Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.
Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grand-White)
Se busca identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7,x8,x9) de los adolescentes.
## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##
## 'data.frame': 301 obs. of 15 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 11 ...
## $ sex : int 1 2 2 1 2 2 1 2 2 2 ...
## $ ageyr : int 13 13 13 13 12 14 12 12 13 12 ...
## $ agemo : int 1 7 1 2 2 1 1 2 0 5 ...
## $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ grade : int 7 7 7 7 7 7 7 7 7 7 ...
## $ x1 : num 3.33 5.33 4.5 5.33 4.83 ...
## $ x2 : num 7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
## $ x3 : num 0.375 2.125 1.875 3 0.875 ...
## $ x4 : num 2.33 1.67 1 2.67 2.67 ...
## $ x5 : num 5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
## $ x6 : num 1.286 1.286 0.429 2.429 2.571 ...
## $ x7 : num 3.39 3.78 3.26 3 3.7 ...
## $ x8 : num 5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
## $ x9 : num 6.36 7.92 4.42 4.86 5.92 ...
## id sex ageyr agemo school grade x1 x2 x3 x4 x5 x6
## 1 1 1 13 1 Pasteur 7 3.333333 7.75 0.375 2.333333 5.75 1.2857143
## 2 2 2 13 7 Pasteur 7 5.333333 5.25 2.125 1.666667 3.00 1.2857143
## 3 3 2 13 1 Pasteur 7 4.500000 5.25 1.875 1.000000 1.75 0.4285714
## 4 4 1 13 2 Pasteur 7 5.333333 7.75 3.000 2.666667 4.50 2.4285714
## 5 5 2 12 2 Pasteur 7 4.833333 4.75 0.875 2.666667 4.00 2.5714286
## 6 6 2 14 1 Pasteur 7 5.333333 5.00 2.250 1.000000 3.00 0.8571429
## x7 x8 x9
## 1 3.391304 5.75 6.361111
## 2 3.782609 6.25 7.916667
## 3 3.260870 3.90 4.416667
## 4 3.000000 5.30 4.861111
## 5 3.695652 6.30 5.916667
## 6 4.347826 6.65 7.500000
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## velocidad 0.262 0.056 4.660 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 918.852
## Degrees of freedom 36
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.931
## Tucker-Lewis Index (TLI) 0.896
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3737.745
## Loglikelihood unrestricted model (H1) -3695.092
##
## Akaike (AIC) 7517.490
## Bayesian (BIC) 7595.339
## Sample-size adjusted Bayesian (SABIC) 7528.739
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.092
## 90 Percent confidence interval - lower 0.071
## 90 Percent confidence interval - upper 0.114
## P-value H_0: RMSEA <= 0.050 0.001
## P-value H_0: RMSEA >= 0.080 0.840
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.065
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## velocidad 0.262 0.056 4.660 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.931
# Tucker-Lewis Index (TLI) 0.896Conclusión: Modelo Aceptable
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## velocidad =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## visual ~~
## textual 0.408 0.074 5.552 0.000
## velocidad 0.262 0.056 4.660 0.000
## textual ~~
## velocidad 0.173 0.049 3.518 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## visual 0.809 0.145 5.564 0.000
## textual 0.979 0.112 8.737 0.000
## velocidad 0.384 0.086 4.451 0.000
## .x1 0.549 0.114 4.833 0.000
## .x2 1.134 0.102 11.146 0.000
## .x3 0.844 0.091 9.317 0.000
## .x4 0.371 0.048 7.779 0.000
## .x5 0.446 0.058 7.642 0.000
## .x6 0.356 0.043 8.277 0.000
## .x7 0.799 0.081 9.823 0.000
## .x8 0.488 0.074 6.573 0.000
## .x9 0.566 0.071 8.003 0.000
La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.
La tabla incluye los siguientes datos * y1: Calificaciones sobre libertad de prensa en 1960 * y2: Libertad de la oposición política en 1960 * y3: Imparcialidad de elecciones en 1960 * y4: Eficacia de la legislatura electa en 1960 * y5: Calificaciones sobre libertad de prensa en 1965 * y6: Libertad de la oposición política en 1965 * y7: Imparcialidad de elecciones en 1965 * y8: Eficacia de la legislatura electa en 1965 * x1: PIB per cáota en 1960 * x2: Consumo de energía inanimada per cápita en 1960 * x1: Porcentaje de la fuerza laboral en la industria en 1960
La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.
## y1 y2 y3 y4
## Min. : 1.250 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 2.900 1st Qu.: 0.000 1st Qu.: 3.767 1st Qu.: 1.581
## Median : 5.400 Median : 3.333 Median : 6.667 Median : 3.333
## Mean : 5.465 Mean : 4.256 Mean : 6.563 Mean : 4.453
## 3rd Qu.: 7.500 3rd Qu.: 8.283 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## y5 y6 y7 y8
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 3.692 1st Qu.: 0.000 1st Qu.: 3.478 1st Qu.: 1.301
## Median : 5.000 Median : 2.233 Median : 6.667 Median : 3.333
## Mean : 5.136 Mean : 2.978 Mean : 6.196 Mean : 4.043
## 3rd Qu.: 7.500 3rd Qu.: 4.207 3rd Qu.:10.000 3rd Qu.: 6.667
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000
## x1 x2 x3
## Min. :3.784 Min. :1.386 Min. :1.002
## 1st Qu.:4.477 1st Qu.:3.663 1st Qu.:2.300
## Median :5.075 Median :4.963 Median :3.568
## Mean :5.054 Mean :4.792 Mean :3.558
## 3rd Qu.:5.515 3rd Qu.:5.830 3rd Qu.:4.523
## Max. :6.737 Max. :7.872 Max. :6.425
## 'data.frame': 75 obs. of 11 variables:
## $ y1: num 2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
## $ y2: num 0 0 8.8 8.8 3.33 ...
## $ y3: num 3.33 3.33 10 10 10 ...
## $ y4: num 0 0 9.2 9.2 6.67 ...
## $ y5: num 1.25 6.25 8.75 8.91 7.5 ...
## $ y6: num 0 1.1 8.09 8.13 3.33 ...
## $ y7: num 3.73 6.67 10 10 10 ...
## $ y8: num 3.333 0.737 8.212 4.615 6.667 ...
## $ x1: num 4.44 5.38 5.96 6.29 5.86 ...
## $ x2: num 3.64 5.06 6.26 7.57 6.82 ...
## $ x3: num 2.56 3.57 5.22 6.27 4.57 ...
## y1 y2 y3 y4 y5 y6 y7 y8 x1
## 1 2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2 1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3 7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4 8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6 7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
## x2 x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270
modelo2 <- '
# Definir variables latentes de democratización en 1960 y 1965
Dem1960 =~ y1 + y2 + y3 + y4
Dem1965 =~ y5 + y6 + y7 + y8
# Definir variable latente de industrialización
Ind1960 =~ x1 + x2 + x3
# Relacionar democratización de 1960 con 1965
Dem1965 ~ Dem1960
# Relacionar industrialización con democratización
Dem1960 ~ Ind1960
Dem1965 ~ Ind1960
# Especificar varianzas y covarianzas
Dem1960 ~~ Dem1960
Dem1965 ~~ Dem1965
Ind1960 ~~ Ind1960
Dem1960 ~~ Ind1960
Dem1965 ~~ Ind1960
'## Warning: lavaan->lav_model_nvcov_bootstrap():
## 395 bootstrap runs resulted in nonadmissible solutions.
## lavaan 0.6-19 ended normally after 38 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 27
##
## Number of observations 75
##
## Model Test User Model:
##
## Test statistic 72.462
## Degrees of freedom 39
## P-value (Chi-square) 0.001
##
## Model Test Baseline Model:
##
## Test statistic 730.654
## Degrees of freedom 55
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.950
## Tucker-Lewis Index (TLI) 0.930
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1564.959
## Loglikelihood unrestricted model (H1) -1528.728
##
## Akaike (AIC) 3183.918
## Bayesian (BIC) 3246.490
## Sample-size adjusted Bayesian (SABIC) 3161.394
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.107
## 90 Percent confidence interval - lower 0.068
## 90 Percent confidence interval - upper 0.145
## P-value H_0: RMSEA <= 0.050 0.013
## P-value H_0: RMSEA >= 0.080 0.880
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.055
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 1000
## Number of successful bootstrap draws 1000
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Dem1960 =~
## y1 1.000 2.201 0.845
## y2 1.354 0.161 8.416 0.000 2.980 0.760
## y3 1.044 0.134 7.802 0.000 2.298 0.705
## y4 1.300 0.139 9.331 0.000 2.860 0.860
## Dem1965 =~
## y5 1.000 2.084 0.803
## y6 1.258 0.216 5.822 0.000 2.623 0.783
## y7 1.282 0.177 7.239 0.000 2.673 0.819
## y8 1.310 0.208 6.306 0.000 2.730 0.847
## Ind1960 =~
## x1 1.000 0.669 0.920
## x2 2.182 0.147 14.793 0.000 1.461 0.973
## x3 1.819 0.141 12.898 0.000 1.218 0.872
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Dem1965 ~
## Dem1960 0.873 0.092 9.480 0.000 0.922 0.922
## Dem1960 ~
## Ind1960 1.565 0.120 13.076 0.000 0.476 0.476
## Dem1965 ~
## Ind1960 1.268 0.177 7.152 0.000 0.407 0.407
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .Dem1960 ~~
## Ind1960 -0.041 0.098 -0.415 0.678 -0.031 -0.031
## .Dem1965 ~~
## Ind1960 -0.371 0.090 -4.140 0.000 -0.853 -0.853
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .Dem1960 3.875 0.830 4.670 0.000 0.800 0.800
## .Dem1965 0.422 0.157 2.682 0.007 0.097 0.097
## Ind1960 0.448 0.072 6.188 0.000 1.000 1.000
## .y1 1.942 0.395 4.916 0.000 1.942 0.286
## .y2 6.490 1.297 5.003 0.000 6.490 0.422
## .y3 5.340 1.079 4.947 0.000 5.340 0.503
## .y4 2.887 0.627 4.605 0.000 2.887 0.261
## .y5 2.390 0.545 4.389 0.000 2.390 0.355
## .y6 4.343 0.872 4.979 0.000 4.343 0.387
## .y7 3.510 0.562 6.244 0.000 3.510 0.329
## .y8 2.940 0.808 3.637 0.000 2.940 0.283
## .x1 0.082 0.018 4.667 0.000 0.082 0.154
## .x2 0.118 0.071 1.657 0.097 0.118 0.053
## .x3 0.467 0.083 5.630 0.000 0.467 0.240
## lavaan 0.6-19 ended normally after 38 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 27
##
## Number of observations 75
##
## Model Test User Model:
##
## Test statistic 72.462
## Degrees of freedom 39
## P-value (Chi-square) 0.001
##
## Model Test Baseline Model:
##
## Test statistic 730.654
## Degrees of freedom 55
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.950
## Tucker-Lewis Index (TLI) 0.930
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1564.959
## Loglikelihood unrestricted model (H1) -1528.728
##
## Akaike (AIC) 3183.918
## Bayesian (BIC) 3246.490
## Sample-size adjusted Bayesian (SABIC) 3161.394
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.107
## 90 Percent confidence interval - lower 0.068
## 90 Percent confidence interval - upper 0.145
## P-value H_0: RMSEA <= 0.050 0.013
## P-value H_0: RMSEA >= 0.080 0.880
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.055
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 1000
## Number of successful bootstrap draws 1000
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Dem1960 =~
## y1 1.000
## y2 1.354 0.161 8.416 0.000
## y3 1.044 0.134 7.802 0.000
## y4 1.300 0.139 9.331 0.000
## Dem1965 =~
## y5 1.000
## y6 1.258 0.216 5.822 0.000
## y7 1.282 0.177 7.239 0.000
## y8 1.310 0.208 6.306 0.000
## Ind1960 =~
## x1 1.000
## x2 2.182 0.147 14.793 0.000
## x3 1.819 0.141 12.898 0.000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## Dem1965 ~
## Dem1960 0.873 0.092 9.480 0.000
## Dem1960 ~
## Ind1960 1.565 0.120 13.076 0.000
## Dem1965 ~
## Ind1960 1.268 0.177 7.152 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## .Dem1960 ~~
## Ind1960 -0.041 0.098 -0.415 0.678
## .Dem1965 ~~
## Ind1960 -0.371 0.090 -4.140 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .Dem1960 3.875 0.830 4.670 0.000
## .Dem1965 0.422 0.157 2.682 0.007
## Ind1960 0.448 0.072 6.188 0.000
## .y1 1.942 0.395 4.916 0.000
## .y2 6.490 1.297 5.003 0.000
## .y3 5.340 1.079 4.947 0.000
## .y4 2.887 0.627 4.605 0.000
## .y5 2.390 0.545 4.389 0.000
## .y6 4.343 0.872 4.979 0.000
## .y7 3.510 0.562 6.244 0.000
## .y8 2.940 0.808 3.637 0.000
## .x1 0.082 0.018 4.667 0.000
## .x2 0.118 0.071 1.657 0.097
## .x3 0.467 0.083 5.630 0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.950
# Tucker-Lewis Index (TLI) 0.930Conclusión: Modelo Aceptable, y no hay que hacer cambios
Conclusiones del Modelo
La industrialización en 1960 (PIB per cápita, consumo de energía y
empleo en industria) tiene un impacto positivo en la democratización de
1960.
También influye en la democratización de 1965, lo que sugiere que el
desarrollo económico puede tener efectos prolongados en la consolidación
democrática.
La democratización en 1960 influye directamente en la democratización
en 1965, lo que indica que los niveles de libertad política y
transparencia electoral tienden a mantenerse en el tiempo.
Esto sugiere que una vez que un país logra ciertos niveles de apertura
política, es probable que estos se sostengan o evolucionen
favorablemente.
La industrialización no solo mejora las condiciones económicas, sino
que también está vinculada con mayores niveles de libertad de prensa,
competencia política y eficacia legislativa.
Países con mayor desarrollo industrial en 1960 tienen mayor probabilidad
de haber avanzado en su democratización para 1965.
Existen relaciones significativas entre industrialización y democratización, lo que sugiere que estos procesos pueden estar interconectados en lugar de ser fenómenos aislados.
Este modelo respalda la teoría de modernización, que plantea que el desarrollo económico fomenta la democratización. Sin embargo, la relación no es completamente determinista: pueden existir otros factores políticos, culturales o institucionales que influyan en la evolución de la democracia.
La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.
## ID GEN EXPER EDAD
## Min. : 1.0 Min. :0.0000 Min. : 0.00 Min. :22.00
## 1st Qu.: 56.5 1st Qu.:0.0000 1st Qu.:15.00 1st Qu.:37.50
## Median :112.0 Median :1.0000 Median :20.00 Median :44.00
## Mean :112.0 Mean :0.5919 Mean :21.05 Mean :43.95
## 3rd Qu.:167.5 3rd Qu.:1.0000 3rd Qu.:27.50 3rd Qu.:51.00
## Max. :223.0 Max. :1.0000 Max. :50.00 Max. :72.00
## RPD01 RPD02 RPD03 RPD05 RPD06
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000
## Median :5.000 Median :4.00 Median :5.000 Median :5.000 Median :5.000
## Mean :4.596 Mean :4.09 Mean :4.789 Mean :4.327 Mean :4.798
## 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000
## RPD07 RPD08 RPD09 RPD10
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.500
## Median :4.000 Median :5.000 Median :5.000 Median :5.000
## Mean :3.794 Mean :4.735 Mean :4.466 Mean :4.435
## 3rd Qu.:5.500 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RRE02 RRE03 RRE04 RRE05 RRE06
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.0
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:4.0
## Median :6.000 Median :6.000 Median :6.000 Median :6.000 Median :6.0
## Mean :5.691 Mean :5.534 Mean :5.668 Mean :5.623 Mean :5.3
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.0
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.0
## RRE07 RRE10 RMA02 RMA03
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:3.000 1st Qu.:3.000
## Median :6.000 Median :6.000 Median :4.000 Median :5.000
## Mean :5.305 Mean :5.664 Mean :4.215 Mean :4.377
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA04 RMA05 RMA06 RMA07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:5.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :6.000 Median :5.000
## Mean :4.686 Mean :4.637 Mean :5.511 Mean :4.767
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA08 RMA09 RMA10 RCO02 RCO03
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:5.000 1st Qu.:5.000
## Median :5.000 Median :5.000 Median :5.00 Median :6.000 Median :6.000
## Mean :4.942 Mean :4.614 Mean :4.43 Mean :5.336 Mean :5.574
## 3rd Qu.:6.500 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000
## RCO04 RCO05 RCO06 RCO07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.704 Mean :5.668 Mean :5.619 Mean :5.632
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN01 EN02 EN04 EN05
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :6.000 Median :5.000 Median :5.000
## Mean :4.717 Mean :5.004 Mean :4.883 Mean :4.928
## 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN06 EN07 EN08 EVI01
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :0.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :5.000 Median :5.000
## Mean :4.767 Mean :4.578 Mean :4.776 Mean :5.013
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EVI02 EVI03 EDE01 EDE02
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.076 Mean :4.973 Mean :5.305 Mean :5.543
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EDE03 EAB01 EAB02 EAB03
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:6.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :7.000 Median :6.000 Median :6.000 Median :6.000
## Mean :6.135 Mean :5.605 Mean :5.821 Mean :5.363
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
## $ ID : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
## $ GEN : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
## $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
## $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
## $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
## $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
## $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
## $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
## $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
## $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
## $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
## $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
## $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
## $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
## $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
## $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
## $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
## $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
## $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
## $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
## $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
## $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
## $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
## $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
## $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
## $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
## $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
## $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
## $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
## $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
## $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
## $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
## $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
## $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
## $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
## $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
## $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
## $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
## $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
## $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
## $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
## $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
## $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
## $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
## $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
## # A tibble: 6 × 51
## ID GEN EXPER EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 22 45 5 1 3 2 3 1 3 2 4
## 2 2 1 22 44 4 4 6 5 3 2 3 4 4
## 3 3 1 30 52 7 7 7 7 7 6 7 7 7
## 4 4 1 17 41 5 5 1 1 3 5 3 2 2
## 5 5 1 23 51 7 6 7 6 7 6 7 6 6
## 6 6 0 31 52 3 4 5 4 3 5 4 4 4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## # RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## # RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## # RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## # RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## # EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## # EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …
## ID GEN EXPER EDAD
## Min. : 1.0 Min. :0.0000 Min. : 0.00 Min. :22.00
## 1st Qu.: 56.5 1st Qu.:0.0000 1st Qu.:15.00 1st Qu.:37.50
## Median :112.0 Median :1.0000 Median :20.00 Median :44.00
## Mean :112.0 Mean :0.5919 Mean :21.05 Mean :43.95
## 3rd Qu.:167.5 3rd Qu.:1.0000 3rd Qu.:27.50 3rd Qu.:51.00
## Max. :223.0 Max. :1.0000 Max. :50.00 Max. :72.00
## RPD01 RPD02 RPD03 RPD05 RPD06
## Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000
## Median :5.000 Median :4.00 Median :5.000 Median :5.000 Median :5.000
## Mean :4.596 Mean :4.09 Mean :4.789 Mean :4.327 Mean :4.798
## 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000 Max. :7.000
## RPD07 RPD08 RPD09 RPD10
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:2.500
## Median :4.000 Median :5.000 Median :5.000 Median :5.000
## Mean :3.794 Mean :4.735 Mean :4.466 Mean :4.435
## 3rd Qu.:5.500 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RRE02 RRE03 RRE04 RRE05 RRE06
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.0
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:4.0
## Median :6.000 Median :6.000 Median :6.000 Median :6.000 Median :6.0
## Mean :5.691 Mean :5.534 Mean :5.668 Mean :5.623 Mean :5.3
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.0
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.0
## RRE07 RRE10 RMA02 RMA03
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:3.000 1st Qu.:3.000
## Median :6.000 Median :6.000 Median :4.000 Median :5.000
## Mean :5.305 Mean :5.664 Mean :4.215 Mean :4.377
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA04 RMA05 RMA06 RMA07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:5.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :6.000 Median :5.000
## Mean :4.686 Mean :4.637 Mean :5.511 Mean :4.767
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## RMA08 RMA09 RMA10 RCO02 RCO03
## Min. :1.000 Min. :1.000 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:4.000 1st Qu.:3.000 1st Qu.:3.00 1st Qu.:5.000 1st Qu.:5.000
## Median :5.000 Median :5.000 Median :5.00 Median :6.000 Median :6.000
## Mean :4.942 Mean :4.614 Mean :4.43 Mean :5.336 Mean :5.574
## 3rd Qu.:6.500 3rd Qu.:6.000 3rd Qu.:6.00 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.00 Max. :7.000 Max. :7.000
## RCO04 RCO05 RCO06 RCO07
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.704 Mean :5.668 Mean :5.619 Mean :5.632
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN01 EN02 EN04 EN05
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :6.000 Median :5.000 Median :5.000
## Mean :4.717 Mean :5.004 Mean :4.883 Mean :4.928
## 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EN06 EN07 EN08 EVI01
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :0.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000
## Median :5.000 Median :5.000 Median :5.000 Median :5.000
## Mean :4.767 Mean :4.578 Mean :4.776 Mean :5.013
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:6.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EVI02 EVI03 EDE01 EDE02
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:4.000 1st Qu.:4.000 1st Qu.:5.000 1st Qu.:5.000
## Median :6.000 Median :6.000 Median :6.000 Median :6.000
## Mean :5.076 Mean :4.973 Mean :5.305 Mean :5.543
## 3rd Qu.:6.000 3rd Qu.:6.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## EDE03 EAB01 EAB02 EAB03
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000
## 1st Qu.:6.000 1st Qu.:5.000 1st Qu.:5.000 1st Qu.:5.000
## Median :7.000 Median :6.000 Median :6.000 Median :6.000
## Mean :6.135 Mean :5.605 Mean :5.821 Mean :5.363
## 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000 3rd Qu.:7.000
## Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.000
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
## $ ID : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
## $ GEN : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
## $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
## $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
## $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
## $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
## $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
## $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
## $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
## $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
## $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
## $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
## $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
## $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
## $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
## $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
## $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
## $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
## $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
## $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
## $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
## $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
## $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
## $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
## $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
## $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
## $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
## $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
## $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
## $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
## $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
## $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
## $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
## $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
## $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
## $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
## $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
## $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
## $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
## $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
## $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
## $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
## $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
## $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
## $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
## $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
## $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
## # A tibble: 6 × 51
## ID GEN EXPER EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 22 45 5 1 3 2 3 1 3 2 4
## 2 2 1 22 44 4 4 6 5 3 2 3 4 4
## 3 3 1 30 52 7 7 7 7 7 6 7 7 7
## 4 4 1 17 41 5 5 1 1 3 5 3 2 2
## 5 5 1 23 51 7 6 7 6 7 6 7 6 6
## 6 6 0 31 52 3 4 5 4 3 5 4 4 4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## # RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## # RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## # RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## # RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## # EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## # EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …
modelo31 <- ' # Regresiones
#Variables Latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02+ RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ desapego + relajacion + dominio + control
# Varianzas y Covarianza
desapego =~ desapego
relajacion =~ relajacion
dominio =~ dominio
control =~ control
# Intercepto
'## Warning: lavaan->lav_model_vcov():
## Could not compute standard errors! The information matrix could not be
## inverted. This may be a symptom that the model is not identified.
## lavaan 0.6-19 ended normally after 310 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 70
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1221.031
## Degrees of freedom 426
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.206 NA
## RPD03 1.143 NA
## RPD05 1.312 NA
## RPD06 1.088 NA
## RPD07 1.229 NA
## RPD08 1.163 NA
## RPD09 1.317 NA
## RPD10 1.346 NA
## relajacion =~
## RRE02 1.000
## RRE03 1.120 NA
## RRE04 1.025 NA
## RRE05 1.055 NA
## RRE06 1.245 NA
## RRE07 1.117 NA
## RRE10 0.815 NA
## dominio =~
## RMA02 1.000
## RMA03 1.155 NA
## RMA04 1.178 NA
## RMA05 1.141 NA
## RMA06 0.645 NA
## RMA07 1.103 NA
## RMA08 1.109 NA
## RMA09 1.028 NA
## RMA10 1.055 NA
## control =~
## RCO02 1.000
## RCO03 0.948 NA
## RCO04 0.796 NA
## RCO05 0.818 NA
## RCO06 0.834 NA
## RCO07 0.835 NA
## recuperacion =~
## desapego 1.000
## relajacion 1.149 NA
## dominio 0.858 NA
## control 1.341 NA
## desapego =~
## desapego 1.300 NA
## relajacion =~
## relajacion 1.223 NA
## dominio =~
## dominio 2.266 NA
## control =~
## control 2.086 NA
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.172 NA
## .RPD02 0.999 NA
## .RPD03 1.441 NA
## .RPD05 0.987 NA
## .RPD06 1.817 NA
## .RPD07 1.173 NA
## .RPD08 1.460 NA
## .RPD09 1.032 NA
## .RPD10 1.034 NA
## .RRE02 0.626 NA
## .RRE03 0.653 NA
## .RRE04 0.481 NA
## .RRE05 0.374 NA
## .RRE06 0.886 NA
## .RRE07 0.950 NA
## .RRE10 1.137 NA
## .RMA02 1.740 NA
## .RMA03 1.485 NA
## .RMA04 0.855 NA
## .RMA05 0.899 NA
## .RMA06 1.631 NA
## .RMA07 0.845 NA
## .RMA08 0.886 NA
## .RMA09 1.094 NA
## .RMA10 1.259 NA
## .RCO02 0.983 NA
## .RCO03 0.484 NA
## .RCO04 0.462 NA
## .RCO05 0.382 NA
## .RCO06 0.494 NA
## .RCO07 0.515 NA
## .desapego 0.943 NA
## .relajacion 0.333 NA
## .dominio 1.260 NA
## .control 0.900 NA
## recuperacion 0.978 NA
## lavaan 0.6-19 ended normally after 310 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 70
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 1221.031
## Degrees of freedom 426
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 7522.157
## Degrees of freedom 465
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.887
## Tucker-Lewis Index (TLI) 0.877
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -10616.148
## Loglikelihood unrestricted model (H1) -10005.632
##
## Akaike (AIC) 21372.296
## Bayesian (BIC) 21610.798
## Sample-size adjusted Bayesian (SABIC) 21388.959
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.091
## 90 Percent confidence interval - lower 0.085
## 90 Percent confidence interval - upper 0.098
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.999
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.075
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.206 NA
## RPD03 1.143 NA
## RPD05 1.312 NA
## RPD06 1.088 NA
## RPD07 1.229 NA
## RPD08 1.163 NA
## RPD09 1.317 NA
## RPD10 1.346 NA
## relajacion =~
## RRE02 1.000
## RRE03 1.120 NA
## RRE04 1.025 NA
## RRE05 1.055 NA
## RRE06 1.245 NA
## RRE07 1.117 NA
## RRE10 0.815 NA
## dominio =~
## RMA02 1.000
## RMA03 1.155 NA
## RMA04 1.178 NA
## RMA05 1.141 NA
## RMA06 0.645 NA
## RMA07 1.103 NA
## RMA08 1.109 NA
## RMA09 1.028 NA
## RMA10 1.055 NA
## control =~
## RCO02 1.000
## RCO03 0.948 NA
## RCO04 0.796 NA
## RCO05 0.818 NA
## RCO06 0.834 NA
## RCO07 0.835 NA
## recuperacion =~
## desapego 1.000
## relajacion 1.149 NA
## dominio 0.858 NA
## control 1.341 NA
## desapego =~
## desapego 1.300 NA
## relajacion =~
## relajacion 1.223 NA
## dominio =~
## dominio 2.266 NA
## control =~
## control 2.086 NA
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .RPD01 1.172 NA
## .RPD02 0.999 NA
## .RPD03 1.441 NA
## .RPD05 0.987 NA
## .RPD06 1.817 NA
## .RPD07 1.173 NA
## .RPD08 1.460 NA
## .RPD09 1.032 NA
## .RPD10 1.034 NA
## .RRE02 0.626 NA
## .RRE03 0.653 NA
## .RRE04 0.481 NA
## .RRE05 0.374 NA
## .RRE06 0.886 NA
## .RRE07 0.950 NA
## .RRE10 1.137 NA
## .RMA02 1.740 NA
## .RMA03 1.485 NA
## .RMA04 0.855 NA
## .RMA05 0.899 NA
## .RMA06 1.631 NA
## .RMA07 0.845 NA
## .RMA08 0.886 NA
## .RMA09 1.094 NA
## .RMA10 1.259 NA
## .RCO02 0.983 NA
## .RCO03 0.484 NA
## .RCO04 0.462 NA
## .RCO05 0.382 NA
## .RCO06 0.494 NA
## .RCO07 0.515 NA
## .desapego 0.943 NA
## .relajacion 0.333 NA
## .dominio 1.260 NA
## .control 0.900 NA
## recuperacion 0.978 NA
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.887
# Tucker-Lewis Index (TLI) 0.877Conclusión= Modelo Deficiente.
## lavaan 0.6-19 ended normally after 30 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 12
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 37.585
## Degrees of freedom 9
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.022 0.044 23.369 0.000
## EN04 0.992 0.044 22.751 0.000
## EN06 0.980 0.041 24.006 0.000
## EN07 1.046 0.045 23.355 0.000
## EN08 1.028 0.042 24.386 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## energia 2.832 0.328 8.635 0.000
## .EN01 0.680 0.072 9.405 0.000
## .EN02 0.456 0.052 8.748 0.000
## .EN04 0.491 0.055 8.978 0.000
## .EN06 0.362 0.043 8.458 0.000
## .EN07 0.479 0.055 8.754 0.000
## .EN08 0.363 0.044 8.252 0.000
## lavaan 0.6-19 ended normally after 30 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 12
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 37.585
## Degrees of freedom 9
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 1877.576
## Degrees of freedom 15
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.985
## Tucker-Lewis Index (TLI) 0.974
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -1790.711
## Loglikelihood unrestricted model (H1) -1771.918
##
## Akaike (AIC) 3605.421
## Bayesian (BIC) 3646.307
## Sample-size adjusted Bayesian (SABIC) 3608.278
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.119
## 90 Percent confidence interval - lower 0.081
## 90 Percent confidence interval - upper 0.160
## P-value H_0: RMSEA <= 0.050 0.002
## P-value H_0: RMSEA >= 0.080 0.956
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.013
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## energia =~
## EN01 1.000
## EN02 1.022 0.044 23.369 0.000
## EN04 0.992 0.044 22.751 0.000
## EN06 0.980 0.041 24.006 0.000
## EN07 1.046 0.045 23.355 0.000
## EN08 1.028 0.042 24.386 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## energia 2.832 0.328 8.635 0.000
## .EN01 0.680 0.072 9.405 0.000
## .EN02 0.456 0.052 8.748 0.000
## .EN04 0.491 0.055 8.978 0.000
## .EN06 0.362 0.043 8.458 0.000
## .EN07 0.479 0.055 8.754 0.000
## .EN08 0.363 0.044 8.252 0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.985
# Tucker-Lewis Index (TLI) 0.974Conclusión: Modelo Excelente
modelo33 <- ' # Regresiones
#Variables Latentes
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 +EDE03
absorcion =~ EAB01 + EAB02 + EAB03
# Varianzas y Covarianza
vigor ~~ vigor
dedicacion ~~ dedicacion
absorcion ~~ absorcion
vigor ~~ dedicacion + absorcion
dedicacion ~~ absorcion
# Intercepto
'## lavaan 0.6-19 ended normally after 44 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 271.168
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## vigor =~
## EVI01 1.000
## EVI02 0.986 0.028 35.166 0.000
## EVI03 0.995 0.049 20.456 0.000
## dedicacion =~
## EDE01 1.000
## EDE02 0.914 0.035 26.126 0.000
## EDE03 0.583 0.037 15.913 0.000
## absorcion =~
## EAB01 1.000
## EAB02 0.708 0.051 13.891 0.000
## EAB03 0.732 0.063 11.644 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## vigor ~~
## dedicacion 2.754 0.293 9.404 0.000
## absorcion 2.125 0.247 8.600 0.000
## dedicacion ~~
## absorcion 2.728 0.293 9.311 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## vigor 2.836 0.289 9.811 0.000
## dedicacion 3.448 0.367 9.399 0.000
## absorcion 2.592 0.301 8.615 0.000
## .EVI01 0.200 0.040 4.947 0.000
## .EVI02 0.220 0.041 5.437 0.000
## .EVI03 1.220 0.125 9.772 0.000
## .EDE01 0.405 0.066 6.130 0.000
## .EDE02 0.495 0.066 7.521 0.000
## .EDE03 0.829 0.084 9.869 0.000
## .EAB01 0.481 0.100 4.816 0.000
## .EAB02 1.010 0.109 9.271 0.000
## .EAB03 1.711 0.175 9.764 0.000
## lavaan 0.6-19 ended normally after 44 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 271.168
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 2254.214
## Degrees of freedom 36
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.889
## Tucker-Lewis Index (TLI) 0.833
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -2965.082
## Loglikelihood unrestricted model (H1) -2829.498
##
## Akaike (AIC) 5972.164
## Bayesian (BIC) 6043.715
## Sample-size adjusted Bayesian (SABIC) 5977.163
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.215
## 90 Percent confidence interval - lower 0.192
## 90 Percent confidence interval - upper 0.238
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.070
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## vigor =~
## EVI01 1.000
## EVI02 0.986 0.028 35.166 0.000
## EVI03 0.995 0.049 20.456 0.000
## dedicacion =~
## EDE01 1.000
## EDE02 0.914 0.035 26.126 0.000
## EDE03 0.583 0.037 15.913 0.000
## absorcion =~
## EAB01 1.000
## EAB02 0.708 0.051 13.891 0.000
## EAB03 0.732 0.063 11.644 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## vigor ~~
## dedicacion 2.754 0.293 9.404 0.000
## absorcion 2.125 0.247 8.600 0.000
## dedicacion ~~
## absorcion 2.728 0.293 9.311 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## vigor 2.836 0.289 9.811 0.000
## dedicacion 3.448 0.367 9.399 0.000
## absorcion 2.592 0.301 8.615 0.000
## .EVI01 0.200 0.040 4.947 0.000
## .EVI02 0.220 0.041 5.437 0.000
## .EVI03 1.220 0.125 9.772 0.000
## .EDE01 0.405 0.066 6.130 0.000
## .EDE02 0.495 0.066 7.521 0.000
## .EDE03 0.829 0.084 9.869 0.000
## .EAB01 0.481 0.100 4.816 0.000
## .EAB02 1.010 0.109 9.271 0.000
## .EAB03 1.711 0.175 9.764 0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.889
# Tucker-Lewis Index (TLI) 0.833Conclusión: Modelo Deficiente
modelo34 <- ' # Regresiones
# Variables latentes
desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
recuperacion =~ desapego + relajacion + dominio + control
energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
vigor =~ EVI01 + EVI02 + EVI03
dedicacion =~ EDE01 + EDE02 + EDE03
absorcion =~ EAB01 + EAB02 + EAB03
# Varianzas y Covarianza
desapego =~ desapego
relajacion =~ relajacion
dominio =~ dominio
control =~ control
energia ~~ energia
vigor ~~ vigor
dedicacion ~~ dedicacion
absorcion ~~ absorcion
vigor ~~ dedicacion + absorcion
dedicacion ~~ absorcion
recuperacion ~~ energia + vigor + dedicacion + absorcion
energia ~~ vigor + dedicacion + absorcion
# Intercepto
'## Warning: lavaan->lav_model_vcov():
## Could not compute standard errors! The information matrix could not be
## inverted. This may be a symptom that the model is not identified.
## lavaan 0.6-19 ended normally after 685 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 112
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2445.310
## Degrees of freedom 1016
## P-value (Chi-square) 0.000
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.209 NA
## RPD03 1.144 NA
## RPD05 1.313 NA
## RPD06 1.083 NA
## RPD07 1.229 NA
## RPD08 1.157 NA
## RPD09 1.316 NA
## RPD10 1.343 NA
## relajacion =~
## RRE02 1.000
## RRE03 1.121 NA
## RRE04 1.020 NA
## RRE05 1.051 NA
## RRE06 1.245 NA
## RRE07 1.122 NA
## RRE10 0.815 NA
## dominio =~
## RMA02 1.000
## RMA03 1.152 NA
## RMA04 1.178 NA
## RMA05 1.141 NA
## RMA06 0.648 NA
## RMA07 1.104 NA
## RMA08 1.110 NA
## RMA09 1.030 NA
## RMA10 1.056 NA
## control =~
## RCO02 1.000
## RCO03 0.946 NA
## RCO04 0.794 NA
## RCO05 0.815 NA
## RCO06 0.837 NA
## RCO07 0.837 NA
## recuperacion =~
## desapego 1.000
## relajacion 1.071 NA
## dominio 0.900 NA
## control 1.421 NA
## energia =~
## EN01 1.000
## EN02 1.026 NA
## EN04 0.996 NA
## EN05 0.994 NA
## EN06 0.981 NA
## EN07 1.044 NA
## EN08 1.031 NA
## vigor =~
## EVI01 1.000
## EVI02 0.978 NA
## EVI03 0.990 NA
## dedicacion =~
## EDE01 1.000
## EDE02 0.913 NA
## EDE03 0.580 NA
## absorcion =~
## EAB01 1.000
## EAB02 0.707 NA
## EAB03 0.730 NA
## desapego =~
## desapego 5.040 NA
## relajacion =~
## relajacion 1.609 NA
## dominio =~
## dominio 3.464 NA
## control =~
## control 2.210 NA
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## vigor ~~
## dedicacion 2.767 NA
## absorcion 2.132 NA
## dedicacion ~~
## absorcion 2.731 NA
## recuperacion ~~
## energia 1.367 NA
## vigor 1.007 NA
## dedicacion 1.049 NA
## absorcion 0.796 NA
## energia ~~
## vigor 2.045 NA
## dedicacion 1.852 NA
## absorcion 1.340 NA
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## energia 2.823 NA
## vigor 2.859 NA
## dedicacion 3.458 NA
## absorcion 2.595 NA
## .RPD01 1.169 NA
## .RPD02 0.984 NA
## .RPD03 1.435 NA
## .RPD05 0.973 NA
## .RPD06 1.835 NA
## .RPD07 1.166 NA
## .RPD08 1.485 NA
## .RPD09 1.036 NA
## .RPD10 1.044 NA
## .RRE02 0.623 NA
## .RRE03 0.646 NA
## .RRE04 0.494 NA
## .RRE05 0.384 NA
## .RRE06 0.882 NA
## .RRE07 0.929 NA
## .RRE10 1.134 NA
## .RMA02 1.742 NA
## .RMA03 1.500 NA
## .RMA04 0.857 NA
## .RMA05 0.904 NA
## .RMA06 1.626 NA
## .RMA07 0.843 NA
## .RMA08 0.881 NA
## .RMA09 1.089 NA
## .RMA10 1.256 NA
## .RCO02 0.980 NA
## .RCO03 0.493 NA
## .RCO04 0.468 NA
## .RCO05 0.393 NA
## .RCO06 0.479 NA
## .RCO07 0.504 NA
## .EN01 0.689 NA
## .EN02 0.439 NA
## .EN04 0.476 NA
## .EN05 0.381 NA
## .EN06 0.367 NA
## .EN07 0.502 NA
## .EN08 0.358 NA
## .EVI01 0.177 NA
## .EVI02 0.242 NA
## .EVI03 1.222 NA
## .EDE01 0.395 NA
## .EDE02 0.498 NA
## .EDE03 0.836 NA
## .EAB01 0.478 NA
## .EAB02 1.010 NA
## .EAB03 1.718 NA
## .desapego 0.951 NA
## .relajacion 0.510 NA
## .dominio 1.191 NA
## .control 0.699 NA
## recuperacion 0.972 NA
## lavaan 0.6-19 ended normally after 685 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 112
##
## Number of observations 223
##
## Model Test User Model:
##
## Test statistic 2445.310
## Degrees of freedom 1016
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 13350.303
## Degrees of freedom 1081
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.884
## Tucker-Lewis Index (TLI) 0.876
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -15426.580
## Loglikelihood unrestricted model (H1) -14203.926
##
## Akaike (AIC) 31077.161
## Bayesian (BIC) 31458.764
## Sample-size adjusted Bayesian (SABIC) 31103.822
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.079
## 90 Percent confidence interval - lower 0.075
## 90 Percent confidence interval - upper 0.083
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.411
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.070
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## desapego =~
## RPD01 1.000
## RPD02 1.209 NA
## RPD03 1.144 NA
## RPD05 1.313 NA
## RPD06 1.083 NA
## RPD07 1.229 NA
## RPD08 1.157 NA
## RPD09 1.316 NA
## RPD10 1.343 NA
## relajacion =~
## RRE02 1.000
## RRE03 1.121 NA
## RRE04 1.020 NA
## RRE05 1.051 NA
## RRE06 1.245 NA
## RRE07 1.122 NA
## RRE10 0.815 NA
## dominio =~
## RMA02 1.000
## RMA03 1.152 NA
## RMA04 1.178 NA
## RMA05 1.141 NA
## RMA06 0.648 NA
## RMA07 1.104 NA
## RMA08 1.110 NA
## RMA09 1.030 NA
## RMA10 1.056 NA
## control =~
## RCO02 1.000
## RCO03 0.946 NA
## RCO04 0.794 NA
## RCO05 0.815 NA
## RCO06 0.837 NA
## RCO07 0.837 NA
## recuperacion =~
## desapego 1.000
## relajacion 1.071 NA
## dominio 0.900 NA
## control 1.421 NA
## energia =~
## EN01 1.000
## EN02 1.026 NA
## EN04 0.996 NA
## EN05 0.994 NA
## EN06 0.981 NA
## EN07 1.044 NA
## EN08 1.031 NA
## vigor =~
## EVI01 1.000
## EVI02 0.978 NA
## EVI03 0.990 NA
## dedicacion =~
## EDE01 1.000
## EDE02 0.913 NA
## EDE03 0.580 NA
## absorcion =~
## EAB01 1.000
## EAB02 0.707 NA
## EAB03 0.730 NA
## desapego =~
## desapego 5.040 NA
## relajacion =~
## relajacion 1.609 NA
## dominio =~
## dominio 3.464 NA
## control =~
## control 2.210 NA
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## vigor ~~
## dedicacion 2.767 NA
## absorcion 2.132 NA
## dedicacion ~~
## absorcion 2.731 NA
## recuperacion ~~
## energia 1.367 NA
## vigor 1.007 NA
## dedicacion 1.049 NA
## absorcion 0.796 NA
## energia ~~
## vigor 2.045 NA
## dedicacion 1.852 NA
## absorcion 1.340 NA
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## energia 2.823 NA
## vigor 2.859 NA
## dedicacion 3.458 NA
## absorcion 2.595 NA
## .RPD01 1.169 NA
## .RPD02 0.984 NA
## .RPD03 1.435 NA
## .RPD05 0.973 NA
## .RPD06 1.835 NA
## .RPD07 1.166 NA
## .RPD08 1.485 NA
## .RPD09 1.036 NA
## .RPD10 1.044 NA
## .RRE02 0.623 NA
## .RRE03 0.646 NA
## .RRE04 0.494 NA
## .RRE05 0.384 NA
## .RRE06 0.882 NA
## .RRE07 0.929 NA
## .RRE10 1.134 NA
## .RMA02 1.742 NA
## .RMA03 1.500 NA
## .RMA04 0.857 NA
## .RMA05 0.904 NA
## .RMA06 1.626 NA
## .RMA07 0.843 NA
## .RMA08 0.881 NA
## .RMA09 1.089 NA
## .RMA10 1.256 NA
## .RCO02 0.980 NA
## .RCO03 0.493 NA
## .RCO04 0.468 NA
## .RCO05 0.393 NA
## .RCO06 0.479 NA
## .RCO07 0.504 NA
## .EN01 0.689 NA
## .EN02 0.439 NA
## .EN04 0.476 NA
## .EN05 0.381 NA
## .EN06 0.367 NA
## .EN07 0.502 NA
## .EN08 0.358 NA
## .EVI01 0.177 NA
## .EVI02 0.242 NA
## .EVI03 1.222 NA
## .EDE01 0.395 NA
## .EDE02 0.498 NA
## .EDE03 0.836 NA
## .EAB01 0.478 NA
## .EAB02 1.010 NA
## .EAB03 1.718 NA
## .desapego 0.951 NA
## .relajacion 0.510 NA
## .dominio 1.191 NA
## .control 0.699 NA
## recuperacion 0.972 NA
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.
# User Model versus Baseline Model:
# Comparative Fit Index (CFI) 0.884
# Tucker-Lewis Index (TLI) 0.876Conclusión: Modelo Deficiente