Ejemplo en clase

imagen_path <- file.choose()

#Cargar la imagen con knitr::include_graphics
knitr::include_graphics(imagen_path)

Teoría

Los Modelos de ecuaciones estructurales (ESM) es una técnica de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos y validar modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7º y 8º de dos escuelas (Pasteur y Grand-White)

La siguiente base de datos estan incluida como paquete en R, e incluye las siguientes columnas: * sex: Género (1=male, 2=female) * x1: Percepción visual * x2: Juego con cubos * x3: Juego con pastillas/espacial * x4: Comprensión de parrafos * x5: Completar oraciones * x6: Significado de palabras * x7: Sumas aceleradas * x8: Conteo acelerado de puntos * x9: Discriminacion acelerada de mayusculas rectas y curvas

se busca identificar laas relaciones entre los habitantes visual (x1,x2,x3), textual (x4,x5,x6) y velocidad

librerias

#install.packages("lavaan")
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
#install.packages("lavaanPlot")
library(lavaanPlot)

Importar base de datos

df1 <- HolzingerSwineford1939
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
head(df1)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5        x6
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333 5.75 1.2857143
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00 1.2857143
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75 0.4285714
## 4  4   1    13     2 Pasteur     7 5.333333 7.75 3.000 2.666667 4.50 2.4285714
## 5  5   2    12     2 Pasteur     7 4.833333 4.75 0.875 2.666667 4.00 2.5714286
## 6  6   2    14     1 Pasteur     7 5.333333 5.00 2.250 1.000000 3.00 0.8571429
##         x7   x8       x9
## 1 3.391304 5.75 6.361111
## 2 3.782609 6.25 7.916667
## 3 3.260870 3.90 4.416667
## 4 3.000000 5.30 4.861111
## 5 3.695652 6.30 5.916667
## 6 4.347826 6.65 7.500000

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras
  2. Variables Latentes (=~) No se observa, se infiere
  3. Varianzas y Covarianzas () Relaciones entre variables latentes y observada (Varianza entre si misma, Covarianza es entre otras)
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero

Estructurar el Modelo

modelo1 <- ' # Regresiones
            # Variables Latentes 
            visual =~ x1 + x2 + x3
            textual =~ x4 + x5 + x6
            velocidad =~ x7 + x8 + x9
            # Varianzas y Covarianzas
            visual ~~ visual 
            textual ~~ textual
            velocidad ~~velocidad
            visual~~ textual+velocidad 
            textual~~velocidad 
            # Intercepto
          '

Análisis Factorial Confirmatorio (CFA)

cfa1 <- sem(modelo1, data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Ejercicio 1. Democracia politica e industrializacion

Contexto

la base de datos contiene distintas mendiciones sobre la democracia politica e indutrializacion en paises en desarrollo durante 1960 y 1965.

la tabla incliye lo sisguinetes datos:

  • y1: Calificaciones sobre libertad de prensa en 1960
  • y2: Libertad de la oposición política en 1960
  • y3: Imparcialidad de elecciones en 1960
  • y4: Eficacia de la legislatura electa en 1960
  • y5: calificaciones sobre libertad de prensa en 1965
  • y6: Libertad de la oposición política en 1965
  • y7: Imparcialidad de elecciones en 1965
  • y8: Eficacia de la legislatura electa en 1965
  • x1: PIB per Cápita en 1960
  • x2: Consumo de energía inanimada per cápita en 1960
  • x3: Porcentaje de la furza laboral emn la industria en 1960

Importar base de datos

df2 <- PoliticalDemocracy
summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
head(df2)
##      y1       y2       y3       y4       y5       y6       y7       y8       x1
## 1  2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2  1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3  7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4  8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6  7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
##         x2       x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras
  2. Variables Latentes (=~) No se observa, se infiere
  3. Varianzas y Covarianzas () Relaciones entre variables latentes y observada (Varianza entre si misma, Covarianza es entre otras)
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero
modelo2 <- ' # Regresiones
            # Variables Latentes 
            primero =~ y1 + y2 + y3 + y4
            segundo =~ y5 + y6 + y7 + y8
            demo =~ x1 + x2 + x3
            # Varianzas y Covarianzas
            # Intercepto
          '
cfa2 <- sem(modelo2, data=df2)
summary(cfa2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   primero =~                                          
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   segundo =~                                          
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
##   demo =~                                             
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   primero ~~                                          
##     segundo           4.487    0.911    4.924    0.000
##     demo              0.660    0.206    3.202    0.001
##   segundo ~~                                          
##     demo              0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     primero           4.845    1.088    4.453    0.000
##     segundo           4.345    1.051    4.134    0.000
##     demo              0.448    0.087    5.169    0.000
lavaanPlot(cfa2, coef=TRUE, cov=TRUE)

Evaluar el modelo

summary(cfa2, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.953
##   Tucker-Lewis Index (TLI)                       0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3179.918
##   Bayesian (BIC)                              3237.855
##   Sample-size adjusted Bayesian (SABIC)       3159.062
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.101
##   90 Percent confidence interval - lower         0.061
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: RMSEA <= 0.050                    0.021
##   P-value H_0: RMSEA >= 0.080                    0.827
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   primero =~                                          
##     y1                1.000                           
##     y2                1.354    0.175    7.755    0.000
##     y3                1.044    0.150    6.961    0.000
##     y4                1.300    0.138    9.412    0.000
##   segundo =~                                          
##     y5                1.000                           
##     y6                1.258    0.164    7.651    0.000
##     y7                1.282    0.158    8.137    0.000
##     y8                1.310    0.154    8.529    0.000
##   demo =~                                             
##     x1                1.000                           
##     x2                2.182    0.139   15.714    0.000
##     x3                1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   primero ~~                                          
##     segundo           4.487    0.911    4.924    0.000
##     demo              0.660    0.206    3.202    0.001
##   segundo ~~                                          
##     demo              0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
##     primero           4.845    1.088    4.453    0.000
##     segundo           4.345    1.051    4.134    0.000
##     demo              0.448    0.087    5.169    0.000
#Revisar los valores de Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)
#Excelente si es >= 0.95, aceptable entre 0.90 y 0.95, deficiente < 0.90

cargar base de datos

# Instalar y cargar el paquete necesario (si no lo has hecho previamente)
library(readxl)

# Seleccionar el archivo usando un cuadro de diálogo
ruta_archivo <- file.choose()

# Leer el archivo Excel seleccionado
df3 <- read_xlsx(ruta_archivo)

# Si es necesario, convertir a data frame
df3 <- as.data.frame(df3)
summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
str(df3)
## 'data.frame':    223 obs. of  51 variables:
##  $ ID   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num  1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num  22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num  45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num  5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num  1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num  3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num  2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num  3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num  1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num  3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num  2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num  4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num  6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num  6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num  6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num  6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num  6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num  6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num  6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num  4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num  5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num  5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num  5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num  6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num  4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num  5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num  3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num  7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num  7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num  7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num  7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num  7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num  7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num  5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num  6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num  7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num  6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num  5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num  5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num  5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num  6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num  6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num  6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num  6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num  6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num  7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num  7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num  7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num  7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num  6 5 6 5 6 5 7 3 5 0 ...
head(df3)
##   ID GEN EXPER EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10 RRE02
## 1  1   1    22   45     5     1     3     2     3     1     3     2     4     6
## 2  2   1    22   44     4     4     6     5     3     2     3     4     4     6
## 3  3   1    30   52     7     7     7     7     7     6     7     7     7     7
## 4  4   1    17   41     5     5     1     1     3     5     3     2     2     6
## 5  5   1    23   51     7     6     7     6     7     6     7     6     6     7
## 6  6   0    31   52     3     4     5     4     3     5     4     4     4     5
##   RRE03 RRE04 RRE05 RRE06 RRE07 RRE10 RMA02 RMA03 RMA04 RMA05 RMA06 RMA07 RMA08
## 1     6     6     6     6     6     6     4     5     5     5     6     4     5
## 2     6     6     6     6     6     6     6     6     5     5     6     6     6
## 3     7     7     7     7     7     7     4     5     6     6     7     6     4
## 4     6     6     6     6     6     6     3     4     4     4     6     5     4
## 5     7     7     7     7     7     7     4     4     4     4     5     4     4
## 6     4     4     5     4     4     4     7     7     5     6     4     5     6
##   RMA09 RMA10 RCO02 RCO03 RCO04 RCO05 RCO06 RCO07 EN01 EN02 EN04 EN05 EN06 EN07
## 1     3     7     7     7     7     7     7     5    6    7    6    5    5    5
## 2     5     5     7     7     7     7     7     7    6    6    6    5    5    5
## 3     4     5     7     7     7     7     7     7    7    7    7    7    7    7
## 4     3     4     5     5     6     6     6     6    4    4    4    5    5    2
## 5     5     5     7     7     7     7     7     7    6    6    6    6    6    6
## 6     4     5     6     5     4     4     4     4    4    4    4    5    3    4
##   EN08 EVI01 EVI02 EVI03 EDE01 EDE02 EDE03 EAB01 EAB02 EAB03
## 1    6     6     6     6     6     7     7     7     7     6
## 2    5     5     5     6     6     6     7     7     7     5
## 3    7     7     7     6     6     7     7     7     7     6
## 4    5     5     6     7     5     6     7     6     6     5
## 5    6     6     6     6     7     7     7     7     7     6
## 6    4     4     4     4     6     5     5     5     5     5

Parte 3. Engagement Laboral

modelo31 <- ' # Regresiones
            #Variables latentes
            desapego =~ RPD01 + RPD02 +RPD03 +  RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
            relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
            dominio=~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10 
            control=~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
            recuperacion =~ desapego + relajacion +dominio + control
            # Varianzas y Covarianzas
           desapego~~desapego
           relajacion~~relajacion
           dominio~~dominio
           control~~control
            # Intercepto
          '

Generar el Analisis

cfa3<- sem(modelo31, data=df3)
summary(cfa3)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(cfa3, coef=TRUE, cov=TRUE)

Evaluar el modelo

summary(cfa3, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
# Revisar los valores de Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)195
#Excelente si es >= 0.95, Aceptable entre 0.90 y 0.95, Deficiente< 0.90

Parte 3. Engagement Laboral

modelo32 <- ' # Regresiones
            #Variables latentes
            energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08 
            # Varianzas y Covarianzas
           energia~~energia
            # Intercepto
          '

Generar el Analisis

cfa32 <- sem(modelo32, data=df3)
summary(cfa32)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
lavaanPlot(cfa32, coef=TRUE, cov=TRUE)

Evaluar el modelo

summary(cfa32, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
# Revisar los valores de Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)195
#Excelente si es >= 0.95, Aceptable entre 0.90 y 0.95, Deficiente< 0.90

Parte 3. Engagement Laboral

modelo33 <- ' # Regresiones
              # Variables Latentes
              vigor =~ EVI01 + EVI02 + EVI03
              dedicacion =~ EDE01 + EDE02 + EDE03
              absorcion =~ EAB01 + EAB02 + EAB03
              # Varianzas y Covarianza
              vigor ~~ vigor 
              dedicacion ~~ dedicacion
              absorcion ~~ absorcion
              vigor~~ dedicacion + absorcion
              dedicacion~~absorcion
              # Intercepto
          '

Generar analisis Factorial Confirmatorio

cfa33 <- sem(modelo33, data=df3)
summary(cfa33)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa33, coef=TRUE, cov=TRUE)

Evaluar completo

summary(cfa33, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
# Revisar los valores de Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)195
#Excelente si es >= 0.95, Aceptable entre 0.90 y 0.95, Deficiente< 0.90

Parte 4. Modelo completo

modelo34 <- ' # Regresiones
              # Variables Latentes
              desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
              relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
              dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
              control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
              recuperacion =~ desapego + relajacion + dominio + control
              energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
              vigor =~ EVI01 + EVI02 + EVI03
              dedicacion =~ EDE01 + EDE02 + EDE03
              absorcion =~ EAB01 + EAB02 + EAB03
              # Varianzas y Covarianza
              desapego ~~ desapego
              relajacion ~ relajacion
              dominio ~~ dominio
              control ~~ control
              energia ~~ energia
              vigor ~ vigor
              dedicacion ~~ dedicacion
              absorcion ~~ absorcion
              vigor ~~ dedicacion + absorcion
              dedicacion ~~ absorcion
              # Intercepto
          '

Generar analisis factorial confirmatorio

cfa34 <- sem(modelo34, data=df3)
## Warning: lavaan->lav_lavaan_step11_estoptim():  
##    Model estimation FAILED! Returning starting values.
summary(cfa34)
## lavaan 0.6-19 did NOT end normally after 10000 iterations
## ** WARNING ** Estimates below are most likely unreliable
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209       NA                  
##     RPD03             1.144       NA                  
##     RPD05             1.314       NA                  
##     RPD06             1.083       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.157       NA                  
##     RPD09             1.316       NA                  
##     RPD10             1.343       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121       NA                  
##     RRE04             1.020       NA                  
##     RRE05             1.051       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.122       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.140       NA                  
##     RMA06             0.647       NA                  
##     RMA07             1.104       NA                  
##     RMA08             1.110       NA                  
##     RMA09             1.030       NA                  
##     RMA10             1.057       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946       NA                  
##     RCO04             0.794       NA                  
##     RCO05             0.815       NA                  
##     RCO06             0.837       NA                  
##     RCO07             0.837       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.072       NA                  
##     dominio           0.900       NA                  
##     control           1.420       NA                  
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.025       NA                  
##     EN04              0.997       NA                  
##     EN05              0.994       NA                  
##     EN06              0.982       NA                  
##     EN07              1.044       NA                  
##     EN08              1.030       NA                  
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.984       NA                  
##     EVI03             0.995       NA                  
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912       NA                  
##     EDE03             0.580       NA                  
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708       NA                  
##     EAB03             0.730       NA                  
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   relajacion ~                                        
##     relajacion       -0.493       NA                  
##   vigor ~                                             
##     vigor            13.358       NA                  
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .vigor ~~                                            
##     dedicacion        2.826       NA                  
##     absorcion         2.293       NA                  
##   dedicacion ~~                                       
##     absorcion         2.939       NA                  
##   recuperacion ~~                                     
##     energia           1.367       NA                  
##     dedicacion        0.083       NA                  
##     absorcion         0.012       NA                  
##   energia ~~                                          
##     dedicacion       -0.105       NA                  
##     absorcion        -0.249       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951       NA                  
##    .dominio           1.192       NA                  
##    .control           0.701       NA                  
##     energia           2.823       NA                  
##     dedicacion        3.581       NA                  
##     absorcion         2.852       NA                  
##    .RPD01             1.169       NA                  
##    .RPD02             0.984       NA                  
##    .RPD03             1.435       NA                  
##    .RPD05             0.973       NA                  
##    .RPD06             1.834       NA                  
##    .RPD07             1.166       NA                  
##    .RPD08             1.484       NA                  
##    .RPD09             1.037       NA                  
##    .RPD10             1.045       NA                  
##    .RRE02             0.624       NA                  
##    .RRE03             0.646       NA                  
##    .RRE04             0.494       NA                  
##    .RRE05             0.384       NA                  
##    .RRE06             0.882       NA                  
##    .RRE07             0.928       NA                  
##    .RRE10             1.134       NA                  
##    .RMA02             1.741       NA                  
##    .RMA03             1.500       NA                  
##    .RMA04             0.858       NA                  
##    .RMA05             0.904       NA                  
##    .RMA06             1.627       NA                  
##    .RMA07             0.843       NA                  
##    .RMA08             0.881       NA                  
##    .RMA09             1.089       NA                  
##    .RMA10             1.256       NA                  
##    .RCO02             0.980       NA                  
##    .RCO03             0.492       NA                  
##    .RCO04             0.468       NA                  
##    .RCO05             0.393       NA                  
##    .RCO06             0.480       NA                  
##    .RCO07             0.504       NA                  
##    .EN01              0.689       NA                  
##    .EN02              0.445       NA                  
##    .EN04              0.472       NA                  
##    .EN05              0.381       NA                  
##    .EN06              0.362       NA                  
##    .EN07              0.502       NA                  
##    .EN08              0.361       NA                  
##    .EVI01             0.196       NA                  
##    .EVI02             0.227       NA                  
##    .EVI03             1.212       NA                  
##    .EDE01             0.394       NA                  
##    .EDE02             0.500       NA                  
##    .EDE03             0.836       NA                  
##    .EAB01             0.478       NA                  
##    .EAB02             1.009       NA                  
##    .EAB03             1.718       NA                  
##    .relajacion        0.508       NA                  
##     recuperacion      0.972       NA                  
##    .vigor             2.839       NA
lavaanPlot(cfa34, coef=TRUE, cov=TRUE)

Evaluar Modelo

summary(cfa34, fit.measures=TRUE)
## Warning: lavaan->lav_object_summary():  
##    fit measures not available if model did not converge
## lavaan 0.6-19 did NOT end normally after 10000 iterations
## ** WARNING ** Estimates below are most likely unreliable
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209       NA                  
##     RPD03             1.144       NA                  
##     RPD05             1.314       NA                  
##     RPD06             1.083       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.157       NA                  
##     RPD09             1.316       NA                  
##     RPD10             1.343       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121       NA                  
##     RRE04             1.020       NA                  
##     RRE05             1.051       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.122       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.140       NA                  
##     RMA06             0.647       NA                  
##     RMA07             1.104       NA                  
##     RMA08             1.110       NA                  
##     RMA09             1.030       NA                  
##     RMA10             1.057       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946       NA                  
##     RCO04             0.794       NA                  
##     RCO05             0.815       NA                  
##     RCO06             0.837       NA                  
##     RCO07             0.837       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.072       NA                  
##     dominio           0.900       NA                  
##     control           1.420       NA                  
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.025       NA                  
##     EN04              0.997       NA                  
##     EN05              0.994       NA                  
##     EN06              0.982       NA                  
##     EN07              1.044       NA                  
##     EN08              1.030       NA                  
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.984       NA                  
##     EVI03             0.995       NA                  
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.912       NA                  
##     EDE03             0.580       NA                  
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708       NA                  
##     EAB03             0.730       NA                  
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   relajacion ~                                        
##     relajacion       -0.493       NA                  
##   vigor ~                                             
##     vigor            13.358       NA                  
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .vigor ~~                                            
##     dedicacion        2.826       NA                  
##     absorcion         2.293       NA                  
##   dedicacion ~~                                       
##     absorcion         2.939       NA                  
##   recuperacion ~~                                     
##     energia           1.367       NA                  
##     dedicacion        0.083       NA                  
##     absorcion         0.012       NA                  
##   energia ~~                                          
##     dedicacion       -0.105       NA                  
##     absorcion        -0.249       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951       NA                  
##    .dominio           1.192       NA                  
##    .control           0.701       NA                  
##     energia           2.823       NA                  
##     dedicacion        3.581       NA                  
##     absorcion         2.852       NA                  
##    .RPD01             1.169       NA                  
##    .RPD02             0.984       NA                  
##    .RPD03             1.435       NA                  
##    .RPD05             0.973       NA                  
##    .RPD06             1.834       NA                  
##    .RPD07             1.166       NA                  
##    .RPD08             1.484       NA                  
##    .RPD09             1.037       NA                  
##    .RPD10             1.045       NA                  
##    .RRE02             0.624       NA                  
##    .RRE03             0.646       NA                  
##    .RRE04             0.494       NA                  
##    .RRE05             0.384       NA                  
##    .RRE06             0.882       NA                  
##    .RRE07             0.928       NA                  
##    .RRE10             1.134       NA                  
##    .RMA02             1.741       NA                  
##    .RMA03             1.500       NA                  
##    .RMA04             0.858       NA                  
##    .RMA05             0.904       NA                  
##    .RMA06             1.627       NA                  
##    .RMA07             0.843       NA                  
##    .RMA08             0.881       NA                  
##    .RMA09             1.089       NA                  
##    .RMA10             1.256       NA                  
##    .RCO02             0.980       NA                  
##    .RCO03             0.492       NA                  
##    .RCO04             0.468       NA                  
##    .RCO05             0.393       NA                  
##    .RCO06             0.480       NA                  
##    .RCO07             0.504       NA                  
##    .EN01              0.689       NA                  
##    .EN02              0.445       NA                  
##    .EN04              0.472       NA                  
##    .EN05              0.381       NA                  
##    .EN06              0.362       NA                  
##    .EN07              0.502       NA                  
##    .EN08              0.361       NA                  
##    .EVI01             0.196       NA                  
##    .EVI02             0.227       NA                  
##    .EVI03             1.212       NA                  
##    .EDE01             0.394       NA                  
##    .EDE02             0.500       NA                  
##    .EDE03             0.836       NA                  
##    .EAB01             0.478       NA                  
##    .EAB02             1.009       NA                  
##    .EAB03             1.718       NA                  
##    .relajacion        0.508       NA                  
##     recuperacion      0.972       NA                  
##    .vigor             2.839       NA
# Revisar los valores de Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI)195
#Excelente si es >= 0.95, Aceptable entre 0.90 y 0.95, Deficiente< 0.90
LS0tDQp0aXRsZTogIkFjdGl2aWRhZCAzIg0KYXV0aG9yOiAiTWFyaWFubyBCYXV0aXN0YSBBMDE2NTY5MDQiDQpkYXRlOiAiMjAyNS0wMi0xOSINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogam91cm5hbA0KICAgIA0KLS0tDQoNCiMgRWplbXBsbyBlbiBjbGFzZQ0KYGBge3J9DQppbWFnZW5fcGF0aCA8LSBmaWxlLmNob29zZSgpDQoNCiNDYXJnYXIgbGEgaW1hZ2VuIGNvbiBrbml0cjo6aW5jbHVkZV9ncmFwaGljcw0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoaW1hZ2VuX3BhdGgpDQpgYGANCg0KDQojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlRlb3LDrWE8L3NwYW4+DQpMb3MgKk1vZGVsb3MgZGUgZWN1YWNpb25lcyBlc3RydWN0dXJhbGVzIChFU00pKiBlcyB1bmEgdMOpY25pY2EgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MgeSB2YWxpZGFyIG1vZGVsb3MgdGXDs3JpY29zIHkgZW1ww61yaWNvcy4NCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FamVtcGxvIDEuIEVzdHVkaW8gZGUgSG9semluZ2VyIHkgU3dpbmVmb3JkICgxOTM5KTwvc3Bhbj4NCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+Q29udGV4dG88L3NwYW4+DQpIb2x6aW5nZXIgeSBTd2luZWZvcmQgcmVhbGl6YXJvbiBleMOhbWVuZXMgZGUgaGFiaWxpZGFkIG1lbnRhbCBhIGFkb2xlc2NlbnRlcyBkZSA3wrogeSA4wrogZGUgZG9zIGVzY3VlbGFzIChQYXN0ZXVyIHkgR3JhbmQtV2hpdGUpDQoNCkxhIHNpZ3VpZW50ZSBiYXNlIGRlIGRhdG9zIGVzdGFuIGluY2x1aWRhIGNvbW8gcGFxdWV0ZSBlbiBSLCBlIGluY2x1eWUgbGFzIHNpZ3VpZW50ZXMgY29sdW1uYXM6DQoqIHNleDogR8OpbmVybyAoMT1tYWxlLCAyPWZlbWFsZSkNCiogeDE6IFBlcmNlcGNpw7NuIHZpc3VhbA0KKiB4MjogSnVlZ28gY29uIGN1Ym9zDQoqIHgzOiBKdWVnbyBjb24gcGFzdGlsbGFzL2VzcGFjaWFsDQoqIHg0OiBDb21wcmVuc2nDs24gZGUgcGFycmFmb3MNCiogeDU6IENvbXBsZXRhciBvcmFjaW9uZXMNCiogeDY6IFNpZ25pZmljYWRvIGRlIHBhbGFicmFzDQoqIHg3OiBTdW1hcyBhY2VsZXJhZGFzDQoqIHg4OiBDb250ZW8gYWNlbGVyYWRvIGRlIHB1bnRvcw0KKiB4OTogRGlzY3JpbWluYWNpb24gYWNlbGVyYWRhIGRlIG1heXVzY3VsYXMgcmVjdGFzIHkgY3VydmFzDQoNCnNlIGJ1c2NhIGlkZW50aWZpY2FyIGxhYXMgcmVsYWNpb25lcyBlbnRyZSBsb3MgaGFiaXRhbnRlcyB2aXN1YWwgKHgxLHgyLHgzKSwgdGV4dHVhbCAoeDQseDUseDYpIHkgdmVsb2NpZGFkIA0KDQoNCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+bGlicmVyaWFzPC9zcGFuPg0KDQpgYGB7cn0NCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW4iKQ0KbGlicmFyeShsYXZhYW4pDQojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuUGxvdCIpDQpsaWJyYXJ5KGxhdmFhblBsb3QpDQpgYGANCg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsYWNrOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCg0KYGBge3J9DQpkZjEgPC0gSG9semluZ2VyU3dpbmVmb3JkMTkzOQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShkZjEpDQpoZWFkKGRmMSkNCmBgYA0KDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmxhY2s7Ij5UaXBvcyBkZSBGw7NybXVsYXM8L3NwYW4+DQoxLiBSZWdyZXNpw7NuICh+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcw0KMi4gVmFyaWFibGVzIExhdGVudGVzICg9fikgTm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZQ0KMy4gVmFyaWFuemFzIHkgQ292YXJpYW56YXMgKCkgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGEgKFZhcmlhbnphIGVudHJlIHNpIG1pc21hLCBDb3ZhcmlhbnphIGVzIGVudHJlIG90cmFzKQ0KNC4gSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBzb24gY2Vybw0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsYWNrOyI+RXN0cnVjdHVyYXIgZWwgTW9kZWxvPC9zcGFuPg0KDQoNCmBgYHtyfQ0KDQptb2RlbG8xIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMgDQogICAgICAgICAgICB2aXN1YWwgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICB0ZXh0dWFsID1+IHg0ICsgeDUgKyB4Ng0KICAgICAgICAgICAgdmVsb2NpZGFkID1+IHg3ICsgeDggKyB4OQ0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICAgdmlzdWFsIH5+IHZpc3VhbCANCiAgICAgICAgICAgIHRleHR1YWwgfn4gdGV4dHVhbA0KICAgICAgICAgICAgdmVsb2NpZGFkIH5+dmVsb2NpZGFkDQogICAgICAgICAgICB2aXN1YWx+fiB0ZXh0dWFsK3ZlbG9jaWRhZCANCiAgICAgICAgICAgIHRleHR1YWx+fnZlbG9jaWRhZCANCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICcNCg0KYGBgDQoNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibGFjazsiPkFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKTwvc3Bhbj4NCg0KYGBge3J9DQpjZmExIDwtIHNlbShtb2RlbG8xLCBkYXRhPWRmMSkNCnN1bW1hcnkoY2ZhMSkNCmxhdmFhblBsb3QoY2ZhMSwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQoNCg0KIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FamVyY2ljaW8gMS4gRGVtb2NyYWNpYSBwb2xpdGljYSBlIGluZHVzdHJpYWxpemFjaW9uPC9zcGFuPg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5Db250ZXh0bzwvc3Bhbj4NCmxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lbmRpY2lvbmVzIHNvYnJlIGxhIGRlbW9jcmFjaWEgcG9saXRpY2EgZSBpbmR1dHJpYWxpemFjaW9uIGVuIHBhaXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuDQoNCmxhIHRhYmxhIGluY2xpeWUgbG8gc2lzZ3VpbmV0ZXMgZGF0b3M6DQoNCg0KKiB5MTogQ2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjANCiogeTI6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjANCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwDQoqIHk0OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2MA0KKiB5NTogY2FsaWZpY2FjaW9uZXMgc29icmUgbGliZXJ0YWQgZGUgcHJlbnNhIGVuIDE5NjUNCiogeTY6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjUNCiogeTc6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTY1DQoqIHk4OiBFZmljYWNpYSBkZSBsYSBsZWdpc2xhdHVyYSBlbGVjdGEgZW4gMTk2NQ0KKiB4MTogUElCIHBlciBDw6FwaXRhIGVuIDE5NjANCiogeDI6IENvbnN1bW8gZGUgZW5lcmfDrWEgaW5hbmltYWRhIHBlciBjw6FwaXRhIGVuIDE5NjANCiogeDM6IFBvcmNlbnRhamUgZGUgbGEgZnVyemEgbGFib3JhbCBlbW4gbGEgaW5kdXN0cmlhIGVuIDE5NjANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW1wb3J0YXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCg0KYGBge3J9DQpkZjIgPC0gUG9saXRpY2FsRGVtb2NyYWN5DQpgYGANCg0KDQpgYGB7cn0NCnN1bW1hcnkoZGYyKQ0KaGVhZChkZjIpDQpgYGANCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmxhY2s7Ij5UaXBvcyBkZSBGw7NybXVsYXM8L3NwYW4+DQoxLiBSZWdyZXNpw7NuICh+KSBWYXJpYWJsZSBxdWUgZGVwZW5kZSBkZSBvdHJhcw0KMi4gVmFyaWFibGVzIExhdGVudGVzICg9fikgTm8gc2Ugb2JzZXJ2YSwgc2UgaW5maWVyZQ0KMy4gVmFyaWFuemFzIHkgQ292YXJpYW56YXMgKCkgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGEgKFZhcmlhbnphIGVudHJlIHNpIG1pc21hLCBDb3ZhcmlhbnphIGVzIGVudHJlIG90cmFzKQ0KNC4gSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBzb24gY2Vybw0KDQpgYGB7cn0NCg0KbW9kZWxvMiA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzIA0KICAgICAgICAgICAgcHJpbWVybyA9fiB5MSArIHkyICsgeTMgKyB5NA0KICAgICAgICAgICAgc2VndW5kbyA9fiB5NSArIHk2ICsgeTcgKyB5OA0KICAgICAgICAgICAgZGVtbyA9fiB4MSArIHgyICsgeDMNCiAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YXMNCiAgICAgICAgICAgICMgSW50ZXJjZXB0bw0KICAgICAgICAgICcNCg0KYGBgDQoNCg0KYGBge3J9DQpjZmEyIDwtIHNlbShtb2RlbG8yLCBkYXRhPWRmMikNCnN1bW1hcnkoY2ZhMikNCmxhdmFhblBsb3QoY2ZhMiwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibGFjazsiPkV2YWx1YXIgZWwgbW9kZWxvPC9zcGFuPg0KYGBge3J9DQoNCnN1bW1hcnkoY2ZhMiwgZml0Lm1lYXN1cmVzPVRSVUUpDQojUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkNCiNFeGNlbGVudGUgc2kgZXMgPj0gMC45NSwgYWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1LCBkZWZpY2llbnRlIDwgMC45MA0KDQpgYGANCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmxhY2s7Ij5jYXJnYXIgYmFzZSBkZSBkYXRvczwvc3Bhbj4NCmBgYHtyfQ0KIyBJbnN0YWxhciB5IGNhcmdhciBlbCBwYXF1ZXRlIG5lY2VzYXJpbyAoc2kgbm8gbG8gaGFzIGhlY2hvIHByZXZpYW1lbnRlKQ0KbGlicmFyeShyZWFkeGwpDQoNCiMgU2VsZWNjaW9uYXIgZWwgYXJjaGl2byB1c2FuZG8gdW4gY3VhZHJvIGRlIGRpw6Fsb2dvDQpydXRhX2FyY2hpdm8gPC0gZmlsZS5jaG9vc2UoKQ0KDQojIExlZXIgZWwgYXJjaGl2byBFeGNlbCBzZWxlY2Npb25hZG8NCmRmMyA8LSByZWFkX3hsc3gocnV0YV9hcmNoaXZvKQ0KDQojIFNpIGVzIG5lY2VzYXJpbywgY29udmVydGlyIGEgZGF0YSBmcmFtZQ0KZGYzIDwtIGFzLmRhdGEuZnJhbWUoZGYzKQ0KDQoNCmBgYA0KYGBge3J9DQpzdW1tYXJ5KGRmMykNCnN0cihkZjMpDQpoZWFkKGRmMykNCmBgYA0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+UGFydGUgMy4gRW5nYWdlbWVudCBMYWJvcmFsPC9zcGFuPg0KYGBge3J9DQptb2RlbG8zMSA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICNWYXJpYWJsZXMgbGF0ZW50ZXMNCiAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgK1JQRDAzICsgIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgcmVsYWphY2lvbiA9fiBSUkUwMiArIFJSRTAzICsgUlJFMDQgKyBSUkUwNSArIFJSRTA2ICsgUlJFMDcgKyBSUkUxMA0KICAgICAgICAgICAgZG9taW5pbz1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMCANCiAgICAgICAgICAgIGNvbnRyb2w9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcNCiAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gK2RvbWluaW8gKyBjb250cm9sDQogICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemFzDQogICAgICAgICAgIGRlc2FwZWdvfn5kZXNhcGVnbw0KICAgICAgICAgICByZWxhamFjaW9ufn5yZWxhamFjaW9uDQogICAgICAgICAgIGRvbWluaW9+fmRvbWluaW8NCiAgICAgICAgICAgY29udHJvbH5+Y29udHJvbA0KICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQogICAgICAgICAgJw0KYGBgDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5HZW5lcmFyIGVsIEFuYWxpc2lzICAgIDwvc3Bhbj4NCg0KYGBge3J9DQpjZmEzPC0gc2VtKG1vZGVsbzMxLCBkYXRhPWRmMykNCnN1bW1hcnkoY2ZhMykNCmxhdmFhblBsb3QoY2ZhMywgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FdmFsdWFyIGVsIG1vZGVsbyA8L3NwYW4+DQpgYGB7cn0NCnN1bW1hcnkoY2ZhMywgZml0Lm1lYXN1cmVzPVRSVUUpDQojIFJldmlzYXIgbG9zIHZhbG9yZXMgZGUgQ29tcGFyYXRpdmUgRml0IEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpMTk1DQojRXhjZWxlbnRlIHNpIGVzID49IDAuOTUsIEFjZXB0YWJsZSBlbnRyZSAwLjkwIHkgMC45NSwgRGVmaWNpZW50ZTwgMC45MA0KYGBgDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5QYXJ0ZSAzLiBFbmdhZ2VtZW50IExhYm9yYWw8L3NwYW4+DQpgYGB7cn0NCm1vZGVsbzMyIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgI1ZhcmlhYmxlcyBsYXRlbnRlcw0KICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4IA0KICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3Zhcmlhbnphcw0KICAgICAgICAgICBlbmVyZ2lhfn5lbmVyZ2lhDQogICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAnDQpgYGANCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkdlbmVyYXIgZWwgQW5hbGlzaXMgICAgPC9zcGFuPg0KDQpgYGB7cn0NCmNmYTMyIDwtIHNlbShtb2RlbG8zMiwgZGF0YT1kZjMpDQpzdW1tYXJ5KGNmYTMyKQ0KbGF2YWFuUGxvdChjZmEzMiwgY29lZj1UUlVFLCBjb3Y9VFJVRSkNCmBgYA0KDQoNCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+RXZhbHVhciBlbCBtb2RlbG8gPC9zcGFuPg0KYGBge3J9DQpzdW1tYXJ5KGNmYTMyLCBmaXQubWVhc3VyZXM9VFJVRSkNCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkxOTUNCiNFeGNlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1LCBEZWZpY2llbnRlPCAwLjkwDQpgYGANCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPlBhcnRlIDMuIEVuZ2FnZW1lbnQgTGFib3JhbDwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvMzMgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMw0KICAgICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzDQogICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQ0KICAgICAgICAgICAgICB2aWdvciB+fiB2aWdvciANCiAgICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBkZWRpY2FjaW9uDQogICAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24NCiAgICAgICAgICAgICAgdmlnb3J+fiBkZWRpY2FjaW9uICsgYWJzb3JjaW9uDQogICAgICAgICAgICAgIGRlZGljYWNpb25+fmFic29yY2lvbg0KICAgICAgICAgICAgICAjwqBJbnRlcmNlcHRvDQogICAgICAgICAgJw0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPiBHZW5lcmFyIGFuYWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIDwvc3Bhbj4NCg0KYGBge3J9DQpjZmEzMyA8LSBzZW0obW9kZWxvMzMsIGRhdGE9ZGYzKQ0Kc3VtbWFyeShjZmEzMykNCmxhdmFhblBsb3QoY2ZhMzMsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+IEV2YWx1YXIgY29tcGxldG8gPC9zcGFuPg0KDQpgYGB7cn0NCnN1bW1hcnkoY2ZhMzMsIGZpdC5tZWFzdXJlcz1UUlVFKQ0KIyBSZXZpc2FyIGxvcyB2YWxvcmVzIGRlIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKTE5NQ0KI0V4Y2VsZW50ZSBzaSBlcyA+PSAwLjk1LCBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUsIERlZmljaWVudGU8IDAuOTANCmBgYA0KIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+UGFydGUgNC4gTW9kZWxvIGNvbXBsZXRvIDwvc3Bhbj4NCmBgYHtyfQ0KbW9kZWxvMzQgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICAgIGRlc2FwZWdvID1+IFJQRDAxICsgUlBEMDIgKyBSUEQwMyArIFJQRDA1ICsgUlBEMDYgKyBSUEQwNyArIFJQRDA4ICsgUlBEMDkgKyBSUEQxMA0KICAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICAgIGRvbWluaW8gPX4gUk1BMDIgKyBSTUEwMyArIFJNQTA0ICsgUk1BMDUgKyBSTUEwNiArIFJNQTA3ICsgUk1BMDggKyBSTUEwOSArIFJNQTEwDQogICAgICAgICAgICAgIGNvbnRyb2wgPX4gUkNPMDIgKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3DQogICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbA0KICAgICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgNCiAgICAgICAgICAgICAgdmlnb3IgPX4gRVZJMDEgKyBFVkkwMiArIEVWSTAzDQogICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogICAgICAgICAgICAgIGFic29yY2lvbiA9fiBFQUIwMSArIEVBQjAyICsgRUFCMDMNCiAgICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphDQogICAgICAgICAgICAgIGRlc2FwZWdvIH5+IGRlc2FwZWdvDQogICAgICAgICAgICAgIHJlbGFqYWNpb24gfiByZWxhamFjaW9uDQogICAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbw0KICAgICAgICAgICAgICBjb250cm9sIH5+IGNvbnRyb2wNCiAgICAgICAgICAgICAgZW5lcmdpYSB+fiBlbmVyZ2lhDQogICAgICAgICAgICAgIHZpZ29yIH4gdmlnb3INCiAgICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBkZWRpY2FjaW9uDQogICAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24NCiAgICAgICAgICAgICAgdmlnb3Igfn4gZGVkaWNhY2lvbiArIGFic29yY2lvbg0KICAgICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGFic29yY2lvbg0KICAgICAgICAgICAgICAjIEludGVyY2VwdG8NCiAgICAgICAgICAnDQpgYGANCg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5HZW5lcmFyIGFuYWxpc2lzIGZhY3RvcmlhbCBjb25maXJtYXRvcmlvPC9zcGFuPg0KYGBge3J9DQpjZmEzNCA8LSBzZW0obW9kZWxvMzQsIGRhdGE9ZGYzKQ0Kc3VtbWFyeShjZmEzNCkNCmxhdmFhblBsb3QoY2ZhMzQsIGNvZWY9VFJVRSwgY292PVRSVUUpDQpgYGANCg0KDQojIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5FdmFsdWFyIE1vZGVsbzwvc3Bhbj4NCg0KYGBge3J9DQpzdW1tYXJ5KGNmYTM0LCBmaXQubWVhc3VyZXM9VFJVRSkNCiMgUmV2aXNhciBsb3MgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkxOTUNCiNFeGNlbGVudGUgc2kgZXMgPj0gMC45NSwgQWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1LCBEZWZpY2llbnRlPCAwLjkwDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K