2lzIGRlIGVzdGFkw61zdGljYSBtdWx0aXZhcmlhZGEsIHF1ZSBwZXJtaXRlIGFuYWxpemFyYSBwYXRyb25lcyBjb21wb2xlam9zIGRlIHJlYWxhY2lvbmVzIGVudHJlcyB2YXJpYWJsZXMsICByZWFsaXphciBjb21hcHJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MsIHkgdmFsaWRhciBtb2RlbG9zIHRlw7NyaWNvcyB5IGVtcMOtcmljb3MuCgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEVqZW1wbG8gMS4gRXN0dWRpbyBkZSBIb2x6aW5nZXIgeSBTd2luZWZvcmQgKDE5MzkpIDwvc3Bhbj4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IENvbnRleHRvIDwvc3Bhbj4KSG9semluZ2VyIHkgU3dpbmVmb3JkIHJlYWxpemFyb24gZXjDoW1lbmVzIGRlIGhhYmlsaWRhZCBtZW50YWwgYSBhZG9sZXNjZW50ZXMgZGUgN8uaIHkgOMuaIGRlIGRvcyBlc2N1YWxlcyAoUGFzdGV1ciB5IEdyYW5kZS1XaGl0ZSkuICAKCkxhIGJhc2UgZGUgZGF0b3MgZXN0w6EgaW5jbHVpZGEgY29tbyBwYXF1ZXRlIGVuIFIsIGUgaW5jbHV5ZSBsYXMgc2lndWllbnRlcyBjb2x1bW5hczoKCiogc2V4OiBHw6luZXJvICgxPW1hbGUsMj1mZW1hbGUpCiogeDE6IFBlcmNlcGNpw7NuIHZpc3VhbAoqIHgyOiBKdWV2byBjb24gY3Vib3MgCiogeDM6IGp1ZXZvIGNvbiBwYXN0aWxsYXMvZXNwYWNpYWwKKiB4NDogQ29tcnBlc2nDs24gZGUgcMOhcnJhZm9zCiogeDU6IENvbXBsZXRhciBvcmFjaW9uZXMKKiB4NjogU2lnbmlmaWNhZG9zIGRlIHBhbGFicmFzCiogeDc6IFN1bWFzIGFjZWxlcmFkYXMgCiogeDg6IENvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zIAoqIHg5OiBEaXNjcmltaW5hY2nDs24gYWNlbGVyYWRhIGRlIG1hecO6c2N1bGFzIHJlY3RhIHkgY3VydmFzCgpzZSBidXNjYSBpZGVudGlmaWNhciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgaGFiaWxpZGFkZXMgdmlzdWFsICh4MSwgeDIsIHgzKSwgdGV4dHVhbCAoeDQsIHg1LCB4NikgeSB2ZWxvY2lkYWQgKHg3LCB4OCwgeDkpIGRlIGxvcyBhZG9sZXNjZW50ZXMuCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1UUlVFfQojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuIikKbGlicmFyeShsYXZhYW4pCgojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuUGxvdCIpCmxpYnJhcnkobGF2YWFuUGxvdCkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5CmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGRmMSkKaGVhZChkZjEpCnN0cihkZjEpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gVGlwb3MgZGUgRsOzcm11bGFzIDwvc3Bhbj4KMS4gUmVncmVzacOzbiAofikgdmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYXMuCjIuIFZhcmlhYmxlcyBsYXRlbnRlcyAoPX4pIG5vIHNlIG9iZXJ2YSwgc2UgaW5maWVyZQozLiBWYWlyYW56YXMgeSBjb3ZhcmlhbnphcyAofn4pIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzIGxhdGVudGVzIHkgb2JzZXJ2YWRhIChWYXJpYW56YTogRW50cmUgc2kgbWlzbWEsIGNvdmFyaWFuemE6IGVudHJlIG90cmFzKS4KNC4gSW50ZXJjZXB0b3MgKH4xKSB2YWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbWFzIHZhcmlhYmxlcyBjb24gY2Vyby4gCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBFc3RyY3V0dXJhciBlbCBtb2RlbG8gPC9zcGFuPgpgYGB7cn0KbW9kZWxvMSA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMKICAgICAgICAgICAgdmlzdWFsID1+IHgxICsgeDIgKyB4MyAKICAgICAgICAgICAgdGV4dHVhbCA9fiB4NCArIHg1ICsgeDYKICAgICAgICAgICAgdmVsb2NpZGFkID1+IHg3ICsgeDggKyB4OQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICAgIHZpc3VhbCB+fiB2aXN1YWwKICAgICAgICAgICAgdGV4dHVhbCB+fiB0ZXh0dWFsCiAgICAgICAgICAgIHZlbG9jaWRhZCB+fiB2ZWxvY2lkYWQgCiAgICAgICAgICAgIHZpc3VhbCB+fiB0ZXh0dWFsICsgdmVsb2NpZGFkCiAgICAgICAgICAgIHRleHR1YWwgfn4gdmVsb2NpZGFkIAogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyA8L3NwYW4+CmBgYHtyfQojIFBhcmEgcmV2aXNhciBsYXMgdmFyaWFuemFzIHkgY292YXJpYW56YXMgCmNmYTEgPC0gc2VtKG1vZGVsbzEsIGRhdGE9ZGYxKQpzdW1tYXJ5KGNmYTEpCgpsYXZhYW5QbG90KGNmYTEsIGNvZWY9VFJVRSwgY292PVRSVUUpCiAgCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBFdmFsdWFyIGVsIE1vZGVsbyA8L3NwYW4+CgpgYGB7cn0Kc3VtbWFyeShjZmExLCBmaXQubWVhc3VyZXM9VFJVRSkKIyBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkKIyBSZXZpc2FyIHNpIGVzID49MC45NS4gQWNlcHRhYmxlIGVudHJlIC45MCB5IC45NSwgZGVmaWNpZW50ZSA8MC45MApgYGAKQ29uY2x1c2nDsm46ICoqTW9kZWxvIEFjZXB0YWJsZSoqCgoKCgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBFamVtcGxvIDIuIERlbW9jcmFjaWEgcG9saXRpY2EgZSBpbmR1c3RyaWFsaXphY2lvbiBlbiBwYWlzZXMgZW4gZGVzYXJyb2xsbyAoMTk2MCB5IDE5NjUpIDwvc3Bhbj4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IENvbnRleHRvIDwvc3Bhbj4KTGEgYmFzZSBkZSBkYXRvcyBjb250aWVuZWQgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgZGVtb2NyYWNpYSBwb2xpdGljYSBlIGluZHVzdHJpYWxpemFjaW9uIGVuIHBhaXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuICAKCkxhIHRhYmxhIGluY2x1eWUgbG9zIHNpZ3VpZW50ZXMgZGF0b3M6CgoqIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZGEgZGUgcHJlbnNhIGVuIDE5NjAKKiB5MjogTGliZXJ0YWRhIGRlIGxhIHBvc2ljaW8ybiBwb2xpdGljYSBlbiAxOTYwIAoqIHkzOiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2MAoqIHk0OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2MCAKKiB5NTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWRhIGRlIHByZW5zYSBlbiAxOTY1CiogeTY6IExpYmVydGFkYSBkZSBsYSBwb3NpY2lvMm4gcG9saXRpY2EgZW4gMTk2NSAKKiB5NzogSW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIGVuIDE5NjUKKiB5ODogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjUKKiB4MTogUElCIHBlciBjYXBpdGEgZW4gMTk2MAoqIHgyOiBDb25zdW1vIGRlIGVuZXJnaWEgaW5hbmltYWRhIHBlciBjYXBpdGEgZW4gMTk2NQoqIHgzOiBQb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSBsYWJvcmFsIGVuIGxhIGluZHVzdHJpYSBlbiAxOTY1IAoKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CgpgYGB7cn0KZGYyIDwtIFBvbGl0aWNhbERlbW9jcmFjeQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZjIpCmhlYWQoZGYyKQpzdHIoZGYyKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEVzdHJjdXR1cmFyIGVsIG1vZGVsbyA8L3NwYW4+CmBgYHtyfQptb2RlbG8yIDwtICcgIyBSZWdyZXNpb25lcwogICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICBwb2xpdGljYV8xOTY1ID1+IHkxICsgeTIgKyB5MyArIHk0CiAgICAgICAgICAgIHBvbGl0aWNhXzE5NjAgPX4geTUgKyB5NiArIHk3ICsgeTgKICAgICAgICAgICAgaW5kdXN0cmlhbGl6YWNpb25fMTk2MCA9fiB4MSArIHgyCiAgICAgICAgICAgIGluZHVzdHJpYWxpemFjaW9uXzE5NjUgPX4geDMKICAgICAgICAgICAgCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgcG9saXRpY2FfMTk2NSB+fiBwb2xpdGljYV8xOTY1CiAgICAgICAgICAgIHBvbGl0aWNhXzE5NjAgfn4gcG9saXRpY2FfMTk2MAogICAgICAgICAgICBpbmR1c3RyaWFsaXphY2lvbl8xOTYwIH5+IGluZHVzdHJpYWxpemFjaW9uXzE5NjAKICAgICAgICAgICAgaW5kdXN0cmlhbGl6YWNpb25fMTk2NSB+fiBpbmR1c3RyaWFsaXphY2lvbl8xOTY1CiAgICAgICAgICAgIAogICAgICAgICAgICBwb2xpdGljYV8xOTY1IH5+IGluZHVzdHJpYWxpemFjaW9uXzE5NjAgKyBpbmR1c3RyaWFsaXphY2lvbl8xOTYwICsgaW5kdXN0cmlhbGl6YWNpb25fMTk2NQogICAgICAgICAgICBwb2xpdGljYV8xOTYwIH5+IGluZHVzdHJpYWxpemFjaW9uXzE5NjAgKyBpbmR1c3RyaWFsaXphY2lvbl8xOTY1IAogICAgICAgICAgICBpbmR1c3RyaWFsaXphY2lvbl8xOTYwIH5+IGluZHVzdHJpYWxpemFjaW9uXzE5NjUgICAgICAgICAgICAgCgogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyA8L3NwYW4+CmBgYHtyfQojIFBhcmEgcmV2aXNhciBsYXMgdmFyaWFuemFzIHkgY292YXJpYW56YXMgCmNmYTIgPC0gc2VtKG1vZGVsbzIsIGRhdGE9ZGYyKQpzdW1tYXJ5KGNmYTIpCgpsYXZhYW5QbG90KGNmYTIsIGNvZWY9VFJVRSwgY292PVRSVUUpCiAgCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBBY3RpdmlkYWQgMy4gQmllbmVzdGFyIGRlIGxvcyBUcmFiYWphZG9yZXM8L3NwYW4+CgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzIDwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcGFnZWQucHJpbnQ9RkFMU0V9CiNpbnN0YWxsLnBhY2thZ2VzKCJyZWFkeGwiKQpsaWJyYXJ5KHJlYWR4bCkKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4KYGBge3J9CmRmMyA8LSByZWFkX2V4Y2VsKCIvVXNlcnMvZ2lsbWVuY2hhY2EvRG9jdW1lbnRzL09UUk9TL1RFQy9TRU1FU1RSRSA4L1JBVUwvU0VNL0RhdG9zX1NFTV9FbmcueGxzeCIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGRmMykKaGVhZChkZjMpCnN0cihkZjMpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIFJlY3VwZXJhY2nDs24gPC9zcGFuPgoKYGBge3J9Cm1vZGVsbzMgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMAogICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwCiAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3CiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbAogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzCiAgICAgICAgICBkZXNhcGVnbyB+fiBkZXNhcGVnbwogICAgICAgICAgcmVsYWphY2lvbiB+fiByZWxhamFjaW9uCiAgICAgICAgICBkb21pbmlvIH5+IGRvbWluaW8KICAgICAgICAgIGNvbnRyb2wgfn4gY29udHJvbAogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyA8L3NwYW4+CmBgYHtyfQojIFBhcmEgcmV2aXNhciBsYXMgdmFyaWFuemFzIHkgY292YXJpYW56YXMgCmNmYTMgPC0gc2VtKG1vZGVsbzMsIGRhdGE9ZGYzKQpzdW1tYXJ5KGNmYTMpCgpsYXZhYW5QbG90KGNmYTMsIGNvZWY9VFJVRSwgY292PVRSVUUpCiAgCmBgYAoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEV2YWx1YXIgZWwgTW9kZWxvIDwvc3Bhbj4KCmBgYHtyfQpzdW1tYXJ5KGNmYTMsIGZpdC5tZWFzdXJlcz1UUlVFKQojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKQojIFJldmlzYXIgc2kgZXMgPj0wLjk1LiBBY2VwdGFibGUgZW50cmUgLjkwIHkgLjk1LCBkZWZpY2llbnRlIDwwLjkwCmBgYAoKCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gUGFydGUgMi4gRW5lcmdpYSByZWN1cGVyYWRhIDwvc3Bhbj4KCgpgYGB7cn0KbW9kZWxvMzIgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3KyBFTjA4CiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgZW5lcmdpYSB+fiBlbmVyZ2lhCiAgICAgICAgICAgICMgSW50ZXJjZXB0bwogICAgICAgICAgICAnCmBgYAoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IEdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIDwvc3Bhbj4KYGBge3J9CiMgUGFyYSByZXZpc2FyIGxhcyB2YXJpYW56YXMgeSBjb3ZhcmlhbnphcyAKY2ZhMzIgPC0gc2VtKG1vZGVsbzMyLCBkYXRhPWRmMykKc3VtbWFyeShjZmEzMikKCmxhdmFhblBsb3QoY2ZhMywgY29lZj1UUlVFLCBjb3Y9VFJVRSkKICAKYGBgCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gRXZhbHVhciBlbCBNb2RlbG8gPC9zcGFuPgoKYGBge3J9CnN1bW1hcnkoY2ZhMzIsIGZpdC5tZWFzdXJlcz1UUlVFKQojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKQojIFJldmlzYXIgc2kgZXMgPj0wLjk1LiBBY2VwdGFibGUgZW50cmUgLjkwIHkgLjk1LCBkZWZpY2llbnRlIDwwLjkwCmBgYAoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlOyI+IFBhcnRlIDMuIEVuZ2FnZW1lbnQgTGFib3JhbCA8L3NwYW4+CgpgYGB7cn0KbW9kZWxvMzMgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMwogICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMwogICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgdmlnb3Igfn4gdmlnb3IKICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBkZWRpY2FjaW9uCiAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24KICAgICAgICAgICAgdmlnb3Igfn4gZGVkaWNhY2lvbiArIGFic29yY2lvbgogICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGFic29yY2lvbgogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBHZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyA8L3NwYW4+CmBgYHtyfQojIFBhcmEgcmV2aXNhciBsYXMgdmFyaWFuemFzIHkgY292YXJpYW56YXMgCmNmYTMzIDwtIHNlbShtb2RlbG8zMywgZGF0YT1kZjMpCnN1bW1hcnkoY2ZhMzMpCgpsYXZhYW5QbG90KGNmYTMsIGNvZWY9VFJVRSwgY292PVRSVUUpCiAgCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gPC9zcGFuPgpgYGB7cn0KIyBQYXJhIHJldmlzYXIgbGFzIHZhcmlhbnphcyB5IGNvdmFyaWFuemFzIApjZmEzMyA8LSBzZW0obW9kZWxvMzMsIGRhdGE9ZGYzKQpzdW1tYXJ5KGNmYTMzKQoKbGF2YWFuUGxvdChjZmEzLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQogIApgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZTsiPiBQYXJ0ZSA0LiBNb2RlbG8gQ29tcGxldG8gPC9zcGFuPgoKCmBgYHtyfQptb2RlbG8zNCA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMKICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwCiAgICAgICAgICAgIHJlbGFqYWNpb24gPX4gUlJFMDIgKyBSUkUwMyArIFJSRTA0ICsgUlJFMDUgKyBSUkUwNiArIFJSRTA3ICsgUlJFMTAKICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAKICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcKICAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sCiAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMwogICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMwogICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzCiAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3KyBFTjA4CiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMKICAgICAgICAgICAgZGVzYXBlZ28gfn4gZGVzYXBlZ28KICAgICAgICAgICAgcmVsYWphY2lvbiB+fiByZWxhamFjaW9uCiAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbwogICAgICAgICAgICBjb250cm9sIH5+IGNvbnRyb2wKICAgICAgICAgICAgZW5lcmdpYSB+fiBlbmVyZ2lhCiAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yCiAgICAgICAgICAgIGRlZGljYWNpb24gfn4gZGVkaWNhY2lvbgogICAgICAgICAgICBhYnNvcmNpb24gfn4gYWJzb3JjaW9uCiAgICAgICAgICAgIHZpZ29yIH5+IGRlZGljYWNpb24gKyBhYnNvcmNpb24KICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBhYnNvcmNpb24KICAgICAgICAgICAgcmVjdXBlcmFjaW9uIH5+IGVuZXJnaWEgKyB2aWdvciArIGRlZGljYWNpb24gK2Fic29yY2lvbgogICAgICAgICAgICBlbmVyZ2lhIH5+IHZpZ29yICsgZGVkaWNhY2lvbiArIGFic29yY2lvbgogICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgJwoKYGBgCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gR2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gPC9zcGFuPgpgYGB7cn0KIyBQYXJhIHJldmlzYXIgbGFzIHZhcmlhbnphcyB5IGNvdmFyaWFuemFzIApjZmEzNCA8LSBzZW0obW9kZWxvMzQsIGRhdGE9ZGYzKQpzdW1tYXJ5KGNmYTM0KQoKbGF2YWFuUGxvdChjZmEzLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQogIApgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWU7Ij4gRXZhbHVhciBlbCBNb2RlbG8gPC9zcGFuPgoKYGBge3J9CnN1bW1hcnkoY2ZhMzQsIGZpdC5tZWFzdXJlcz1UUlVFKQojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKQojIFJldmlzYXIgc2kgZXMgPj0wLjk1LiBBY2VwdGFibGUgZW50cmUgLjkwIHkgLjk1LCBkZWZpY2llbnRlIDwwLjkwCmBgYAo=