Modelos de Ecuaciones Estructurales (SEM)

Teoria

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Estudio de Holzinger y Swineford (1939)

Contexto

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° (secundaria) de dos grandes escuelas: Pasteur y Grand-White.

La base de datos está incluida como paquete en R e incluye las siguientes columnas:

  • sex: Género (1 = male / 2 = female)
  • x1: Percepción visual
  • x2: Juego con cubos
  • x3: Juego con pastillas/espacial
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Significado de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas, rectas y curvas

Se busca identificar las relaciones entre las habilidades visuales (x1, x2, x3), habilidad textual (x4, x5, x6) y velocidad (x7, x8, x9) de los adolescentes.

Instalar paquetes y llamar librerías

#install.packages("lavaan")
#install.packages("lavaanPlot")
library(lavaan)
library(lavaanPlot)

Instalar base de datos

df1 <- HolzingerSwineford1939

Entendimiento de la Base de Datos

# Resumen estadistico de la base de datos
summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
# Tipo de datos
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...

Tipos de Formulas

  1. Regresion (~) variables que dependen de otras.
  2. Variables Latentes (=~) No se observa, se infiere.
  3. Varianzas y Covarianzas (~~) Relaciones entre variables latentes y observadas.
  • Varianza: Entre sí misma.
  • Covarianza: Entre otras.
  1. Intercepto (~1) Valor esperado cuando las demás variables son 0.

Estructurar el Modelo

modelo_1 <- ' # Regresiones
              # Variables Latentes
                visual =~ x1 + x2 + x3
                textual =~ x4 + x5 + x6
                velocidad =~ x7 + x8 + x9
              # Varianzas y Covarianza
                visual ~~ visual
                textual ~~ textual
                velocidad ~~ velocidad
                visual ~~ textual + velocidad
                textual ~~ velocidad
              # Intercepto
'

Generar Analisis Factorial Confirmatorio (CFA)

cfa1 <- sem(modelo_1, data = df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa1, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               918.852
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.931
##   Tucker-Lewis Index (TLI)                       0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3737.745
##   Loglikelihood unrestricted model (H1)      -3695.092
##                                                       
##   Akaike (AIC)                                7517.490
##   Bayesian (BIC)                              7595.339
##   Sample-size adjusted Bayesian (SABIC)       7528.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.092
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.840
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo Aceptado!! (Excelente)

Ejercicio 1. Democracia Politica e Industrialización

Contexto

la base de datos contiene distintas mediciones sobre la democracia política e industrialización en paises en desarrollo durante 1960 y 1965.

La tabla incluye los siguientes datos:
* y1: Calificaciones sobre libertad de prensa en 1960
* y2: Libertad de la oposición política en 1960
* y3: Imparcialidad de elecciones en 1960
* y4: Eficacia de la legislatura electa en 1960
* y5: Calificaciones sobre libertad de prensa en 1965
* y6: Libertad de la oposición política en 1965
* y7: Imparcialidad de elecciones en 1965
* y8: Eficacia de la legislatura electa en 1965
* x1: PIB per cápita en 1960
* x2: Consumo de energía inanimada per cápita en 1960
* x3: Porcentaje de la fuerza laboral en la industria en 1960

Importar la Base de Datos

df2 <- PoliticalDemocracy

Entendimiento de la Base de Datos

# Resumen estadistico de la base de datos
summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
# Tipo de datos
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...

Estructurar el Modelo

modelo_2 <- ' # Regresiones
              # Variables Latentes
                dato_1960 =~ y1 + y2 + y3 + y4
                dato_1965 =~ y5 + y6 + y7 + y8
                industrializacion =~ x1 + x2 + x3
              # Varianzas y Covarianza
                dato_1960 ~~ dato_1960
                dato_1965 ~~ dato_1965
                industrializacion ~~ industrializacion
                dato_1960 ~~ dato_1965 + industrializacion
                dato_1965 ~~ industrializacion
              # Intercepto
'

Generar Analisis Factorial Confirmatorio (CFA)

cfa2 <- sem(modelo_2, data = df2)
summary(cfa2)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                        Estimate  Std.Err  z-value  P(>|z|)
##   dato_1960 =~                                            
##     y1                    1.000                           
##     y2                    1.354    0.175    7.755    0.000
##     y3                    1.044    0.150    6.961    0.000
##     y4                    1.300    0.138    9.412    0.000
##   dato_1965 =~                                            
##     y5                    1.000                           
##     y6                    1.258    0.164    7.651    0.000
##     y7                    1.282    0.158    8.137    0.000
##     y8                    1.310    0.154    8.529    0.000
##   industrializacion =~                                    
##     x1                    1.000                           
##     x2                    2.182    0.139   15.714    0.000
##     x3                    1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dato_1960 ~~                                        
##     dato_1965         4.487    0.911    4.924    0.000
##     industrializcn    0.660    0.206    3.202    0.001
##   dato_1965 ~~                                        
##     industrializcn    0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     dato_1960         4.845    1.088    4.453    0.000
##     dato_1965         4.345    1.051    4.134    0.000
##     industrializcn    0.448    0.087    5.169    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
lavaanPlot(cfa2, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa2, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        25
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.002
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.953
##   Tucker-Lewis Index (TLI)                       0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3179.918
##   Bayesian (BIC)                              3237.855
##   Sample-size adjusted Bayesian (SABIC)       3159.062
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.101
##   90 Percent confidence interval - lower         0.061
##   90 Percent confidence interval - upper         0.139
##   P-value H_0: RMSEA <= 0.050                    0.021
##   P-value H_0: RMSEA >= 0.080                    0.827
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                        Estimate  Std.Err  z-value  P(>|z|)
##   dato_1960 =~                                            
##     y1                    1.000                           
##     y2                    1.354    0.175    7.755    0.000
##     y3                    1.044    0.150    6.961    0.000
##     y4                    1.300    0.138    9.412    0.000
##   dato_1965 =~                                            
##     y5                    1.000                           
##     y6                    1.258    0.164    7.651    0.000
##     y7                    1.282    0.158    8.137    0.000
##     y8                    1.310    0.154    8.529    0.000
##   industrializacion =~                                    
##     x1                    1.000                           
##     x2                    2.182    0.139   15.714    0.000
##     x3                    1.819    0.152   11.956    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   dato_1960 ~~                                        
##     dato_1965         4.487    0.911    4.924    0.000
##     industrializcn    0.660    0.206    3.202    0.001
##   dato_1965 ~~                                        
##     industrializcn    0.774    0.208    3.715    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     dato_1960         4.845    1.088    4.453    0.000
##     dato_1965         4.345    1.051    4.134    0.000
##     industrializcn    0.448    0.087    5.169    0.000
##    .y1                1.942    0.395    4.910    0.000
##    .y2                6.490    1.185    5.479    0.000
##    .y3                5.340    0.943    5.662    0.000
##    .y4                2.887    0.610    4.731    0.000
##    .y5                2.390    0.447    5.351    0.000
##    .y6                4.343    0.796    5.456    0.000
##    .y7                3.510    0.668    5.252    0.000
##    .y8                2.940    0.586    5.019    0.000
##    .x1                0.082    0.020    4.180    0.000
##    .x2                0.118    0.070    1.689    0.091
##    .x3                0.467    0.090    5.174    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo aceptado!! (Bueno)

Actividad 3. Bienestar de los Trabajadores

Importar librerias y paquetes

# install.packages("readxl")
library(readxl)

Importar la base de datos

df3 <- read_excel("Datos_SEM_Eng.xlsx")

Entendimiento de la Base de Datos

# Resumen estadistico de la base de datos
summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
# Tipo de datos
str(df3)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...

Estructurar el Modelo 1: Conductas del Trabajador

modelo_3.1 <- ' # Regresiones
              # Variables Latentes
                desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
                relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
                dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
                control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
                recuperacion =~ desapego + relajacion + dominio + control
              # Varianzas y Covarianza
                desapego ~~ desapego
                relajacion ~~ relajacion
                dominio ~~ dominio
                control ~~ control
              # Intercepto
'
# Recuperacion es de segundo orden

Generar Analisis Factorial Confirmatorio (CFA)

cfa3.1 <- sem(modelo_3.1, data = df3)
summary(cfa3.1)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
lavaanPlot(cfa3.1, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa3.1, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 47 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        66
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               430
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.888
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21364.296
##   Bayesian (BIC)                             21589.169
##   Sample-size adjusted Bayesian (SABIC)      21380.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.097
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206    0.082   14.780    0.000
##     RPD03             1.143    0.085   13.374    0.000
##     RPD05             1.312    0.086   15.244    0.000
##     RPD06             1.088    0.089   12.266    0.000
##     RPD07             1.229    0.085   14.440    0.000
##     RPD08             1.164    0.087   13.447    0.000
##     RPD09             1.317    0.087   15.153    0.000
##     RPD10             1.346    0.088   15.258    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120    0.065   17.227    0.000
##     RRE04             1.025    0.058   17.713    0.000
##     RRE05             1.055    0.056   18.758    0.000
##     RRE06             1.245    0.074   16.869    0.000
##     RRE07             1.117    0.071   15.689    0.000
##     RRE10             0.815    0.067   12.120    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155    0.096   12.079    0.000
##     RMA04             1.178    0.089   13.274    0.000
##     RMA05             1.141    0.087   13.072    0.000
##     RMA06             0.645    0.075    8.597    0.000
##     RMA07             1.103    0.084   13.061    0.000
##     RMA08             1.109    0.085   12.994    0.000
##     RMA09             1.028    0.084   12.246    0.000
##     RMA10             1.055    0.088   12.044    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948    0.049   19.182    0.000
##     RCO04             0.796    0.044   18.110    0.000
##     RCO05             0.818    0.043   18.990    0.000
##     RCO06             0.834    0.046   18.216    0.000
##     RCO07             0.835    0.046   18.057    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149    0.131    8.787    0.000
##     dominio           0.858    0.129    6.666    0.000
##     control           1.341    0.156    8.605    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.943    0.152    6.207    0.000
##    .relajacion        0.333    0.089    3.757    0.000
##    .dominio           1.260    0.212    5.942    0.000
##    .control           0.900    0.159    5.666    0.000
##    .RPD01             1.172    0.120    9.782    0.000
##    .RPD02             0.999    0.108    9.228    0.000
##    .RPD03             1.441    0.148    9.733    0.000
##    .RPD05             0.987    0.110    8.964    0.000
##    .RPD06             1.817    0.182    9.967    0.000
##    .RPD07             1.173    0.125    9.383    0.000
##    .RPD08             1.460    0.150    9.714    0.000
##    .RPD09             1.032    0.114    9.021    0.000
##    .RPD10             1.034    0.115    8.955    0.000
##    .RRE02             0.626    0.068    9.274    0.000
##    .RRE03             0.653    0.073    9.011    0.000
##    .RRE04             0.481    0.055    8.794    0.000
##    .RRE05             0.374    0.046    8.153    0.000
##    .RRE06             0.886    0.097    9.149    0.000
##    .RRE07             0.950    0.100    9.505    0.000
##    .RRE10             1.137    0.113   10.093    0.000
##    .RMA02             1.740    0.175    9.931    0.000
##    .RMA03             1.485    0.155    9.575    0.000
##    .RMA04             0.855    0.097    8.772    0.000
##    .RMA05             0.899    0.100    8.967    0.000
##    .RMA06             1.631    0.159   10.281    0.000
##    .RMA07             0.845    0.094    8.977    0.000
##    .RMA08             0.886    0.098    9.034    0.000
##    .RMA09             1.094    0.115    9.500    0.000
##    .RMA10             1.259    0.131    9.590    0.000
##    .RCO02             0.983    0.105    9.379    0.000
##    .RCO03             0.484    0.058    8.391    0.000
##    .RCO04             0.462    0.052    8.963    0.000
##    .RCO05             0.382    0.045    8.513    0.000
##    .RCO06             0.494    0.055    8.917    0.000
##    .RCO07             0.515    0.057    8.985    0.000
##     recuperacion      0.978    0.202    4.833    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo Deficiente, se puede aceptar sin embargo se recomienda elegir otro

Estructurar el Modelo 2: Energia Recuperada

modelo_3.2 <- ' # Regresiones
              # Variables Latentes
                energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
              # Varianzas y Covarianza
                energia ~~ energia
              # Intercepto
'

Generar Analisis Factorial Confirmatorio (CFA)

cfa3.2 <- sem(modelo_3.2, data = df3)
summary(cfa3.2)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
lavaanPlot(cfa3.2, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa3.2, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                47.222
##   Degrees of freedom                                14
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2324.436
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986
##   Tucker-Lewis Index (TLI)                       0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2017.154
##   Loglikelihood unrestricted model (H1)      -1993.543
##                                                       
##   Akaike (AIC)                                4062.308
##   Bayesian (BIC)                              4110.008
##   Sample-size adjusted Bayesian (SABIC)       4065.641
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.103
##   90 Percent confidence interval - lower         0.072
##   90 Percent confidence interval - upper         0.136
##   P-value H_0: RMSEA <= 0.050                    0.004
##   P-value H_0: RMSEA >= 0.080                    0.892
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.029    0.044   23.192    0.000
##     EN04              0.999    0.044   22.583    0.000
##     EN05              0.999    0.042   23.649    0.000
##     EN06              0.986    0.042   23.722    0.000
##     EN07              1.049    0.046   22.856    0.000
##     EN08              1.036    0.043   24.173    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.801    0.327    8.565    0.000
##    .EN01              0.711    0.074    9.651    0.000
##    .EN02              0.444    0.049    9.012    0.000
##    .EN04              0.481    0.052    9.214    0.000
##    .EN05              0.375    0.042    8.830    0.000
##    .EN06              0.359    0.041    8.798    0.000
##    .EN07              0.499    0.055    9.129    0.000
##    .EN08              0.353    0.041    8.580    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo Aceptado!! (Excelente)

Estructurar el Modelo 3: Experiencias de Recuperacion

modelo_3.3 <- ' # Regresiones
              # Variables Latentes
                vigor =~ EVI01 + EVI02 + EVI03
                dedicacion =~ EDE01 + EDE02 + EDE03
                absorcion =~ EAB01 + EAB02 + EAB03
              # Varianzas y Covarianza
                vigor ~~ vigor
                dedicacion ~~ dedicacion
                absorcion ~~ absorcion
                vigor ~~ dedicacion + absorcion
                dedicacion ~~ absorcion
              # Intercepto
'

Generar Analisis Factorial Confirmatorio (CFA)

cfa3.3 <- sem(modelo_3.3, data = df3)
summary(cfa3.3)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa3.3, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa3.3, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo Deficiente, se puede aceptar sin embargo se recomienda elegir otro

Estructurar el Modelo 4: Modelo Completo

modelo_3.4 <- ' # Regresiones
              # Variables Latentes
                vigor =~ EVI01 + EVI02 + EVI03
                dedicacion =~ EDE01 + EDE02 + EDE03
                absorcion =~ EAB01 + EAB02 + EAB03
                energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
                desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
                relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
                dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
                control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
                recuperacion =~ desapego + relajacion + dominio + control
              # Varianzas y Covarianza
                desapego ~~ desapego
                relajacion ~~ relajacion
                dominio ~~ dominio
                control ~~ control
                energia ~~ energia
                vigor ~~ vigor
                dedicacion ~~ dedicacion
                absorcion ~~ absorcion
                vigor ~~ dedicacion + absorcion + energia + recuperacion
                dedicacion ~~ absorcion + energia + recuperacion
                absorcion ~~ energia + recuperacion
                energia ~~ recuperacion
              # Intercepto
'

Generar Analisis Factorial Confirmatorio (CFA)

cfa3.4 <- sem(modelo_3.4, data = df3)
summary(cfa3.4)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.896    0.000
##     EVI03             0.990    0.048   20.656    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.219    0.000
##     EDE03             0.580    0.037   15.851    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.915    0.000
##     EAB03             0.730    0.063   11.619    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.558    0.000
##     EN04              0.996    0.043   22.912    0.000
##     EN05              0.994    0.042   23.892    0.000
##     EN06              0.981    0.041   23.944    0.000
##     EN07              1.044    0.045   23.105    0.000
##     EN08              1.031    0.042   24.449    0.000
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.858    0.000
##     RPD03             1.144    0.085   13.413    0.000
##     RPD05             1.313    0.086   15.311    0.000
##     RPD06             1.083    0.089   12.218    0.000
##     RPD07             1.229    0.085   14.481    0.000
##     RPD08             1.157    0.086   13.376    0.000
##     RPD09             1.316    0.087   15.162    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.303    0.000
##     RRE04             1.020    0.058   17.611    0.000
##     RRE05             1.051    0.056   18.690    0.000
##     RRE06             1.245    0.074   16.916    0.000
##     RRE07             1.122    0.071   15.848    0.000
##     RRE10             0.815    0.067   12.147    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.178    0.089   13.262    0.000
##     RMA05             1.141    0.087   13.054    0.000
##     RMA06             0.648    0.075    8.623    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.002    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.158    0.000
##     RCO04             0.794    0.044   18.081    0.000
##     RCO05             0.815    0.043   18.912    0.000
##     RCO06             0.837    0.046   18.395    0.000
##     RCO07             0.837    0.046   18.199    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071    0.121    8.858    0.000
##     dominio           0.900    0.129    6.965    0.000
##     control           1.421    0.157    9.066    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767    0.293    9.427    0.000
##     absorcion         2.132    0.248    8.613    0.000
##     energia           2.045    0.249    8.223    0.000
##     recuperacion      1.007    0.165    6.098    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.316    0.000
##     energia           1.852    0.259    7.139    0.000
##     recuperacion      1.049    0.179    5.852    0.000
##   absorcion ~~                                        
##     energia           1.340    0.220    6.091    0.000
##     recuperacion      0.796    0.151    5.281    0.000
##   energia ~~                                          
##     recuperacion      1.367    0.197    6.938    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951    0.149    6.400    0.000
##    .relajacion        0.510    0.085    6.021    0.000
##    .dominio           1.191    0.200    5.958    0.000
##    .control           0.699    0.125    5.583    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.859    0.289    9.900    0.000
##     dedicacion        3.458    0.367    9.424    0.000
##     absorcion         2.595    0.301    8.628    0.000
##    .EVI01             0.177    0.036    4.919    0.000
##    .EVI02             0.242    0.038    6.298    0.000
##    .EVI03             1.222    0.124    9.826    0.000
##    .EDE01             0.395    0.065    6.060    0.000
##    .EDE02             0.498    0.066    7.579    0.000
##    .EDE03             0.836    0.085    9.887    0.000
##    .EAB01             0.478    0.099    4.805    0.000
##    .EAB02             1.010    0.109    9.283    0.000
##    .EAB03             1.718    0.176    9.778    0.000
##    .EN01              0.689    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.066    0.000
##    .EN04              0.476    0.051    9.266    0.000
##    .EN05              0.381    0.043    8.945    0.000
##    .EN06              0.367    0.041    8.925    0.000
##    .EN07              0.502    0.055    9.210    0.000
##    .EN08              0.358    0.041    8.708    0.000
##    .RPD01             1.169    0.120    9.782    0.000
##    .RPD02             0.984    0.107    9.204    0.000
##    .RPD03             1.435    0.147    9.730    0.000
##    .RPD05             0.973    0.109    8.940    0.000
##    .RPD06             1.835    0.184    9.979    0.000
##    .RPD07             1.166    0.124    9.378    0.000
##    .RPD08             1.485    0.152    9.739    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.044    0.116    8.982    0.000
##    .RRE02             0.623    0.067    9.253    0.000
##    .RRE03             0.646    0.072    8.974    0.000
##    .RRE04             0.494    0.056    8.837    0.000
##    .RRE05             0.384    0.047    8.203    0.000
##    .RRE06             0.882    0.097    9.126    0.000
##    .RRE07             0.929    0.098    9.458    0.000
##    .RRE10             1.134    0.112   10.086    0.000
##    .RMA02             1.742    0.175    9.935    0.000
##    .RMA03             1.500    0.156    9.595    0.000
##    .RMA04             0.857    0.098    8.786    0.000
##    .RMA05             0.904    0.101    8.985    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.843    0.094    8.978    0.000
##    .RMA08             0.881    0.098    9.029    0.000
##    .RMA09             1.089    0.115    9.498    0.000
##    .RMA10             1.256    0.131    9.591    0.000
##    .RCO02             0.980    0.104    9.394    0.000
##    .RCO03             0.493    0.058    8.473    0.000
##    .RCO04             0.468    0.052    9.019    0.000
##    .RCO05             0.393    0.046    8.620    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.504    0.056    8.969    0.000
##     recuperacion      0.972    0.199    4.896    0.000
lavaanPlot(cfa3.4, coef = TRUE, cov = TRUE)

Evaluar el Modelo

summary(cfa3.4, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 90 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       108
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1020
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15426.580
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31069.161
##   Bayesian (BIC)                             31437.135
##   Sample-size adjusted Bayesian (SABIC)      31094.870
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.369
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978    0.027   35.896    0.000
##     EVI03             0.990    0.048   20.656    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913    0.035   26.219    0.000
##     EDE03             0.580    0.037   15.851    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707    0.051   13.915    0.000
##     EAB03             0.730    0.063   11.619    0.000
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026    0.044   23.558    0.000
##     EN04              0.996    0.043   22.912    0.000
##     EN05              0.994    0.042   23.892    0.000
##     EN06              0.981    0.041   23.944    0.000
##     EN07              1.044    0.045   23.105    0.000
##     EN08              1.031    0.042   24.449    0.000
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209    0.081   14.858    0.000
##     RPD03             1.144    0.085   13.413    0.000
##     RPD05             1.313    0.086   15.311    0.000
##     RPD06             1.083    0.089   12.218    0.000
##     RPD07             1.229    0.085   14.481    0.000
##     RPD08             1.157    0.086   13.376    0.000
##     RPD09             1.316    0.087   15.162    0.000
##     RPD10             1.343    0.088   15.247    0.000
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121    0.065   17.303    0.000
##     RRE04             1.020    0.058   17.611    0.000
##     RRE05             1.051    0.056   18.690    0.000
##     RRE06             1.245    0.074   16.916    0.000
##     RRE07             1.122    0.071   15.848    0.000
##     RRE10             0.815    0.067   12.147    0.000
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152    0.096   12.038    0.000
##     RMA04             1.178    0.089   13.262    0.000
##     RMA05             1.141    0.087   13.054    0.000
##     RMA06             0.648    0.075    8.623    0.000
##     RMA07             1.104    0.085   13.062    0.000
##     RMA08             1.110    0.085   13.002    0.000
##     RMA09             1.030    0.084   12.257    0.000
##     RMA10             1.056    0.088   12.047    0.000
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946    0.049   19.158    0.000
##     RCO04             0.794    0.044   18.081    0.000
##     RCO05             0.815    0.043   18.912    0.000
##     RCO06             0.837    0.046   18.395    0.000
##     RCO07             0.837    0.046   18.199    0.000
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071    0.121    8.858    0.000
##     dominio           0.900    0.129    6.965    0.000
##     control           1.421    0.157    9.066    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767    0.293    9.427    0.000
##     absorcion         2.132    0.248    8.613    0.000
##     energia           2.045    0.249    8.223    0.000
##     recuperacion      1.007    0.165    6.098    0.000
##   dedicacion ~~                                       
##     absorcion         2.731    0.293    9.316    0.000
##     energia           1.852    0.259    7.139    0.000
##     recuperacion      1.049    0.179    5.852    0.000
##   absorcion ~~                                        
##     energia           1.340    0.220    6.091    0.000
##     recuperacion      0.796    0.151    5.281    0.000
##   energia ~~                                          
##     recuperacion      1.367    0.197    6.938    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .desapego          0.951    0.149    6.400    0.000
##    .relajacion        0.510    0.085    6.021    0.000
##    .dominio           1.191    0.200    5.958    0.000
##    .control           0.699    0.125    5.583    0.000
##     energia           2.823    0.327    8.623    0.000
##     vigor             2.859    0.289    9.900    0.000
##     dedicacion        3.458    0.367    9.424    0.000
##     absorcion         2.595    0.301    8.628    0.000
##    .EVI01             0.177    0.036    4.919    0.000
##    .EVI02             0.242    0.038    6.298    0.000
##    .EVI03             1.222    0.124    9.826    0.000
##    .EDE01             0.395    0.065    6.060    0.000
##    .EDE02             0.498    0.066    7.579    0.000
##    .EDE03             0.836    0.085    9.887    0.000
##    .EAB01             0.478    0.099    4.805    0.000
##    .EAB02             1.010    0.109    9.283    0.000
##    .EAB03             1.718    0.176    9.778    0.000
##    .EN01              0.689    0.071    9.661    0.000
##    .EN02              0.439    0.048    9.066    0.000
##    .EN04              0.476    0.051    9.266    0.000
##    .EN05              0.381    0.043    8.945    0.000
##    .EN06              0.367    0.041    8.925    0.000
##    .EN07              0.502    0.055    9.210    0.000
##    .EN08              0.358    0.041    8.708    0.000
##    .RPD01             1.169    0.120    9.782    0.000
##    .RPD02             0.984    0.107    9.204    0.000
##    .RPD03             1.435    0.147    9.730    0.000
##    .RPD05             0.973    0.109    8.940    0.000
##    .RPD06             1.835    0.184    9.979    0.000
##    .RPD07             1.166    0.124    9.378    0.000
##    .RPD08             1.485    0.152    9.739    0.000
##    .RPD09             1.036    0.115    9.034    0.000
##    .RPD10             1.044    0.116    8.982    0.000
##    .RRE02             0.623    0.067    9.253    0.000
##    .RRE03             0.646    0.072    8.974    0.000
##    .RRE04             0.494    0.056    8.837    0.000
##    .RRE05             0.384    0.047    8.203    0.000
##    .RRE06             0.882    0.097    9.126    0.000
##    .RRE07             0.929    0.098    9.458    0.000
##    .RRE10             1.134    0.112   10.086    0.000
##    .RMA02             1.742    0.175    9.935    0.000
##    .RMA03             1.500    0.156    9.595    0.000
##    .RMA04             0.857    0.098    8.786    0.000
##    .RMA05             0.904    0.101    8.985    0.000
##    .RMA06             1.626    0.158   10.280    0.000
##    .RMA07             0.843    0.094    8.978    0.000
##    .RMA08             0.881    0.098    9.029    0.000
##    .RMA09             1.089    0.115    9.498    0.000
##    .RMA10             1.256    0.131    9.591    0.000
##    .RCO02             0.980    0.104    9.394    0.000
##    .RCO03             0.493    0.058    8.473    0.000
##    .RCO04             0.468    0.052    9.019    0.000
##    .RCO05             0.393    0.046    8.620    0.000
##    .RCO06             0.479    0.054    8.883    0.000
##    .RCO07             0.504    0.056    8.969    0.000
##     recuperacion      0.972    0.199    4.896    0.000
#Revisar valores de Comparative FIT Index (CFI) y Tucker-Lewis Index (TLI)
# Excelente si es mayor a 0.95
# Aceptable entre 0.90 y 0.95
# Deficiente menor a 0.90

Conclusión
Modelo Deficiente, se puede aceptar sin embargo se recomienda elegir otro

LS0tDQp0aXRsZTogIlNFTSINCmF1dGhvcjogIlJvZHJpZ28gQXJyb3lvIC0gQTAxNzQ3MzgwIg0KZGF0ZTogIjIwMjUtMDItMTkiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogam91cm5hbA0KLS0tDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyAoU0VNKSoqIDwvc3Bhbj4NCg0KIVtdKG5pw7FvLmdpZikNCg0KIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiAqKlRlb3JpYSoqIDwvc3Bhbj4NCg0KTG9zICoqTW9kZWxvcyBkZSBFY3VhY2lvbmVzIEVzdHJ1Y3R1cmFsZXMgKFNFTSkqKiBlcyB1bmEgdMOpY25pY2EgZGUgYW7DoWxpc2lzIGRlIGVzdGFkw61zdGljYSBtdWx0aXZhcmlhZGEsIHF1ZSBwZXJtaXRlIGFuYWxpemFyIHBhdHJvbmVzIGNvbXBsZWpvcyBkZSByZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcywgcmVhbGl6YXIgY29tcGFyYWNpb25lcyBlbnRyZSBlIGludHJhZ3J1cG9zLCB5IHZhbGlkYXIgbW9kZWxvcyB0ZcOzcmljb3MgeSBlbXDDrXJpY29zLg0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+ICoqRWplbXBsbyAxLiBFc3R1ZGlvIGRlIEhvbHppbmdlciB5IFN3aW5lZm9yZCAoMTkzOSkqKiA8L3NwYW4+DQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBDb250ZXh0byA8L3NwYW4+DQoNCkhvbHppbmdlciB5IFN3aW5lZm9yZCByZWFsaXphcm9uIGV4w6FtZW5lcyBkZSBoYWJpbGlkYWQgbWVudGFsIGEgYWRvbGVzY2VudGVzIGRlIDfCsCB5IDjCsCAoc2VjdW5kYXJpYSkgZGUgZG9zIGdyYW5kZXMgZXNjdWVsYXM6ICpQYXN0ZXVyKiB5ICpHcmFuZC1XaGl0ZSouICANCg0KTGEgYmFzZSBkZSBkYXRvcyBlc3TDoSBpbmNsdWlkYSBjb21vIHBhcXVldGUgZW4gUiBlIGluY2x1eWUgbGFzIHNpZ3VpZW50ZXMgY29sdW1uYXM6ICANCg0KKiAqKnNleDoqKiBHw6luZXJvICgxID0gbWFsZSAvIDIgPSBmZW1hbGUpICANCiogKip4MToqKiBQZXJjZXBjacOzbiB2aXN1YWwgIA0KKiAqKngyOioqIEp1ZWdvIGNvbiBjdWJvcyAgDQoqICoqeDM6KiogSnVlZ28gY29uIHBhc3RpbGxhcy9lc3BhY2lhbCAgDQoqICoqeDQ6KiogQ29tcHJlbnNpw7NuIGRlIHDDoXJyYWZvcyAgDQoqICoqeDU6KiogQ29tcGxldGFyIG9yYWNpb25lcyAgDQoqICoqeDY6KiogU2lnbmlmaWNhZG8gZGUgcGFsYWJyYXMgIA0KKiAqKng3OioqIFN1bWFzIGFjZWxlcmFkYXMgIA0KKiAqKng4OioqIENvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zICANCiogKip4OToqKiBEaXNjcmltaW5hY2nDs24gYWNlbGVyYWRhIGRlIG1hecO6c2N1bGFzLCByZWN0YXMgeSBjdXJ2YXMgIA0KDQpTZSBidXNjYSBpZGVudGlmaWNhciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgKmhhYmlsaWRhZGVzIHZpc3VhbGVzKiAoeDEsIHgyLCB4MyksICpoYWJpbGlkYWQgdGV4dHVhbCogKHg0LCB4NSwgeDYpIHkgKnZlbG9jaWRhZCogKHg3LCB4OCwgeDkpIGRlIGxvcyBhZG9sZXNjZW50ZXMuDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW4iKQ0KI2luc3RhbGwucGFja2FnZXMoImxhdmFhblBsb3QiKQ0KYGBgDQoNCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBJbnN0YWxhciBiYXNlIGRlIGRhdG9zIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpkZjEgPC0gSG9semluZ2VyU3dpbmVmb3JkMTkzOQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEVudGVuZGltaWVudG8gZGUgbGEgQmFzZSBkZSBEYXRvcyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KIyBSZXN1bWVuIGVzdGFkaXN0aWNvIGRlIGxhIGJhc2UgZGUgZGF0b3MNCnN1bW1hcnkoZGYxKQ0KIyBUaXBvIGRlIGRhdG9zDQpzdHIoZGYxKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IFRpcG9zIGRlIEZvcm11bGFzIDwvc3Bhbj4NCg0KMS4gKipSZWdyZXNpb24qKiAofikgdmFyaWFibGVzIHF1ZSBkZXBlbmRlbiBkZSBvdHJhcy4NCjIuICoqVmFyaWFibGVzIExhdGVudGVzKiogKD1+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlLg0KMy4gKipWYXJpYW56YXMgeSBDb3ZhcmlhbnphcyoqICh+fikgUmVsYWNpb25lcyBlbnRyZSB2YXJpYWJsZXMgbGF0ZW50ZXMgeSBvYnNlcnZhZGFzLg0KICAqIFZhcmlhbnphOiBFbnRyZSBzw60gbWlzbWEuICANCiAgKiBDb3ZhcmlhbnphOiBFbnRyZSBvdHJhcy4gIA0KNC4gKipJbnRlcmNlcHRvKiogKH4xKSBWYWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbcOhcyB2YXJpYWJsZXMgc29uIDAuDQoNCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gRXN0cnVjdHVyYXIgZWwgTW9kZWxvIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQptb2RlbG9fMSA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgICAgICB2aXN1YWwgPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICAgICAgdGV4dHVhbCA9fiB4NCArIHg1ICsgeDYNCiAgICAgICAgICAgICAgICB2ZWxvY2lkYWQgPX4geDcgKyB4OCArIHg5DQogICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQ0KICAgICAgICAgICAgICAgIHZpc3VhbCB+fiB2aXN1YWwNCiAgICAgICAgICAgICAgICB0ZXh0dWFsIH5+IHRleHR1YWwNCiAgICAgICAgICAgICAgICB2ZWxvY2lkYWQgfn4gdmVsb2NpZGFkDQogICAgICAgICAgICAgICAgdmlzdWFsIH5+IHRleHR1YWwgKyB2ZWxvY2lkYWQNCiAgICAgICAgICAgICAgICB0ZXh0dWFsIH5+IHZlbG9jaWRhZA0KICAgICAgICAgICAgICAjIEludGVyY2VwdG8NCicNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBHZW5lcmFyIEFuYWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpjZmExIDwtIHNlbShtb2RlbG9fMSwgZGF0YSA9IGRmMSkNCnN1bW1hcnkoY2ZhMSkNCg0KbGF2YWFuUGxvdChjZmExLCBjb2VmID0gVFJVRSwgY292ID0gVFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBFdmFsdWFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0Kc3VtbWFyeShjZmExLCBmaXQubWVhc3VyZXMgPSBUUlVFKQ0KDQojUmV2aXNhciB2YWxvcmVzIGRlIENvbXBhcmF0aXZlIEZJVCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKQ0KIyBFeGNlbGVudGUgc2kgZXMgbWF5b3IgYSAwLjk1DQojIEFjZXB0YWJsZSBlbnRyZSAwLjkwIHkgMC45NQ0KIyBEZWZpY2llbnRlIG1lbm9yIGEgMC45MA0KYGBgDQoNCioqQ29uY2x1c2nDs24qKiAgDQpNb2RlbG8gQWNlcHRhZG8hISAoRXhjZWxlbnRlKQ0KDQoNCiMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gKipFamVyY2ljaW8gMS4gRGVtb2NyYWNpYSBQb2xpdGljYSBlIEluZHVzdHJpYWxpemFjacOzbioqIDwvc3Bhbj4NCiMjICA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBDb250ZXh0byA8L3NwYW4+DQpsYSBiYXNlIGRlIGRhdG9zIGNvbnRpZW5lIGRpc3RpbnRhcyBtZWRpY2lvbmVzIHNvYnJlIGxhIGRlbW9jcmFjaWEgcG9sw610aWNhIGUgaW5kdXN0cmlhbGl6YWNpw7NuIGVuIHBhaXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuICANCg0KTGEgdGFibGEgaW5jbHV5ZSBsb3Mgc2lndWllbnRlcyBkYXRvczogIA0KKiAqKnkxOioqIENhbGlmaWNhY2lvbmVzIHNvYnJlIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTYwICANCiogKip5MjoqKiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTYwICANCiogKip5MzoqKiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2MCAgDQoqICoqeTQ6KiogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjAgIA0KKiAqKnk1OioqIENhbGlmaWNhY2lvbmVzIHNvYnJlIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTY1ICANCiogKip5NjoqKiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTY1ICANCiogKip5NzoqKiBJbXBhcmNpYWxpZGFkIGRlIGVsZWNjaW9uZXMgZW4gMTk2NSAgDQoqICoqeTg6KiogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjUgIA0KKiAqKngxOioqIFBJQiBwZXIgY8OhcGl0YSBlbiAxOTYwICANCiogKip4MjoqKiBDb25zdW1vIGRlIGVuZXJnw61hIGluYW5pbWFkYSBwZXIgY8OhcGl0YSBlbiAxOTYwICANCiogKip4MzoqKiBQb3JjZW50YWplIGRlIGxhIGZ1ZXJ6YSBsYWJvcmFsIGVuIGxhIGluZHVzdHJpYSBlbiAxOTYwICANCg0KIyMgIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEltcG9ydGFyIGxhIEJhc2UgZGUgRGF0b3MgPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kNCmBgYA0KDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEVudGVuZGltaWVudG8gZGUgbGEgQmFzZSBkZSBEYXRvcyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KIyBSZXN1bWVuIGVzdGFkaXN0aWNvIGRlIGxhIGJhc2UgZGUgZGF0b3MNCnN1bW1hcnkoZGYyKQ0KIyBUaXBvIGRlIGRhdG9zDQpzdHIoZGYyKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEVzdHJ1Y3R1cmFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbW9kZWxvXzIgPC0gJyAjIFJlZ3Jlc2lvbmVzDQogICAgICAgICAgICAgICMgVmFyaWFibGVzIExhdGVudGVzDQogICAgICAgICAgICAgICAgZGF0b18xOTYwID1+IHkxICsgeTIgKyB5MyArIHk0DQogICAgICAgICAgICAgICAgZGF0b18xOTY1ID1+IHk1ICsgeTYgKyB5NyArIHk4DQogICAgICAgICAgICAgICAgaW5kdXN0cmlhbGl6YWNpb24gPX4geDEgKyB4MiArIHgzDQogICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQ0KICAgICAgICAgICAgICAgIGRhdG9fMTk2MCB+fiBkYXRvXzE5NjANCiAgICAgICAgICAgICAgICBkYXRvXzE5NjUgfn4gZGF0b18xOTY1DQogICAgICAgICAgICAgICAgaW5kdXN0cmlhbGl6YWNpb24gfn4gaW5kdXN0cmlhbGl6YWNpb24NCiAgICAgICAgICAgICAgICBkYXRvXzE5NjAgfn4gZGF0b18xOTY1ICsgaW5kdXN0cmlhbGl6YWNpb24NCiAgICAgICAgICAgICAgICBkYXRvXzE5NjUgfn4gaW5kdXN0cmlhbGl6YWNpb24NCiAgICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQonDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gR2VuZXJhciBBbmFsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKSA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KY2ZhMiA8LSBzZW0obW9kZWxvXzIsIGRhdGEgPSBkZjIpDQpzdW1tYXJ5KGNmYTIpDQoNCmxhdmFhblBsb3QoY2ZhMiwgY29lZiA9IFRSVUUsIGNvdiA9IFRSVUUpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gRXZhbHVhciBlbCBNb2RlbG8gPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCnN1bW1hcnkoY2ZhMiwgZml0Lm1lYXN1cmVzID0gVFJVRSkNCg0KI1JldmlzYXIgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGSVQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkNCiMgRXhjZWxlbnRlIHNpIGVzIG1heW9yIGEgMC45NQ0KIyBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUNCiMgRGVmaWNpZW50ZSBtZW5vciBhIDAuOTANCmBgYA0KDQoqKkNvbmNsdXNpw7NuKiogIA0KTW9kZWxvIGFjZXB0YWRvISEgKEJ1ZW5vKQ0KDQojIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+ICoqQWN0aXZpZGFkIDMuIEJpZW5lc3RhciBkZSBsb3MgVHJhYmFqYWRvcmVzKiogPC9zcGFuPg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gSW1wb3J0YXIgbGlicmVyaWFzIHkgcGFxdWV0ZXMgPC9zcGFuPg0KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCiMgaW5zdGFsbC5wYWNrYWdlcygicmVhZHhsIikNCmBgYA0KDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShyZWFkeGwpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KZGYzIDwtIHJlYWRfZXhjZWwoIkRhdG9zX1NFTV9FbmcueGxzeCIpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gRW50ZW5kaW1pZW50byBkZSBsYSBCYXNlIGRlIERhdG9zIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQojIFJlc3VtZW4gZXN0YWRpc3RpY28gZGUgbGEgYmFzZSBkZSBkYXRvcw0Kc3VtbWFyeShkZjMpDQojIFRpcG8gZGUgZGF0b3MNCnN0cihkZjMpDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gRXN0cnVjdHVyYXIgZWwgTW9kZWxvIDE6IENvbmR1Y3RhcyBkZWwgVHJhYmFqYWRvciA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbW9kZWxvXzMuMSA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbA0KICAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgICAgICBkZXNhcGVnbyB+fiBkZXNhcGVnbw0KICAgICAgICAgICAgICAgIHJlbGFqYWNpb24gfn4gcmVsYWphY2lvbg0KICAgICAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbw0KICAgICAgICAgICAgICAgIGNvbnRyb2wgfn4gY29udHJvbA0KICAgICAgICAgICAgICAjIEludGVyY2VwdG8NCicNCiMgUmVjdXBlcmFjaW9uIGVzIGRlIHNlZ3VuZG8gb3JkZW4NCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBHZW5lcmFyIEFuYWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpjZmEzLjEgPC0gc2VtKG1vZGVsb18zLjEsIGRhdGEgPSBkZjMpDQpzdW1tYXJ5KGNmYTMuMSkNCg0KbGF2YWFuUGxvdChjZmEzLjEsIGNvZWYgPSBUUlVFLCBjb3YgPSBUUlVFKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEV2YWx1YXIgZWwgTW9kZWxvIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpzdW1tYXJ5KGNmYTMuMSwgZml0Lm1lYXN1cmVzID0gVFJVRSkNCg0KI1JldmlzYXIgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGSVQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkNCiMgRXhjZWxlbnRlIHNpIGVzIG1heW9yIGEgMC45NQ0KIyBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUNCiMgRGVmaWNpZW50ZSBtZW5vciBhIDAuOTANCmBgYA0KDQoqKkNvbmNsdXNpw7NuKiogIA0KTW9kZWxvIERlZmljaWVudGUsIHNlIHB1ZWRlIGFjZXB0YXIgc2luIGVtYmFyZ28gc2UgcmVjb21pZW5kYSBlbGVnaXIgb3Rybw0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBFc3RydWN0dXJhciBlbCBNb2RlbG8gMjogRW5lcmdpYSBSZWN1cGVyYWRhIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQptb2RlbG9fMy4yIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgICAgIGVuZXJnaWEgPX4gRU4wMSArIEVOMDIgKyBFTjA0ICsgRU4wNSArIEVOMDYgKyBFTjA3ICsgRU4wOA0KICAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgICAgICBlbmVyZ2lhIH5+IGVuZXJnaWENCiAgICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQonDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gR2VuZXJhciBBbmFsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKSA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KY2ZhMy4yIDwtIHNlbShtb2RlbG9fMy4yLCBkYXRhID0gZGYzKQ0Kc3VtbWFyeShjZmEzLjIpDQoNCmxhdmFhblBsb3QoY2ZhMy4yLCBjb2VmID0gVFJVRSwgY292ID0gVFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBFdmFsdWFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0Kc3VtbWFyeShjZmEzLjIsIGZpdC5tZWFzdXJlcyA9IFRSVUUpDQoNCiNSZXZpc2FyIHZhbG9yZXMgZGUgQ29tcGFyYXRpdmUgRklUIEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpDQojIEV4Y2VsZW50ZSBzaSBlcyBtYXlvciBhIDAuOTUNCiMgQWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1DQojIERlZmljaWVudGUgbWVub3IgYSAwLjkwDQpgYGANCg0KKipDb25jbHVzacOzbioqICANCk1vZGVsbyBBY2VwdGFkbyEhIChFeGNlbGVudGUpDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEVzdHJ1Y3R1cmFyIGVsIE1vZGVsbyAzOiBFeHBlcmllbmNpYXMgZGUgUmVjdXBlcmFjaW9uIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQptb2RlbG9fMy4zIDwtICcgIyBSZWdyZXNpb25lcw0KICAgICAgICAgICAgICAjIFZhcmlhYmxlcyBMYXRlbnRlcw0KICAgICAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMw0KICAgICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzDQogICAgICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDIgKyBFQUIwMw0KICAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgICAgICB2aWdvciB+fiB2aWdvcg0KICAgICAgICAgICAgICAgIGRlZGljYWNpb24gfn4gZGVkaWNhY2lvbg0KICAgICAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24NCiAgICAgICAgICAgICAgICB2aWdvciB+fiBkZWRpY2FjaW9uICsgYWJzb3JjaW9uDQogICAgICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBhYnNvcmNpb24NCiAgICAgICAgICAgICAgIyBJbnRlcmNlcHRvDQonDQpgYGANCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gR2VuZXJhciBBbmFsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKSA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KY2ZhMy4zIDwtIHNlbShtb2RlbG9fMy4zLCBkYXRhID0gZGYzKQ0Kc3VtbWFyeShjZmEzLjMpDQoNCmxhdmFhblBsb3QoY2ZhMy4zLCBjb2VmID0gVFJVRSwgY292ID0gVFJVRSkNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBFdmFsdWFyIGVsIE1vZGVsbyA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0Kc3VtbWFyeShjZmEzLjMsIGZpdC5tZWFzdXJlcyA9IFRSVUUpDQoNCiNSZXZpc2FyIHZhbG9yZXMgZGUgQ29tcGFyYXRpdmUgRklUIEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpDQojIEV4Y2VsZW50ZSBzaSBlcyBtYXlvciBhIDAuOTUNCiMgQWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1DQojIERlZmljaWVudGUgbWVub3IgYSAwLjkwDQpgYGANCg0KKipDb25jbHVzacOzbioqICANCk1vZGVsbyBEZWZpY2llbnRlLCBzZSBwdWVkZSBhY2VwdGFyIHNpbiBlbWJhcmdvIHNlIHJlY29taWVuZGEgZWxlZ2lyIG90cm8NCg0KIyMgPHNwYW4gc3R5bGUgPSAiY29sb3I6IGJsdWU7Ij4gRXN0cnVjdHVyYXIgZWwgTW9kZWxvIDQ6IE1vZGVsbyBDb21wbGV0byA8L3NwYW4+DQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbW9kZWxvXzMuNCA8LSAnICMgUmVncmVzaW9uZXMNCiAgICAgICAgICAgICAgIyBWYXJpYWJsZXMgTGF0ZW50ZXMNCiAgICAgICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMNCiAgICAgICAgICAgICAgICBkZWRpY2FjaW9uID1+IEVERTAxICsgRURFMDIgKyBFREUwMw0KICAgICAgICAgICAgICAgIGFic29yY2lvbiA9fiBFQUIwMSArIEVBQjAyICsgRUFCMDMNCiAgICAgICAgICAgICAgICBlbmVyZ2lhID1+IEVOMDEgKyBFTjAyICsgRU4wNCArIEVOMDUgKyBFTjA2ICsgRU4wNyArIEVOMDgNCiAgICAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTANCiAgICAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwDQogICAgICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTANCiAgICAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyICsgUkNPMDMgKyBSQ08wNCArIFJDTzA1ICsgUkNPMDYgKyBSQ08wNw0KICAgICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbA0KICAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemENCiAgICAgICAgICAgICAgICBkZXNhcGVnbyB+fiBkZXNhcGVnbw0KICAgICAgICAgICAgICAgIHJlbGFqYWNpb24gfn4gcmVsYWphY2lvbg0KICAgICAgICAgICAgICAgIGRvbWluaW8gfn4gZG9taW5pbw0KICAgICAgICAgICAgICAgIGNvbnRyb2wgfn4gY29udHJvbA0KICAgICAgICAgICAgICAgIGVuZXJnaWEgfn4gZW5lcmdpYQ0KICAgICAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yDQogICAgICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBkZWRpY2FjaW9uDQogICAgICAgICAgICAgICAgYWJzb3JjaW9uIH5+IGFic29yY2lvbg0KICAgICAgICAgICAgICAgIHZpZ29yIH5+IGRlZGljYWNpb24gKyBhYnNvcmNpb24gKyBlbmVyZ2lhICsgcmVjdXBlcmFjaW9uDQogICAgICAgICAgICAgICAgZGVkaWNhY2lvbiB+fiBhYnNvcmNpb24gKyBlbmVyZ2lhICsgcmVjdXBlcmFjaW9uDQogICAgICAgICAgICAgICAgYWJzb3JjaW9uIH5+IGVuZXJnaWEgKyByZWN1cGVyYWNpb24NCiAgICAgICAgICAgICAgICBlbmVyZ2lhIH5+IHJlY3VwZXJhY2lvbg0KICAgICAgICAgICAgICAjIEludGVyY2VwdG8NCicNCmBgYA0KDQojIyA8c3BhbiBzdHlsZSA9ICJjb2xvcjogYmx1ZTsiPiBHZW5lcmFyIEFuYWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpjZmEzLjQgPC0gc2VtKG1vZGVsb18zLjQsIGRhdGEgPSBkZjMpDQpzdW1tYXJ5KGNmYTMuNCkNCg0KbGF2YWFuUGxvdChjZmEzLjQsIGNvZWYgPSBUUlVFLCBjb3YgPSBUUlVFKQ0KYGBgDQoNCiMjIDxzcGFuIHN0eWxlID0gImNvbG9yOiBibHVlOyI+IEV2YWx1YXIgZWwgTW9kZWxvIDwvc3Bhbj4NCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpzdW1tYXJ5KGNmYTMuNCwgZml0Lm1lYXN1cmVzID0gVFJVRSkNCg0KI1JldmlzYXIgdmFsb3JlcyBkZSBDb21wYXJhdGl2ZSBGSVQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkNCiMgRXhjZWxlbnRlIHNpIGVzIG1heW9yIGEgMC45NQ0KIyBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUNCiMgRGVmaWNpZW50ZSBtZW5vciBhIDAuOTANCmBgYA0KDQoqKkNvbmNsdXNpw7NuKiogIA0KTW9kZWxvIERlZmljaWVudGUsIHNlIHB1ZWRlIGFjZXB0YXIgc2luIGVtYmFyZ28gc2UgcmVjb21pZW5kYSBlbGVnaXIgb3Rybw0KDQo=