Teoría en clase

Los Modelos de Ecuaciones Estructurales (SEM) es una técnica de análisis de estadística multivariada, que permite analizar patrones complejos de relaciones entre variables, realizar comparaciones entre e intragrupos, y validar modelos teóricos y empíricos.

Ejemplo 1. Holzinger y Swineford (1939)

Holzinger y Swineford realizaron exámenes de habilidad mental a adolescentes de 7° y 8° de dos escuelas (Pasteur y Grand-White)

  • sex: Género (1=male, 2=female)
  • x1: Percepción visual
  • x2: Juego de cubos
  • x3: Juego con pastillas/espacial
  • x4: Comprensión de párrafos
  • x5: Completar oraciones
  • x6: Signficado de palabras
  • x7: Sumas aceleradas
  • x8: Conteo acelerado de puntos
  • x9: Discriminación acelerada de mayúsculas rectas y curvas

Se busca identificar las relaciones entre las habilidades visual (x1,x2,x3), textual (x4,x5,x6) y velocidad (x7,x8,x9) de los adolescentes.

Instalar paquetes y llamar librerías

#install.packages("lavaan") #Latent Variable Analysis
library("lavaan")
#install.packages("lavaanPlot") #Latent Variable Analysis
library("lavaanPlot")

Importar la base de datos

df1 <- HolzingerSwineford1939

Entender la base de datos

summary(df1)
##        id             sex            ageyr        agemo       
##  Min.   :  1.0   Min.   :1.000   Min.   :11   Min.   : 0.000  
##  1st Qu.: 82.0   1st Qu.:1.000   1st Qu.:12   1st Qu.: 2.000  
##  Median :163.0   Median :2.000   Median :13   Median : 5.000  
##  Mean   :176.6   Mean   :1.515   Mean   :13   Mean   : 5.375  
##  3rd Qu.:272.0   3rd Qu.:2.000   3rd Qu.:14   3rd Qu.: 8.000  
##  Max.   :351.0   Max.   :2.000   Max.   :16   Max.   :11.000  
##                                                               
##          school        grade             x1               x2       
##  Grant-White:145   Min.   :7.000   Min.   :0.6667   Min.   :2.250  
##  Pasteur    :156   1st Qu.:7.000   1st Qu.:4.1667   1st Qu.:5.250  
##                    Median :7.000   Median :5.0000   Median :6.000  
##                    Mean   :7.477   Mean   :4.9358   Mean   :6.088  
##                    3rd Qu.:8.000   3rd Qu.:5.6667   3rd Qu.:6.750  
##                    Max.   :8.000   Max.   :8.5000   Max.   :9.250  
##                    NA's   :1                                       
##        x3              x4              x5              x6        
##  Min.   :0.250   Min.   :0.000   Min.   :1.000   Min.   :0.1429  
##  1st Qu.:1.375   1st Qu.:2.333   1st Qu.:3.500   1st Qu.:1.4286  
##  Median :2.125   Median :3.000   Median :4.500   Median :2.0000  
##  Mean   :2.250   Mean   :3.061   Mean   :4.341   Mean   :2.1856  
##  3rd Qu.:3.125   3rd Qu.:3.667   3rd Qu.:5.250   3rd Qu.:2.7143  
##  Max.   :4.500   Max.   :6.333   Max.   :7.000   Max.   :6.1429  
##                                                                  
##        x7              x8               x9       
##  Min.   :1.304   Min.   : 3.050   Min.   :2.778  
##  1st Qu.:3.478   1st Qu.: 4.850   1st Qu.:4.750  
##  Median :4.087   Median : 5.500   Median :5.417  
##  Mean   :4.186   Mean   : 5.527   Mean   :5.374  
##  3rd Qu.:4.913   3rd Qu.: 6.100   3rd Qu.:6.083  
##  Max.   :7.435   Max.   :10.000   Max.   :9.250  
## 
str(df1)
## 'data.frame':    301 obs. of  15 variables:
##  $ id    : int  1 2 3 4 5 6 7 8 9 11 ...
##  $ sex   : int  1 2 2 1 2 2 1 2 2 2 ...
##  $ ageyr : int  13 13 13 13 12 14 12 12 13 12 ...
##  $ agemo : int  1 7 1 2 2 1 1 2 0 5 ...
##  $ school: Factor w/ 2 levels "Grant-White",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ grade : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ x1    : num  3.33 5.33 4.5 5.33 4.83 ...
##  $ x2    : num  7.75 5.25 5.25 7.75 4.75 5 6 6.25 5.75 5.25 ...
##  $ x3    : num  0.375 2.125 1.875 3 0.875 ...
##  $ x4    : num  2.33 1.67 1 2.67 2.67 ...
##  $ x5    : num  5.75 3 1.75 4.5 4 3 6 4.25 5.75 5 ...
##  $ x6    : num  1.286 1.286 0.429 2.429 2.571 ...
##  $ x7    : num  3.39 3.78 3.26 3 3.7 ...
##  $ x8    : num  5.75 6.25 3.9 5.3 6.3 6.65 6.2 5.15 4.65 4.55 ...
##  $ x9    : num  6.36 7.92 4.42 4.86 5.92 ...
head(df1)
##   id sex ageyr agemo  school grade       x1   x2    x3       x4   x5        x6
## 1  1   1    13     1 Pasteur     7 3.333333 7.75 0.375 2.333333 5.75 1.2857143
## 2  2   2    13     7 Pasteur     7 5.333333 5.25 2.125 1.666667 3.00 1.2857143
## 3  3   2    13     1 Pasteur     7 4.500000 5.25 1.875 1.000000 1.75 0.4285714
## 4  4   1    13     2 Pasteur     7 5.333333 7.75 3.000 2.666667 4.50 2.4285714
## 5  5   2    12     2 Pasteur     7 4.833333 4.75 0.875 2.666667 4.00 2.5714286
## 6  6   2    14     1 Pasteur     7 5.333333 5.00 2.250 1.000000 3.00 0.8571429
##         x7   x8       x9
## 1 3.391304 5.75 6.361111
## 2 3.782609 6.25 7.916667
## 3 3.260870 3.90 4.416667
## 4 3.000000 5.30 4.861111
## 5 3.695652 6.30 5.916667
## 6 4.347826 6.65 7.500000

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Covarianzas (~~) Relaciones entre variables latentes y observada (Varianza: Entre si misma, Covarianza: entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Estructurar el modelo

modelo1 <- ' # Regresiones
             # Variables latentes
             visual =~ x1 + x2 + x3
             textual =~ x4 + x5 + x6
             velocidad =~ x7 + x8 + x9
             # Varianzas y Covarianza
             visual ~~ visual
             textual ~~ textual
             velocidad ~~ velocidad
             visual ~~ textual + velocidad
             textual ~~ velocidad
             # Intercepto

           '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa1= sem(modelo1, data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa1, fit.measures=(TRUE))
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               918.852
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.931
##   Tucker-Lewis Index (TLI)                       0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3737.745
##   Loglikelihood unrestricted model (H1)      -3695.092
##                                                       
##   Akaike (AIC)                                7517.490
##   Bayesian (BIC)                              7595.339
##   Sample-size adjusted Bayesian (SABIC)       7528.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.092
##   90 Percent confidence interval - lower         0.071
##   90 Percent confidence interval - upper         0.114
##   P-value H_0: RMSEA <= 0.050                    0.001
##   P-value H_0: RMSEA >= 0.080                    0.840
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:

#  Comparative Fit Index (CFI)                    0.931
# Tucker-Lewis Index (TLI)                       0.896

Conclusión: Modelo Aceptable

Generar el Análisis Factorial Confirmatorio (CFA)

cfa1= sem(modelo1, data=df1)
summary(cfa1)
## lavaan 0.6-19 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           301
## 
## Model Test User Model:
##                                                       
##   Test statistic                                85.306
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual =~                                           
##     x1                1.000                           
##     x2                0.554    0.100    5.554    0.000
##     x3                0.729    0.109    6.685    0.000
##   textual =~                                          
##     x4                1.000                           
##     x5                1.113    0.065   17.014    0.000
##     x6                0.926    0.055   16.703    0.000
##   velocidad =~                                        
##     x7                1.000                           
##     x8                1.180    0.165    7.152    0.000
##     x9                1.082    0.151    7.155    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   visual ~~                                           
##     textual           0.408    0.074    5.552    0.000
##     velocidad         0.262    0.056    4.660    0.000
##   textual ~~                                          
##     velocidad         0.173    0.049    3.518    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     visual            0.809    0.145    5.564    0.000
##     textual           0.979    0.112    8.737    0.000
##     velocidad         0.384    0.086    4.451    0.000
##    .x1                0.549    0.114    4.833    0.000
##    .x2                1.134    0.102   11.146    0.000
##    .x3                0.844    0.091    9.317    0.000
##    .x4                0.371    0.048    7.779    0.000
##    .x5                0.446    0.058    7.642    0.000
##    .x6                0.356    0.043    8.277    0.000
##    .x7                0.799    0.081    9.823    0.000
##    .x8                0.488    0.074    6.573    0.000
##    .x9                0.566    0.071    8.003    0.000
lavaanPlot(cfa1, coef=TRUE, cov=TRUE)

Ejercicio 1. Democracia Política e Industrialización

La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.

Contexto

La tabla incluye los siguientes datos * y1: Calificaciones sobre libertad de prensa en 1960 * y2: Libertad de la oposición política en 1960 * y3: Imparcialidad de elecciones en 1960 * y4: Eficacia de la legislatura electa en 1960 * y5: Calificaciones sobre libertad de prensa en 1965 * y6: Libertad de la oposición política en 1965 * y7: Imparcialidad de elecciones en 1965 * y8: Eficacia de la legislatura electa en 1965 * x1: PIB per cáota en 1960 * x2: Consumo de energía inanimada per cápita en 1960 * x1: Porcentaje de la fuerza laboral en la industria en 1960

Instalar paquetes y llamar librerías

#install.packages("lavaan") #Latent Variable Analysis
library("lavaan")
#install.packages("lavaanPlot") #Latent Variable Analysis
library("lavaanPlot")

Importar la base de datos

La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.

df2 <- PoliticalDemocracy

Entender la base de datos

summary(df2)
##        y1               y2               y3               y4        
##  Min.   : 1.250   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 2.900   1st Qu.: 0.000   1st Qu.: 3.767   1st Qu.: 1.581  
##  Median : 5.400   Median : 3.333   Median : 6.667   Median : 3.333  
##  Mean   : 5.465   Mean   : 4.256   Mean   : 6.563   Mean   : 4.453  
##  3rd Qu.: 7.500   3rd Qu.: 8.283   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        y5               y6               y7               y8        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 3.692   1st Qu.: 0.000   1st Qu.: 3.478   1st Qu.: 1.301  
##  Median : 5.000   Median : 2.233   Median : 6.667   Median : 3.333  
##  Mean   : 5.136   Mean   : 2.978   Mean   : 6.196   Mean   : 4.043  
##  3rd Qu.: 7.500   3rd Qu.: 4.207   3rd Qu.:10.000   3rd Qu.: 6.667  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :10.000  
##        x1              x2              x3       
##  Min.   :3.784   Min.   :1.386   Min.   :1.002  
##  1st Qu.:4.477   1st Qu.:3.663   1st Qu.:2.300  
##  Median :5.075   Median :4.963   Median :3.568  
##  Mean   :5.054   Mean   :4.792   Mean   :3.558  
##  3rd Qu.:5.515   3rd Qu.:5.830   3rd Qu.:4.523  
##  Max.   :6.737   Max.   :7.872   Max.   :6.425
str(df2)
## 'data.frame':    75 obs. of  11 variables:
##  $ y1: num  2.5 1.25 7.5 8.9 10 7.5 7.5 7.5 2.5 10 ...
##  $ y2: num  0 0 8.8 8.8 3.33 ...
##  $ y3: num  3.33 3.33 10 10 10 ...
##  $ y4: num  0 0 9.2 9.2 6.67 ...
##  $ y5: num  1.25 6.25 8.75 8.91 7.5 ...
##  $ y6: num  0 1.1 8.09 8.13 3.33 ...
##  $ y7: num  3.73 6.67 10 10 10 ...
##  $ y8: num  3.333 0.737 8.212 4.615 6.667 ...
##  $ x1: num  4.44 5.38 5.96 6.29 5.86 ...
##  $ x2: num  3.64 5.06 6.26 7.57 6.82 ...
##  $ x3: num  2.56 3.57 5.22 6.27 4.57 ...
head(df2)
##      y1       y2       y3       y4       y5       y6       y7       y8       x1
## 1  2.50 0.000000 3.333333 0.000000 1.250000 0.000000 3.726360 3.333333 4.442651
## 2  1.25 0.000000 3.333333 0.000000 6.250000 1.100000 6.666666 0.736999 5.384495
## 3  7.50 8.800000 9.999998 9.199991 8.750000 8.094061 9.999998 8.211809 5.961005
## 4  8.90 8.800000 9.999998 9.199991 8.907948 8.127979 9.999998 4.615086 6.285998
## 5 10.00 3.333333 9.999998 6.666666 7.500000 3.333333 9.999998 6.666666 5.863631
## 6  7.50 3.333333 6.666666 6.666666 6.250000 1.100000 6.666666 0.368500 5.533389
##         x2       x3
## 1 3.637586 2.557615
## 2 5.062595 3.568079
## 3 6.255750 5.224433
## 4 7.567863 6.267495
## 5 6.818924 4.573679
## 6 5.135798 3.892270

Tipos de Fórmulas

  1. Regresión (~) Variable que depende de otras.
  2. Variables latentes (=~) No se observa, se infiere.
  3. Covarianzas (~~) Relaciones entre variables latentes y observada (Varianza: Entre si misma, Covarianza: entre otras).
  4. Intercepto (~1) Valor esperado cuando las demás variables son cero.

Estructurar el modelo

modelo2 <- '
  # Definir variables latentes de democratización en 1960 y 1965
  Dem1960 =~ y1 + y2 + y3 + y4
  Dem1965 =~ y5 + y6 + y7 + y8

  # Definir variable latente de industrialización
  Ind1960 =~ x1 + x2 + x3

  # Relacionar democratización de 1960 con 1965
  Dem1965 ~ Dem1960

  # Relacionar industrialización con democratización
  Dem1960 ~ Ind1960
  Dem1965 ~ Ind1960

  # Especificar varianzas y covarianzas
  Dem1960 ~~ Dem1960
  Dem1965 ~~ Dem1965
  Ind1960 ~~ Ind1960
  Dem1960 ~~ Ind1960
  Dem1965 ~~ Ind1960
'

Generar el Análisis Factorial Confirmatorio (CFA)

cfa2 <- sem(modelo2, data=df2, se="bootstrap")
## Warning: lavaan->lav_model_nvcov_bootstrap():  
##    395 bootstrap runs resulted in nonadmissible solutions.
summary(cfa2, standardized=TRUE, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        27
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.001
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.950
##   Tucker-Lewis Index (TLI)                       0.930
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3183.918
##   Bayesian (BIC)                              3246.490
##   Sample-size adjusted Bayesian (SABIC)       3161.394
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.107
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.145
##   P-value H_0: RMSEA <= 0.050                    0.013
##   P-value H_0: RMSEA >= 0.080                    0.880
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Dem1960 =~                                                            
##     y1                1.000                               2.201    0.845
##     y2                1.354    0.161    8.416    0.000    2.980    0.760
##     y3                1.044    0.134    7.802    0.000    2.298    0.705
##     y4                1.300    0.139    9.331    0.000    2.860    0.860
##   Dem1965 =~                                                            
##     y5                1.000                               2.084    0.803
##     y6                1.258    0.216    5.822    0.000    2.623    0.783
##     y7                1.282    0.177    7.239    0.000    2.673    0.819
##     y8                1.310    0.208    6.306    0.000    2.730    0.847
##   Ind1960 =~                                                            
##     x1                1.000                               0.669    0.920
##     x2                2.182    0.147   14.793    0.000    1.461    0.973
##     x3                1.819    0.141   12.898    0.000    1.218    0.872
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Dem1965 ~                                                             
##     Dem1960           0.873    0.092    9.480    0.000    0.922    0.922
##   Dem1960 ~                                                             
##     Ind1960           1.565    0.120   13.076    0.000    0.476    0.476
##   Dem1965 ~                                                             
##     Ind1960           1.268    0.177    7.152    0.000    0.407    0.407
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Dem1960 ~~                                                            
##     Ind1960          -0.041    0.098   -0.415    0.678   -0.031   -0.031
##  .Dem1965 ~~                                                            
##     Ind1960          -0.371    0.090   -4.140    0.000   -0.853   -0.853
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Dem1960           3.875    0.830    4.670    0.000    0.800    0.800
##    .Dem1965           0.422    0.157    2.682    0.007    0.097    0.097
##     Ind1960           0.448    0.072    6.188    0.000    1.000    1.000
##    .y1                1.942    0.395    4.916    0.000    1.942    0.286
##    .y2                6.490    1.297    5.003    0.000    6.490    0.422
##    .y3                5.340    1.079    4.947    0.000    5.340    0.503
##    .y4                2.887    0.627    4.605    0.000    2.887    0.261
##    .y5                2.390    0.545    4.389    0.000    2.390    0.355
##    .y6                4.343    0.872    4.979    0.000    4.343    0.387
##    .y7                3.510    0.562    6.244    0.000    3.510    0.329
##    .y8                2.940    0.808    3.637    0.000    2.940    0.283
##    .x1                0.082    0.018    4.667    0.000    0.082    0.154
##    .x2                0.118    0.071    1.657    0.097    0.118    0.053
##    .x3                0.467    0.083    5.630    0.000    0.467    0.240
lavaanPlot(cfa2, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa2, fit.measures=(TRUE))
## lavaan 0.6-19 ended normally after 38 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        27
## 
##   Number of observations                            75
## 
## Model Test User Model:
##                                                       
##   Test statistic                                72.462
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.001
## 
## Model Test Baseline Model:
## 
##   Test statistic                               730.654
##   Degrees of freedom                                55
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.950
##   Tucker-Lewis Index (TLI)                       0.930
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1564.959
##   Loglikelihood unrestricted model (H1)      -1528.728
##                                                       
##   Akaike (AIC)                                3183.918
##   Bayesian (BIC)                              3246.490
##   Sample-size adjusted Bayesian (SABIC)       3161.394
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.107
##   90 Percent confidence interval - lower         0.068
##   90 Percent confidence interval - upper         0.145
##   P-value H_0: RMSEA <= 0.050                    0.013
##   P-value H_0: RMSEA >= 0.080                    0.880
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Dem1960 =~                                          
##     y1                1.000                           
##     y2                1.354    0.161    8.416    0.000
##     y3                1.044    0.134    7.802    0.000
##     y4                1.300    0.139    9.331    0.000
##   Dem1965 =~                                          
##     y5                1.000                           
##     y6                1.258    0.216    5.822    0.000
##     y7                1.282    0.177    7.239    0.000
##     y8                1.310    0.208    6.306    0.000
##   Ind1960 =~                                          
##     x1                1.000                           
##     x2                2.182    0.147   14.793    0.000
##     x3                1.819    0.141   12.898    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Dem1965 ~                                           
##     Dem1960           0.873    0.092    9.480    0.000
##   Dem1960 ~                                           
##     Ind1960           1.565    0.120   13.076    0.000
##   Dem1965 ~                                           
##     Ind1960           1.268    0.177    7.152    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##  .Dem1960 ~~                                          
##     Ind1960          -0.041    0.098   -0.415    0.678
##  .Dem1965 ~~                                          
##     Ind1960          -0.371    0.090   -4.140    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Dem1960           3.875    0.830    4.670    0.000
##    .Dem1965           0.422    0.157    2.682    0.007
##     Ind1960           0.448    0.072    6.188    0.000
##    .y1                1.942    0.395    4.916    0.000
##    .y2                6.490    1.297    5.003    0.000
##    .y3                5.340    1.079    4.947    0.000
##    .y4                2.887    0.627    4.605    0.000
##    .y5                2.390    0.545    4.389    0.000
##    .y6                4.343    0.872    4.979    0.000
##    .y7                3.510    0.562    6.244    0.000
##    .y8                2.940    0.808    3.637    0.000
##    .x1                0.082    0.018    4.667    0.000
##    .x2                0.118    0.071    1.657    0.097
##    .x3                0.467    0.083    5.630    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:
# Comparative Fit Index (CFI)                    0.950
# Tucker-Lewis Index (TLI)                       0.930

Conclusión: Modelo Aceptable, y no hay que hacer cambios

Interpretción

Conclusiones del Modelo

La industrialización en 1960 (PIB per cápita, consumo de energía y empleo en industria) tiene un impacto positivo en la democratización de 1960.
También influye en la democratización de 1965, lo que sugiere que el desarrollo económico puede tener efectos prolongados en la consolidación democrática.

La democratización en 1960 influye directamente en la democratización en 1965, lo que indica que los niveles de libertad política y transparencia electoral tienden a mantenerse en el tiempo.
Esto sugiere que una vez que un país logra ciertos niveles de apertura política, es probable que estos se sostengan o evolucionen favorablemente.

La industrialización no solo mejora las condiciones económicas, sino que también está vinculada con mayores niveles de libertad de prensa, competencia política y eficacia legislativa.
Países con mayor desarrollo industrial en 1960 tienen mayor probabilidad de haber avanzado en su democratización para 1965.

Existen relaciones significativas entre industrialización y democratización, lo que sugiere que estos procesos pueden estar interconectados en lugar de ser fenómenos aislados.

Este modelo respalda la teoría de modernización, que plantea que el desarrollo económico fomenta la democratización. Sin embargo, la relación no es completamente determinista: pueden existir otros factores políticos, culturales o institucionales que influyan en la evolución de la democracia.

Ejercicio 3. Aplicación de modelos de ecuaciones estructurales

Instalar paquetes y llamar librerías

#install.packages("lavaan") #Latent Variable Analysis
library("lavaan")
#install.packages("lavaanPlot") #Latent Variable Analysis
library("lavaanPlot")
#install.packages("readxl")
library("readxl")

Importar la base de datos

La base de datos contiene distintas mediciones sobre la Democracia Política e Industrialización, en países en desarrollo durante 1960 y 1965.

# file.choose()
df3 <- read_excel("/Users/marianaaleal/Desktop/TEC 2025/Generación de escenarios futuros con analítica/M1/Datos_SEM.xlsx")

Entender la base de datos

summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
str(df3)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
head(df3)
## # A tibble: 6 × 51
##      ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1    22    45     5     1     3     2     3     1     3     2     4
## 2     2     1    22    44     4     4     6     5     3     2     3     4     4
## 3     3     1    30    52     7     7     7     7     7     6     7     7     7
## 4     4     1    17    41     5     5     1     1     3     5     3     2     2
## 5     5     1    23    51     7     6     7     6     7     6     7     6     6
## 6     6     0    31    52     3     4     5     4     3     5     4     4     4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## #   RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## #   RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## #   RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## #   RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## #   EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## #   EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …

Entender la base de datos

summary(df3)
##        ID             GEN             EXPER            EDAD      
##  Min.   :  1.0   Min.   :0.0000   Min.   : 0.00   Min.   :22.00  
##  1st Qu.: 56.5   1st Qu.:0.0000   1st Qu.:15.00   1st Qu.:37.50  
##  Median :112.0   Median :1.0000   Median :20.00   Median :44.00  
##  Mean   :112.0   Mean   :0.5919   Mean   :21.05   Mean   :43.95  
##  3rd Qu.:167.5   3rd Qu.:1.0000   3rd Qu.:27.50   3rd Qu.:51.00  
##  Max.   :223.0   Max.   :1.0000   Max.   :50.00   Max.   :72.00  
##      RPD01           RPD02          RPD03           RPD05           RPD06      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.00   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :5.000   Median :4.00   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.596   Mean   :4.09   Mean   :4.789   Mean   :4.327   Mean   :4.798  
##  3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RPD07           RPD08           RPD09           RPD10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.000   1st Qu.:2.500  
##  Median :4.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :3.794   Mean   :4.735   Mean   :4.466   Mean   :4.435  
##  3rd Qu.:5.500   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RRE02           RRE03           RRE04           RRE05           RRE06    
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:4.0  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000   Median :6.0  
##  Mean   :5.691   Mean   :5.534   Mean   :5.668   Mean   :5.623   Mean   :5.3  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.0  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.0  
##      RRE07           RRE10           RMA02           RMA03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:5.000   1st Qu.:3.000   1st Qu.:3.000  
##  Median :6.000   Median :6.000   Median :4.000   Median :5.000  
##  Mean   :5.305   Mean   :5.664   Mean   :4.215   Mean   :4.377  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA04           RMA05           RMA06           RMA07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:5.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :6.000   Median :5.000  
##  Mean   :4.686   Mean   :4.637   Mean   :5.511   Mean   :4.767  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      RMA08           RMA09           RMA10          RCO02           RCO03      
##  Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:3.000   1st Qu.:3.00   1st Qu.:5.000   1st Qu.:5.000  
##  Median :5.000   Median :5.000   Median :5.00   Median :6.000   Median :6.000  
##  Mean   :4.942   Mean   :4.614   Mean   :4.43   Mean   :5.336   Mean   :5.574  
##  3rd Qu.:6.500   3rd Qu.:6.000   3rd Qu.:6.00   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.00   Max.   :7.000   Max.   :7.000  
##      RCO04           RCO05           RCO06           RCO07      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.704   Mean   :5.668   Mean   :5.619   Mean   :5.632  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN01            EN02            EN04            EN05      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :6.000   Median :5.000   Median :5.000  
##  Mean   :4.717   Mean   :5.004   Mean   :4.883   Mean   :4.928  
##  3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       EN06            EN07            EN08           EVI01      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :5.000   Median :5.000  
##  Mean   :4.767   Mean   :4.578   Mean   :4.776   Mean   :5.013  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EVI02           EVI03           EDE01           EDE02      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :6.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :5.076   Mean   :4.973   Mean   :5.305   Mean   :5.543  
##  3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##      EDE03           EAB01           EAB02           EAB03      
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:6.000   1st Qu.:5.000   1st Qu.:5.000   1st Qu.:5.000  
##  Median :7.000   Median :6.000   Median :6.000   Median :6.000  
##  Mean   :6.135   Mean   :5.605   Mean   :5.821   Mean   :5.363  
##  3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000   3rd Qu.:7.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000
str(df3)
## tibble [223 × 51] (S3: tbl_df/tbl/data.frame)
##  $ ID   : num [1:223] 1 2 3 4 5 6 7 8 9 10 ...
##  $ GEN  : num [1:223] 1 1 1 1 1 0 0 1 1 1 ...
##  $ EXPER: num [1:223] 22 22 30 17 23 31 26 30 15 15 ...
##  $ EDAD : num [1:223] 45 44 52 41 51 52 53 48 40 38 ...
##  $ RPD01: num [1:223] 5 4 7 5 7 3 5 6 4 2 ...
##  $ RPD02: num [1:223] 1 4 7 5 6 4 5 7 4 3 ...
##  $ RPD03: num [1:223] 3 6 7 1 7 5 4 6 4 2 ...
##  $ RPD05: num [1:223] 2 5 7 1 6 4 4 7 4 3 ...
##  $ RPD06: num [1:223] 3 3 7 3 7 3 5 2 6 7 ...
##  $ RPD07: num [1:223] 1 2 6 5 6 5 6 5 4 1 ...
##  $ RPD08: num [1:223] 3 3 7 3 7 4 6 2 5 3 ...
##  $ RPD09: num [1:223] 2 4 7 2 6 4 7 4 4 2 ...
##  $ RPD10: num [1:223] 4 4 7 2 6 4 7 1 6 2 ...
##  $ RRE02: num [1:223] 6 6 7 6 7 5 7 5 6 7 ...
##  $ RRE03: num [1:223] 6 6 7 6 7 4 7 4 4 7 ...
##  $ RRE04: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE05: num [1:223] 6 6 7 6 7 5 7 4 6 7 ...
##  $ RRE06: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE07: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RRE10: num [1:223] 6 6 7 6 7 4 7 4 6 7 ...
##  $ RMA02: num [1:223] 4 6 4 3 4 7 5 2 6 7 ...
##  $ RMA03: num [1:223] 5 6 5 4 4 7 5 1 2 7 ...
##  $ RMA04: num [1:223] 5 5 6 4 4 5 5 1 4 7 ...
##  $ RMA05: num [1:223] 5 5 6 4 4 6 5 3 4 7 ...
##  $ RMA06: num [1:223] 6 6 7 6 5 4 5 7 6 7 ...
##  $ RMA07: num [1:223] 4 6 6 5 4 5 7 4 6 7 ...
##  $ RMA08: num [1:223] 5 6 4 4 4 6 6 4 2 7 ...
##  $ RMA09: num [1:223] 3 5 4 3 5 4 5 2 4 7 ...
##  $ RMA10: num [1:223] 7 5 5 4 5 5 6 4 3 7 ...
##  $ RCO02: num [1:223] 7 7 7 5 7 6 7 7 3 7 ...
##  $ RCO03: num [1:223] 7 7 7 5 7 5 7 7 3 7 ...
##  $ RCO04: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO05: num [1:223] 7 7 7 6 7 4 7 7 3 7 ...
##  $ RCO06: num [1:223] 7 7 7 6 7 4 7 7 4 7 ...
##  $ RCO07: num [1:223] 5 7 7 6 7 4 7 7 7 7 ...
##  $ EN01 : num [1:223] 6 6 7 4 6 4 7 7 4 7 ...
##  $ EN02 : num [1:223] 7 6 7 4 6 4 7 7 4 7 ...
##  $ EN04 : num [1:223] 6 6 7 4 6 4 7 6 4 7 ...
##  $ EN05 : num [1:223] 5 5 7 5 6 5 7 6 4 7 ...
##  $ EN06 : num [1:223] 5 5 7 5 6 3 7 5 5 7 ...
##  $ EN07 : num [1:223] 5 5 7 2 6 4 7 4 4 7 ...
##  $ EN08 : num [1:223] 6 5 7 5 6 4 7 4 4 7 ...
##  $ EVI01: num [1:223] 6 5 7 5 6 4 7 6 6 0 ...
##  $ EVI02: num [1:223] 6 5 7 6 6 4 6 5 5 1 ...
##  $ EVI03: num [1:223] 6 6 6 7 6 4 6 6 7 0 ...
##  $ EDE01: num [1:223] 6 6 6 5 7 6 7 7 7 1 ...
##  $ EDE02: num [1:223] 7 6 7 6 7 5 7 7 7 5 ...
##  $ EDE03: num [1:223] 7 7 7 7 7 5 7 7 7 6 ...
##  $ EAB01: num [1:223] 7 7 7 6 7 5 7 7 7 0 ...
##  $ EAB02: num [1:223] 7 7 7 6 7 5 7 2 5 1 ...
##  $ EAB03: num [1:223] 6 5 6 5 6 5 7 3 5 0 ...
head(df3)
## # A tibble: 6 × 51
##      ID   GEN EXPER  EDAD RPD01 RPD02 RPD03 RPD05 RPD06 RPD07 RPD08 RPD09 RPD10
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1    22    45     5     1     3     2     3     1     3     2     4
## 2     2     1    22    44     4     4     6     5     3     2     3     4     4
## 3     3     1    30    52     7     7     7     7     7     6     7     7     7
## 4     4     1    17    41     5     5     1     1     3     5     3     2     2
## 5     5     1    23    51     7     6     7     6     7     6     7     6     6
## 6     6     0    31    52     3     4     5     4     3     5     4     4     4
## # ℹ 38 more variables: RRE02 <dbl>, RRE03 <dbl>, RRE04 <dbl>, RRE05 <dbl>,
## #   RRE06 <dbl>, RRE07 <dbl>, RRE10 <dbl>, RMA02 <dbl>, RMA03 <dbl>,
## #   RMA04 <dbl>, RMA05 <dbl>, RMA06 <dbl>, RMA07 <dbl>, RMA08 <dbl>,
## #   RMA09 <dbl>, RMA10 <dbl>, RCO02 <dbl>, RCO03 <dbl>, RCO04 <dbl>,
## #   RCO05 <dbl>, RCO06 <dbl>, RCO07 <dbl>, EN01 <dbl>, EN02 <dbl>, EN04 <dbl>,
## #   EN05 <dbl>, EN06 <dbl>, EN07 <dbl>, EN08 <dbl>, EVI01 <dbl>, EVI02 <dbl>,
## #   EVI03 <dbl>, EDE01 <dbl>, EDE02 <dbl>, EDE03 <dbl>, EAB01 <dbl>, …

Parte 1. Experiencias de Recuperación

modelo31 <- ' # Regresiones
              #Variables Latentes
              desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
              relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
              dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
              control =~ RCO02+ RCO03 + RCO04 + RCO05 + RCO06 + RCO07
              recuperacion =~ desapego + relajacion + dominio + control
              # Varianzas y Covarianza
             desapego =~ desapego
             relajacion =~ relajacion
             dominio =~ dominio
             control =~ control
             # Intercepto
             '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa31 <- sem(modelo31, data=df3)
## Warning: lavaan->lav_model_vcov():  
##    Could not compute standard errors! The information matrix could not be 
##    inverted. This may be a symptom that the model is not identified.
summary(cfa31)
## lavaan 0.6-19 ended normally after 310 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        70
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               426
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206       NA                  
##     RPD03             1.143       NA                  
##     RPD05             1.312       NA                  
##     RPD06             1.088       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.163       NA                  
##     RPD09             1.317       NA                  
##     RPD10             1.346       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120       NA                  
##     RRE04             1.025       NA                  
##     RRE05             1.055       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.117       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.141       NA                  
##     RMA06             0.645       NA                  
##     RMA07             1.103       NA                  
##     RMA08             1.109       NA                  
##     RMA09             1.028       NA                  
##     RMA10             1.055       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948       NA                  
##     RCO04             0.796       NA                  
##     RCO05             0.818       NA                  
##     RCO06             0.834       NA                  
##     RCO07             0.835       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149       NA                  
##     dominio           0.858       NA                  
##     control           1.341       NA                  
##   desapego =~                                         
##     desapego          1.300       NA                  
##   relajacion =~                                       
##     relajacion        1.223       NA                  
##   dominio =~                                          
##     dominio           2.266       NA                  
##   control =~                                          
##     control           2.086       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172       NA                  
##    .RPD02             0.999       NA                  
##    .RPD03             1.441       NA                  
##    .RPD05             0.987       NA                  
##    .RPD06             1.817       NA                  
##    .RPD07             1.173       NA                  
##    .RPD08             1.460       NA                  
##    .RPD09             1.032       NA                  
##    .RPD10             1.034       NA                  
##    .RRE02             0.626       NA                  
##    .RRE03             0.653       NA                  
##    .RRE04             0.481       NA                  
##    .RRE05             0.374       NA                  
##    .RRE06             0.886       NA                  
##    .RRE07             0.950       NA                  
##    .RRE10             1.137       NA                  
##    .RMA02             1.740       NA                  
##    .RMA03             1.485       NA                  
##    .RMA04             0.855       NA                  
##    .RMA05             0.899       NA                  
##    .RMA06             1.631       NA                  
##    .RMA07             0.845       NA                  
##    .RMA08             0.886       NA                  
##    .RMA09             1.094       NA                  
##    .RMA10             1.259       NA                  
##    .RCO02             0.983       NA                  
##    .RCO03             0.484       NA                  
##    .RCO04             0.462       NA                  
##    .RCO05             0.382       NA                  
##    .RCO06             0.494       NA                  
##    .RCO07             0.515       NA                  
##    .desapego          0.943       NA                  
##    .relajacion        0.333       NA                  
##    .dominio           1.260       NA                  
##    .control           0.900       NA                  
##     recuperacion      0.978       NA
lavaanPlot(cfa31, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa31, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 310 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        70
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1221.031
##   Degrees of freedom                               426
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7522.157
##   Degrees of freedom                               465
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.887
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10616.148
##   Loglikelihood unrestricted model (H1)     -10005.632
##                                                       
##   Akaike (AIC)                               21372.296
##   Bayesian (BIC)                             21610.798
##   Sample-size adjusted Bayesian (SABIC)      21388.959
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.091
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.098
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.999
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.206       NA                  
##     RPD03             1.143       NA                  
##     RPD05             1.312       NA                  
##     RPD06             1.088       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.163       NA                  
##     RPD09             1.317       NA                  
##     RPD10             1.346       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.120       NA                  
##     RRE04             1.025       NA                  
##     RRE05             1.055       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.117       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.155       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.141       NA                  
##     RMA06             0.645       NA                  
##     RMA07             1.103       NA                  
##     RMA08             1.109       NA                  
##     RMA09             1.028       NA                  
##     RMA10             1.055       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.948       NA                  
##     RCO04             0.796       NA                  
##     RCO05             0.818       NA                  
##     RCO06             0.834       NA                  
##     RCO07             0.835       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.149       NA                  
##     dominio           0.858       NA                  
##     control           1.341       NA                  
##   desapego =~                                         
##     desapego          1.300       NA                  
##   relajacion =~                                       
##     relajacion        1.223       NA                  
##   dominio =~                                          
##     dominio           2.266       NA                  
##   control =~                                          
##     control           2.086       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .RPD01             1.172       NA                  
##    .RPD02             0.999       NA                  
##    .RPD03             1.441       NA                  
##    .RPD05             0.987       NA                  
##    .RPD06             1.817       NA                  
##    .RPD07             1.173       NA                  
##    .RPD08             1.460       NA                  
##    .RPD09             1.032       NA                  
##    .RPD10             1.034       NA                  
##    .RRE02             0.626       NA                  
##    .RRE03             0.653       NA                  
##    .RRE04             0.481       NA                  
##    .RRE05             0.374       NA                  
##    .RRE06             0.886       NA                  
##    .RRE07             0.950       NA                  
##    .RRE10             1.137       NA                  
##    .RMA02             1.740       NA                  
##    .RMA03             1.485       NA                  
##    .RMA04             0.855       NA                  
##    .RMA05             0.899       NA                  
##    .RMA06             1.631       NA                  
##    .RMA07             0.845       NA                  
##    .RMA08             0.886       NA                  
##    .RMA09             1.094       NA                  
##    .RMA10             1.259       NA                  
##    .RCO02             0.983       NA                  
##    .RCO03             0.484       NA                  
##    .RCO04             0.462       NA                  
##    .RCO05             0.382       NA                  
##    .RCO06             0.494       NA                  
##    .RCO07             0.515       NA                  
##    .desapego          0.943       NA                  
##    .relajacion        0.333       NA                  
##    .dominio           1.260       NA                  
##    .control           0.900       NA                  
##     recuperacion      0.978       NA
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:
# Comparative Fit Index (CFI)                    0.887
# Tucker-Lewis Index (TLI)                       0.877

Conclusión= Modelo Deficiente.

Parte 2. Energía Recuperada

modelo32 <- ' # Regresiones
              #Variables Latentes
              energia =~ EN01 + EN02 + EN04+ EN04+ EN06+ EN07 + EN08
              
              # Varianzas y Covarianza
             energia ~~ energia
        
             # Intercepto
             '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa32 <- sem(modelo32, data=df3)
summary(cfa32)
## lavaan 0.6-19 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                37.585
##   Degrees of freedom                                 9
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.022    0.044   23.369    0.000
##     EN04              0.992    0.044   22.751    0.000
##     EN06              0.980    0.041   24.006    0.000
##     EN07              1.046    0.045   23.355    0.000
##     EN08              1.028    0.042   24.386    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.832    0.328    8.635    0.000
##    .EN01              0.680    0.072    9.405    0.000
##    .EN02              0.456    0.052    8.748    0.000
##    .EN04              0.491    0.055    8.978    0.000
##    .EN06              0.362    0.043    8.458    0.000
##    .EN07              0.479    0.055    8.754    0.000
##    .EN08              0.363    0.044    8.252    0.000
lavaanPlot(cfa32, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa32, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                                37.585
##   Degrees of freedom                                 9
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1877.576
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985
##   Tucker-Lewis Index (TLI)                       0.974
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1790.711
##   Loglikelihood unrestricted model (H1)      -1771.918
##                                                       
##   Akaike (AIC)                                3605.421
##   Bayesian (BIC)                              3646.307
##   Sample-size adjusted Bayesian (SABIC)       3608.278
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.119
##   90 Percent confidence interval - lower         0.081
##   90 Percent confidence interval - upper         0.160
##   P-value H_0: RMSEA <= 0.050                    0.002
##   P-value H_0: RMSEA >= 0.080                    0.956
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.022    0.044   23.369    0.000
##     EN04              0.992    0.044   22.751    0.000
##     EN06              0.980    0.041   24.006    0.000
##     EN07              1.046    0.045   23.355    0.000
##     EN08              1.028    0.042   24.386    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.832    0.328    8.635    0.000
##    .EN01              0.680    0.072    9.405    0.000
##    .EN02              0.456    0.052    8.748    0.000
##    .EN04              0.491    0.055    8.978    0.000
##    .EN06              0.362    0.043    8.458    0.000
##    .EN07              0.479    0.055    8.754    0.000
##    .EN08              0.363    0.044    8.252    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:
# Comparative Fit Index (CFI)                    0.985
# Tucker-Lewis Index (TLI)                       0.974

Conclusión: Modelo Excelente

Parte 3. Engagement Laboral

modelo33 <- ' # Regresiones
              #Variables Latentes
              vigor =~ EVI01 + EVI02 + EVI03
              dedicacion  =~ EDE01 + EDE02 +EDE03
              absorcion =~ EAB01 + EAB02 + EAB03
              # Varianzas y Covarianza
             vigor ~~ vigor
             dedicacion ~~ dedicacion
             absorcion ~~ absorcion
             vigor ~~ dedicacion + absorcion
             dedicacion  ~~ absorcion
        
             # Intercepto
             '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa33 <- sem(modelo33, data=df3)
summary(cfa33)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
lavaanPlot(cfa33, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa33, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                               271.168
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2254.214
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.889
##   Tucker-Lewis Index (TLI)                       0.833
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2965.082
##   Loglikelihood unrestricted model (H1)      -2829.498
##                                                       
##   Akaike (AIC)                                5972.164
##   Bayesian (BIC)                              6043.715
##   Sample-size adjusted Bayesian (SABIC)       5977.163
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.215
##   90 Percent confidence interval - lower         0.192
##   90 Percent confidence interval - upper         0.238
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.986    0.028   35.166    0.000
##     EVI03             0.995    0.049   20.456    0.000
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.914    0.035   26.126    0.000
##     EDE03             0.583    0.037   15.913    0.000
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.708    0.051   13.891    0.000
##     EAB03             0.732    0.063   11.644    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.754    0.293    9.404    0.000
##     absorcion         2.125    0.247    8.600    0.000
##   dedicacion ~~                                       
##     absorcion         2.728    0.293    9.311    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     vigor             2.836    0.289    9.811    0.000
##     dedicacion        3.448    0.367    9.399    0.000
##     absorcion         2.592    0.301    8.615    0.000
##    .EVI01             0.200    0.040    4.947    0.000
##    .EVI02             0.220    0.041    5.437    0.000
##    .EVI03             1.220    0.125    9.772    0.000
##    .EDE01             0.405    0.066    6.130    0.000
##    .EDE02             0.495    0.066    7.521    0.000
##    .EDE03             0.829    0.084    9.869    0.000
##    .EAB01             0.481    0.100    4.816    0.000
##    .EAB02             1.010    0.109    9.271    0.000
##    .EAB03             1.711    0.175    9.764    0.000
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:
# Comparative Fit Index (CFI)                    0.889
# Tucker-Lewis Index (TLI)                       0.833

Conclusión: Modelo Deficiente

Modelo Completo

modelo34 <- ' # Regresiones
             # Variables latentes
             desapego =~ RPD01 + RPD02 + RPD03 + RPD05 + RPD06 + RPD07 + RPD08 + RPD09 + RPD10
             relajacion =~ RRE02 + RRE03 + RRE04 + RRE05 + RRE06 + RRE07 + RRE10
             dominio =~ RMA02 + RMA03 + RMA04 + RMA05 + RMA06 + RMA07 + RMA08 + RMA09 + RMA10
             control =~ RCO02 + RCO03 + RCO04 + RCO05 + RCO06 + RCO07
             recuperacion =~ desapego + relajacion + dominio + control
             energia =~ EN01 + EN02 + EN04 + EN05 + EN06 + EN07 + EN08
             vigor =~ EVI01 + EVI02 + EVI03
             dedicacion =~ EDE01 + EDE02 + EDE03
             absorcion =~ EAB01 + EAB02 + EAB03
             # Varianzas y Covarianza
             desapego =~ desapego
             relajacion =~ relajacion
             dominio =~ dominio
             control =~ control
             energia ~~ energia
             vigor ~~ vigor
             dedicacion ~~ dedicacion
             absorcion ~~ absorcion
             vigor ~~ dedicacion + absorcion
             dedicacion ~~ absorcion
             recuperacion ~~ energia + vigor + dedicacion + absorcion
             energia ~~ vigor +  dedicacion + absorcion      
             # Intercepto
           '

Generar el Análisis Factorial Confirmatorio (CFA)

cfa34 <- sem(modelo34, data=df3)
## Warning: lavaan->lav_model_vcov():  
##    Could not compute standard errors! The information matrix could not be 
##    inverted. This may be a symptom that the model is not identified.
summary(cfa34)
## lavaan 0.6-19 ended normally after 685 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       112
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1016
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209       NA                  
##     RPD03             1.144       NA                  
##     RPD05             1.313       NA                  
##     RPD06             1.083       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.157       NA                  
##     RPD09             1.316       NA                  
##     RPD10             1.343       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121       NA                  
##     RRE04             1.020       NA                  
##     RRE05             1.051       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.122       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.141       NA                  
##     RMA06             0.648       NA                  
##     RMA07             1.104       NA                  
##     RMA08             1.110       NA                  
##     RMA09             1.030       NA                  
##     RMA10             1.056       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946       NA                  
##     RCO04             0.794       NA                  
##     RCO05             0.815       NA                  
##     RCO06             0.837       NA                  
##     RCO07             0.837       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071       NA                  
##     dominio           0.900       NA                  
##     control           1.421       NA                  
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026       NA                  
##     EN04              0.996       NA                  
##     EN05              0.994       NA                  
##     EN06              0.981       NA                  
##     EN07              1.044       NA                  
##     EN08              1.031       NA                  
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978       NA                  
##     EVI03             0.990       NA                  
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913       NA                  
##     EDE03             0.580       NA                  
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707       NA                  
##     EAB03             0.730       NA                  
##   desapego =~                                         
##     desapego          5.040       NA                  
##   relajacion =~                                       
##     relajacion        1.609       NA                  
##   dominio =~                                          
##     dominio           3.464       NA                  
##   control =~                                          
##     control           2.210       NA                  
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767       NA                  
##     absorcion         2.132       NA                  
##   dedicacion ~~                                       
##     absorcion         2.731       NA                  
##   recuperacion ~~                                     
##     energia           1.367       NA                  
##     vigor             1.007       NA                  
##     dedicacion        1.049       NA                  
##     absorcion         0.796       NA                  
##   energia ~~                                          
##     vigor             2.045       NA                  
##     dedicacion        1.852       NA                  
##     absorcion         1.340       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.823       NA                  
##     vigor             2.859       NA                  
##     dedicacion        3.458       NA                  
##     absorcion         2.595       NA                  
##    .RPD01             1.169       NA                  
##    .RPD02             0.984       NA                  
##    .RPD03             1.435       NA                  
##    .RPD05             0.973       NA                  
##    .RPD06             1.835       NA                  
##    .RPD07             1.166       NA                  
##    .RPD08             1.485       NA                  
##    .RPD09             1.036       NA                  
##    .RPD10             1.044       NA                  
##    .RRE02             0.623       NA                  
##    .RRE03             0.646       NA                  
##    .RRE04             0.494       NA                  
##    .RRE05             0.384       NA                  
##    .RRE06             0.882       NA                  
##    .RRE07             0.929       NA                  
##    .RRE10             1.134       NA                  
##    .RMA02             1.742       NA                  
##    .RMA03             1.500       NA                  
##    .RMA04             0.857       NA                  
##    .RMA05             0.904       NA                  
##    .RMA06             1.626       NA                  
##    .RMA07             0.843       NA                  
##    .RMA08             0.881       NA                  
##    .RMA09             1.089       NA                  
##    .RMA10             1.256       NA                  
##    .RCO02             0.980       NA                  
##    .RCO03             0.493       NA                  
##    .RCO04             0.468       NA                  
##    .RCO05             0.393       NA                  
##    .RCO06             0.479       NA                  
##    .RCO07             0.504       NA                  
##    .EN01              0.689       NA                  
##    .EN02              0.439       NA                  
##    .EN04              0.476       NA                  
##    .EN05              0.381       NA                  
##    .EN06              0.367       NA                  
##    .EN07              0.502       NA                  
##    .EN08              0.358       NA                  
##    .EVI01             0.177       NA                  
##    .EVI02             0.242       NA                  
##    .EVI03             1.222       NA                  
##    .EDE01             0.395       NA                  
##    .EDE02             0.498       NA                  
##    .EDE03             0.836       NA                  
##    .EAB01             0.478       NA                  
##    .EAB02             1.010       NA                  
##    .EAB03             1.718       NA                  
##    .desapego          0.951       NA                  
##    .relajacion        0.510       NA                  
##    .dominio           1.191       NA                  
##    .control           0.699       NA                  
##     recuperacion      0.972       NA
lavaanPlot(cfa34, coef=TRUE, cov=TRUE)

Evaluar el modelo (CFA)

summary(cfa34, fit.measures=TRUE)
## lavaan 0.6-19 ended normally after 685 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       112
## 
##   Number of observations                           223
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2445.310
##   Degrees of freedom                              1016
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             13350.303
##   Degrees of freedom                              1081
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.884
##   Tucker-Lewis Index (TLI)                       0.876
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15426.580
##   Loglikelihood unrestricted model (H1)     -14203.926
##                                                       
##   Akaike (AIC)                               31077.161
##   Bayesian (BIC)                             31458.764
##   Sample-size adjusted Bayesian (SABIC)      31103.822
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.075
##   90 Percent confidence interval - upper         0.083
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    0.411
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   desapego =~                                         
##     RPD01             1.000                           
##     RPD02             1.209       NA                  
##     RPD03             1.144       NA                  
##     RPD05             1.313       NA                  
##     RPD06             1.083       NA                  
##     RPD07             1.229       NA                  
##     RPD08             1.157       NA                  
##     RPD09             1.316       NA                  
##     RPD10             1.343       NA                  
##   relajacion =~                                       
##     RRE02             1.000                           
##     RRE03             1.121       NA                  
##     RRE04             1.020       NA                  
##     RRE05             1.051       NA                  
##     RRE06             1.245       NA                  
##     RRE07             1.122       NA                  
##     RRE10             0.815       NA                  
##   dominio =~                                          
##     RMA02             1.000                           
##     RMA03             1.152       NA                  
##     RMA04             1.178       NA                  
##     RMA05             1.141       NA                  
##     RMA06             0.648       NA                  
##     RMA07             1.104       NA                  
##     RMA08             1.110       NA                  
##     RMA09             1.030       NA                  
##     RMA10             1.056       NA                  
##   control =~                                          
##     RCO02             1.000                           
##     RCO03             0.946       NA                  
##     RCO04             0.794       NA                  
##     RCO05             0.815       NA                  
##     RCO06             0.837       NA                  
##     RCO07             0.837       NA                  
##   recuperacion =~                                     
##     desapego          1.000                           
##     relajacion        1.071       NA                  
##     dominio           0.900       NA                  
##     control           1.421       NA                  
##   energia =~                                          
##     EN01              1.000                           
##     EN02              1.026       NA                  
##     EN04              0.996       NA                  
##     EN05              0.994       NA                  
##     EN06              0.981       NA                  
##     EN07              1.044       NA                  
##     EN08              1.031       NA                  
##   vigor =~                                            
##     EVI01             1.000                           
##     EVI02             0.978       NA                  
##     EVI03             0.990       NA                  
##   dedicacion =~                                       
##     EDE01             1.000                           
##     EDE02             0.913       NA                  
##     EDE03             0.580       NA                  
##   absorcion =~                                        
##     EAB01             1.000                           
##     EAB02             0.707       NA                  
##     EAB03             0.730       NA                  
##   desapego =~                                         
##     desapego          5.040       NA                  
##   relajacion =~                                       
##     relajacion        1.609       NA                  
##   dominio =~                                          
##     dominio           3.464       NA                  
##   control =~                                          
##     control           2.210       NA                  
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   vigor ~~                                            
##     dedicacion        2.767       NA                  
##     absorcion         2.132       NA                  
##   dedicacion ~~                                       
##     absorcion         2.731       NA                  
##   recuperacion ~~                                     
##     energia           1.367       NA                  
##     vigor             1.007       NA                  
##     dedicacion        1.049       NA                  
##     absorcion         0.796       NA                  
##   energia ~~                                          
##     vigor             2.045       NA                  
##     dedicacion        1.852       NA                  
##     absorcion         1.340       NA                  
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     energia           2.823       NA                  
##     vigor             2.859       NA                  
##     dedicacion        3.458       NA                  
##     absorcion         2.595       NA                  
##    .RPD01             1.169       NA                  
##    .RPD02             0.984       NA                  
##    .RPD03             1.435       NA                  
##    .RPD05             0.973       NA                  
##    .RPD06             1.835       NA                  
##    .RPD07             1.166       NA                  
##    .RPD08             1.485       NA                  
##    .RPD09             1.036       NA                  
##    .RPD10             1.044       NA                  
##    .RRE02             0.623       NA                  
##    .RRE03             0.646       NA                  
##    .RRE04             0.494       NA                  
##    .RRE05             0.384       NA                  
##    .RRE06             0.882       NA                  
##    .RRE07             0.929       NA                  
##    .RRE10             1.134       NA                  
##    .RMA02             1.742       NA                  
##    .RMA03             1.500       NA                  
##    .RMA04             0.857       NA                  
##    .RMA05             0.904       NA                  
##    .RMA06             1.626       NA                  
##    .RMA07             0.843       NA                  
##    .RMA08             0.881       NA                  
##    .RMA09             1.089       NA                  
##    .RMA10             1.256       NA                  
##    .RCO02             0.980       NA                  
##    .RCO03             0.493       NA                  
##    .RCO04             0.468       NA                  
##    .RCO05             0.393       NA                  
##    .RCO06             0.479       NA                  
##    .RCO07             0.504       NA                  
##    .EN01              0.689       NA                  
##    .EN02              0.439       NA                  
##    .EN04              0.476       NA                  
##    .EN05              0.381       NA                  
##    .EN06              0.367       NA                  
##    .EN07              0.502       NA                  
##    .EN08              0.358       NA                  
##    .EVI01             0.177       NA                  
##    .EVI02             0.242       NA                  
##    .EVI03             1.222       NA                  
##    .EDE01             0.395       NA                  
##    .EDE02             0.498       NA                  
##    .EDE03             0.836       NA                  
##    .EAB01             0.478       NA                  
##    .EAB02             1.010       NA                  
##    .EAB03             1.718       NA                  
##    .desapego          0.951       NA                  
##    .relajacion        0.510       NA                  
##    .dominio           1.191       NA                  
##    .control           0.699       NA                  
##     recuperacion      0.972       NA
# Comparative Fit Index (CFI) y Tucker-Lewis Index (TLI) sean cercanos o mayores a 0.95.
# Excelente is es >= a 0.95, Aceptable entre 0.90 y 0.95, Deficiente < 0.90.

# User Model versus Baseline Model:
# Comparative Fit Index (CFI)                    0.884
# Tucker-Lewis Index (TLI)                       0.876

Conclusión: Modelo Deficiente

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDAzIgpzdWJ0aXRsZTogIlNFTSIKYXV0aG9yOiAiUmVhbGl6YWRvIHBvciBNYXJpYW5hIExlYWwgQTAxNTcwOTc3IgpkYXRlOiAiMTkvMDIvMjAyNSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBqb3VybmFsCiAgICBoaWdobGlnaHQ6IHRhbmdvCiAgICBjc3M6IHN0eWxlcy5jc3MKLS0tCgohW10oL1VzZXJzL21hcmlhbmFhbGVhbC9EZXNrdG9wL1RFQyAyMDI1L0dlbmVyYWNpb8yBbiBkZSBlc2NlbmFyaW9zIGZ1dHVyb3MgY29uIGFuYWxpzIF0aWNhL00xL3NocmVrLmdpZikKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5UZW9yw61hIGVuIGNsYXNlPC9zcGFuPgpMb3MgKipNb2RlbG9zIGRlIEVjdWFjaW9uZXMgRXN0cnVjdHVyYWxlcyAoU0VNKSoqIGVzIHVuYSB0w6ljbmljYSBkZSBhbsOhbGlzaXMgZGUgZXN0YWTDrXN0aWNhIG11bHRpdmFyaWFkYSwgcXVlIHBlcm1pdGUgYW5hbGl6YXIgcGF0cm9uZXMgY29tcGxlam9zIGRlIHJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzLCByZWFsaXphciBjb21wYXJhY2lvbmVzIGVudHJlIGUgaW50cmFncnVwb3MsIHkgdmFsaWRhciBtb2RlbG9zIHRlw7NyaWNvcyB5IGVtcMOtcmljb3MuCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkVqZW1wbG8gMS4gSG9semluZ2VyIHkgU3dpbmVmb3JkICgxOTM5KSA8L3NwYW4+CkhvbHppbmdlciB5IFN3aW5lZm9yZCByZWFsaXphcm9uIGV4w6FtZW5lcyBkZSBoYWJpbGlkYWQgbWVudGFsIGEgYWRvbGVzY2VudGVzIGRlIDfCsCB5IDjCsCBkZSBkb3MgZXNjdWVsYXMgKFBhc3RldXIgeSBHcmFuZC1XaGl0ZSkKCiogc2V4OiBHw6luZXJvICgxPW1hbGUsIDI9ZmVtYWxlKQoqIHgxOiBQZXJjZXBjacOzbiB2aXN1YWwKKiB4MjogSnVlZ28gZGUgY3Vib3MKKiB4MzogSnVlZ28gY29uIHBhc3RpbGxhcy9lc3BhY2lhbAoqIHg0OiBDb21wcmVuc2nDs24gZGUgcMOhcnJhZm9zCiogeDU6IENvbXBsZXRhciBvcmFjaW9uZXMKKiB4NjogU2lnbmZpY2FkbyBkZSBwYWxhYnJhcwoqIHg3OiBTdW1hcyBhY2VsZXJhZGFzCiogeDg6IENvbnRlbyBhY2VsZXJhZG8gZGUgcHVudG9zCiogeDk6IERpc2NyaW1pbmFjacOzbiBhY2VsZXJhZGEgZGUgbWF5w7pzY3VsYXMgcmVjdGFzIHkgY3VydmFzCgpTZSBidXNjYSBpZGVudGlmaWNhciBsYXMgcmVsYWNpb25lcyBlbnRyZSBsYXMgaGFiaWxpZGFkZXMgdmlzdWFsICh4MSx4Mix4MyksIHRleHR1YWwgKHg0LHg1LHg2KSB5IHZlbG9jaWRhZCAoeDcseDgseDkpIGRlIGxvcyBhZG9sZXNjZW50ZXMuCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMgPC9zcGFuPgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuIikgI0xhdGVudCBWYXJpYWJsZSBBbmFseXNpcwpsaWJyYXJ5KCJsYXZhYW4iKQojaW5zdGFsbC5wYWNrYWdlcygibGF2YWFuUGxvdCIpICNMYXRlbnQgVmFyaWFibGUgQW5hbHlzaXMKbGlicmFyeSgibGF2YWFuUGxvdCIpCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmRmMSA8LSBIb2x6aW5nZXJTd2luZWZvcmQxOTM5CmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5FbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZjEpCnN0cihkZjEpCmhlYWQoZGYxKQpgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5UaXBvcyBkZSBGw7NybXVsYXM8L3NwYW4+CjEuIFJlZ3Jlc2nDs24gKH4pIFZhcmlhYmxlIHF1ZSBkZXBlbmRlIGRlIG90cmFzLgoyLiBWYXJpYWJsZXMgbGF0ZW50ZXMgKD1+KSBObyBzZSBvYnNlcnZhLCBzZSBpbmZpZXJlLgozLiBDb3ZhcmlhbnphcyAofn4pICBSZWxhY2lvbmVzIGVudHJlIHZhcmlhYmxlcyBsYXRlbnRlcyB5IG9ic2VydmFkYSAoVmFyaWFuemE6IEVudHJlIHNpIG1pc21hLCBDb3ZhcmlhbnphOiBlbnRyZSBvdHJhcykuCjQuIEludGVyY2VwdG8gKH4xKSBWYWxvciBlc3BlcmFkbyBjdWFuZG8gbGFzIGRlbcOhcyB2YXJpYWJsZXMgc29uIGNlcm8uCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkVzdHJ1Y3R1cmFyIGVsIG1vZGVsbzwvc3Bhbj4KYGBge3J9Cm1vZGVsbzEgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICAgdmlzdWFsID1+IHgxICsgeDIgKyB4MwogICAgICAgICAgICAgdGV4dHVhbCA9fiB4NCArIHg1ICsgeDYKICAgICAgICAgICAgIHZlbG9jaWRhZCA9fiB4NyArIHg4ICsgeDkKICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQogICAgICAgICAgICAgdmlzdWFsIH5+IHZpc3VhbAogICAgICAgICAgICAgdGV4dHVhbCB+fiB0ZXh0dWFsCiAgICAgICAgICAgICB2ZWxvY2lkYWQgfn4gdmVsb2NpZGFkCiAgICAgICAgICAgICB2aXN1YWwgfn4gdGV4dHVhbCArIHZlbG9jaWRhZAogICAgICAgICAgICAgdGV4dHVhbCB+fiB2ZWxvY2lkYWQKICAgICAgICAgICAgICMgSW50ZXJjZXB0bwoKCiAgICAgICAgICAgJwpgYGAKCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhMT0gc2VtKG1vZGVsbzEsIGRhdGE9ZGYxKQpzdW1tYXJ5KGNmYTEpCmxhdmFhblBsb3QoY2ZhMSwgY29lZj1UUlVFLCBjb3Y9VFJVRSkKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RXZhbHVhciBlbCBtb2RlbG8gKENGQSk8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTEsIGZpdC5tZWFzdXJlcz0oVFJVRSkpCiMgQ29tcGFyYXRpdmUgRml0IEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpIHNlYW4gY2VyY2Fub3MgbyBtYXlvcmVzIGEgMC45NS4KIyBFeGNlbGVudGUgaXMgZXMgPj0gYSAwLjk1LCBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwLgoKIyBVc2VyIE1vZGVsIHZlcnN1cyBCYXNlbGluZSBNb2RlbDoKCiMgIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSAgICAgICAgICAgICAgICAgICAgMC45MzEKIyBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkgICAgICAgICAgICAgICAgICAgICAgIDAuODk2CmBgYAoKQ29uY2x1c2nDs246ICoqTW9kZWxvIEFjZXB0YWJsZSoqCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhMT0gc2VtKG1vZGVsbzEsIGRhdGE9ZGYxKQpzdW1tYXJ5KGNmYTEpCmxhdmFhblBsb3QoY2ZhMSwgY29lZj1UUlVFLCBjb3Y9VFJVRSkKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RWplcmNpY2lvIDEuIERlbW9jcmFjaWEgUG9sw610aWNhIGUgSW5kdXN0cmlhbGl6YWNpw7NuIDwvc3Bhbj4KTGEgYmFzZSBkZSBkYXRvcyBjb250aWVuZSBkaXN0aW50YXMgbWVkaWNpb25lcyBzb2JyZSBsYSBEZW1vY3JhY2lhIFBvbMOtdGljYSBlIEluZHVzdHJpYWxpemFjacOzbiwgZW4gcGHDrXNlcyBlbiBkZXNhcnJvbGxvIGR1cmFudGUgMTk2MCB5IDE5NjUuCgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5Db250ZXh0bzwvc3Bhbj4KTGEgdGFibGEgaW5jbHV5ZSBsb3Mgc2lndWllbnRlcyBkYXRvcwoqIHkxOiBDYWxpZmljYWNpb25lcyBzb2JyZSBsaWJlcnRhZCBkZSBwcmVuc2EgZW4gMTk2MAoqIHkyOiBMaWJlcnRhZCBkZSBsYSBvcG9zaWNpw7NuIHBvbMOtdGljYSBlbiAxOTYwCiogeTM6IEltcGFyY2lhbGlkYWQgZGUgZWxlY2Npb25lcyBlbiAxOTYwCiogeTQ6IEVmaWNhY2lhIGRlIGxhIGxlZ2lzbGF0dXJhIGVsZWN0YSBlbiAxOTYwCiogeTU6IENhbGlmaWNhY2lvbmVzIHNvYnJlIGxpYmVydGFkIGRlIHByZW5zYSBlbiAxOTY1CiogeTY6IExpYmVydGFkIGRlIGxhIG9wb3NpY2nDs24gcG9sw610aWNhIGVuIDE5NjUKKiB5NzogSW1wYXJjaWFsaWRhZCBkZSBlbGVjY2lvbmVzIGVuIDE5NjUKKiB5ODogRWZpY2FjaWEgZGUgbGEgbGVnaXNsYXR1cmEgZWxlY3RhIGVuIDE5NjUKKiB4MTogUElCIHBlciBjw6FvdGEgZW4gMTk2MAoqIHgyOiBDb25zdW1vIGRlIGVuZXJnw61hIGluYW5pbWFkYSBwZXIgY8OhcGl0YSBlbiAxOTYwCiogeDE6IFBvcmNlbnRhamUgZGUgbGEgZnVlcnphIGxhYm9yYWwgZW4gbGEgaW5kdXN0cmlhIGVuIDE5NjAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW4iKSAjTGF0ZW50IFZhcmlhYmxlIEFuYWx5c2lzCmxpYnJhcnkoImxhdmFhbiIpCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW5QbG90IikgI0xhdGVudCBWYXJpYWJsZSBBbmFseXNpcwpsaWJyYXJ5KCJsYXZhYW5QbG90IikKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CkxhIGJhc2UgZGUgZGF0b3MgY29udGllbmUgZGlzdGludGFzIG1lZGljaW9uZXMgc29icmUgbGEgRGVtb2NyYWNpYSBQb2zDrXRpY2EgZSBJbmR1c3RyaWFsaXphY2nDs24sIGVuIHBhw61zZXMgZW4gZGVzYXJyb2xsbyBkdXJhbnRlIDE5NjAgeSAxOTY1LgoKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmRmMiA8LSBQb2xpdGljYWxEZW1vY3JhY3kKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3M8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGRmMikKc3RyKGRmMikKaGVhZChkZjIpCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPlRpcG9zIGRlIEbDs3JtdWxhczwvc3Bhbj4KMS4gUmVncmVzacOzbiAofikgVmFyaWFibGUgcXVlIGRlcGVuZGUgZGUgb3RyYXMuCjIuIFZhcmlhYmxlcyBsYXRlbnRlcyAoPX4pIE5vIHNlIG9ic2VydmEsIHNlIGluZmllcmUuCjMuIENvdmFyaWFuemFzICh+fikgIFJlbGFjaW9uZXMgZW50cmUgdmFyaWFibGVzIGxhdGVudGVzIHkgb2JzZXJ2YWRhIChWYXJpYW56YTogRW50cmUgc2kgbWlzbWEsIENvdmFyaWFuemE6IGVudHJlIG90cmFzKS4KNC4gSW50ZXJjZXB0byAofjEpIFZhbG9yIGVzcGVyYWRvIGN1YW5kbyBsYXMgZGVtw6FzIHZhcmlhYmxlcyBzb24gY2Vyby4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RXN0cnVjdHVyYXIgZWwgbW9kZWxvPC9zcGFuPgpgYGB7cn0KbW9kZWxvMiA8LSAnCiAgIyBEZWZpbmlyIHZhcmlhYmxlcyBsYXRlbnRlcyBkZSBkZW1vY3JhdGl6YWNpw7NuIGVuIDE5NjAgeSAxOTY1CiAgRGVtMTk2MCA9fiB5MSArIHkyICsgeTMgKyB5NAogIERlbTE5NjUgPX4geTUgKyB5NiArIHk3ICsgeTgKCiAgIyBEZWZpbmlyIHZhcmlhYmxlIGxhdGVudGUgZGUgaW5kdXN0cmlhbGl6YWNpw7NuCiAgSW5kMTk2MCA9fiB4MSArIHgyICsgeDMKCiAgIyBSZWxhY2lvbmFyIGRlbW9jcmF0aXphY2nDs24gZGUgMTk2MCBjb24gMTk2NQogIERlbTE5NjUgfiBEZW0xOTYwCgogICMgUmVsYWNpb25hciBpbmR1c3RyaWFsaXphY2nDs24gY29uIGRlbW9jcmF0aXphY2nDs24KICBEZW0xOTYwIH4gSW5kMTk2MAogIERlbTE5NjUgfiBJbmQxOTYwCgogICMgRXNwZWNpZmljYXIgdmFyaWFuemFzIHkgY292YXJpYW56YXMKICBEZW0xOTYwIH5+IERlbTE5NjAKICBEZW0xOTY1IH5+IERlbTE5NjUKICBJbmQxOTYwIH5+IEluZDE5NjAKICBEZW0xOTYwIH5+IEluZDE5NjAKICBEZW0xOTY1IH5+IEluZDE5NjAKJwoKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhMiA8LSBzZW0obW9kZWxvMiwgZGF0YT1kZjIsIHNlPSJib290c3RyYXAiKQpzdW1tYXJ5KGNmYTIsIHN0YW5kYXJkaXplZD1UUlVFLCBmaXQubWVhc3VyZXM9VFJVRSkKbGF2YWFuUGxvdChjZmEyLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQoKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RXZhbHVhciBlbCBtb2RlbG8gKENGQSk8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTIsIGZpdC5tZWFzdXJlcz0oVFJVRSkpCiMgQ29tcGFyYXRpdmUgRml0IEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpIHNlYW4gY2VyY2Fub3MgbyBtYXlvcmVzIGEgMC45NS4KIyBFeGNlbGVudGUgaXMgZXMgPj0gYSAwLjk1LCBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwLgoKIyBVc2VyIE1vZGVsIHZlcnN1cyBCYXNlbGluZSBNb2RlbDoKIyBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgICAgICAgICAgICAgICAgICAgIDAuOTUwCiMgVHVja2VyLUxld2lzIEluZGV4IChUTEkpICAgICAgICAgICAgICAgICAgICAgICAwLjkzMAoKYGBgCkNvbmNsdXNpw7NuOiAqKk1vZGVsbyBBY2VwdGFibGUsIHkgbm8gaGF5IHF1ZSBoYWNlciBjYW1iaW9zKioKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+SW50ZXJwcmV0Y2nDs248L3NwYW4+CiAqKkNvbmNsdXNpb25lcyBkZWwgTW9kZWxvKiogIAoKTGEgaW5kdXN0cmlhbGl6YWNpw7NuIGVuIDE5NjAgKFBJQiBwZXIgY8OhcGl0YSwgY29uc3VtbyBkZSBlbmVyZ8OtYSB5IGVtcGxlbyBlbiBpbmR1c3RyaWEpIHRpZW5lIHVuIGltcGFjdG8gcG9zaXRpdm8gZW4gbGEgZGVtb2NyYXRpemFjacOzbiBkZSAxOTYwLiAgClRhbWJpw6luIGluZmx1eWUgZW4gbGEgZGVtb2NyYXRpemFjacOzbiBkZSAxOTY1LCBsbyBxdWUgc3VnaWVyZSBxdWUgZWwgZGVzYXJyb2xsbyBlY29uw7NtaWNvIHB1ZWRlIHRlbmVyIGVmZWN0b3MgcHJvbG9uZ2Fkb3MgZW4gbGEgY29uc29saWRhY2nDs24gZGVtb2Nyw6F0aWNhLiAgCgpMYSBkZW1vY3JhdGl6YWNpw7NuIGVuIDE5NjAgaW5mbHV5ZSBkaXJlY3RhbWVudGUgZW4gbGEgZGVtb2NyYXRpemFjacOzbiBlbiAxOTY1LCBsbyBxdWUgaW5kaWNhIHF1ZSBsb3Mgbml2ZWxlcyBkZSBsaWJlcnRhZCBwb2zDrXRpY2EgeSB0cmFuc3BhcmVuY2lhIGVsZWN0b3JhbCB0aWVuZGVuIGEgbWFudGVuZXJzZSBlbiBlbCB0aWVtcG8uICAKRXN0byBzdWdpZXJlIHF1ZSB1bmEgdmV6IHF1ZSB1biBwYcOtcyBsb2dyYSBjaWVydG9zIG5pdmVsZXMgZGUgYXBlcnR1cmEgcG9sw610aWNhLCBlcyBwcm9iYWJsZSBxdWUgZXN0b3Mgc2Ugc29zdGVuZ2FuIG8gZXZvbHVjaW9uZW4gZmF2b3JhYmxlbWVudGUuICAKCkxhIGluZHVzdHJpYWxpemFjacOzbiBubyBzb2xvIG1lam9yYSBsYXMgY29uZGljaW9uZXMgZWNvbsOzbWljYXMsIHNpbm8gcXVlIHRhbWJpw6luIGVzdMOhIHZpbmN1bGFkYSBjb24gbWF5b3JlcyBuaXZlbGVzIGRlIGxpYmVydGFkIGRlIHByZW5zYSwgY29tcGV0ZW5jaWEgcG9sw610aWNhIHkgZWZpY2FjaWEgbGVnaXNsYXRpdmEuICAKUGHDrXNlcyBjb24gbWF5b3IgZGVzYXJyb2xsbyBpbmR1c3RyaWFsIGVuIDE5NjAgdGllbmVuIG1heW9yIHByb2JhYmlsaWRhZCBkZSBoYWJlciBhdmFuemFkbyBlbiBzdSBkZW1vY3JhdGl6YWNpw7NuIHBhcmEgMTk2NS4gIAoKRXhpc3RlbiByZWxhY2lvbmVzIHNpZ25pZmljYXRpdmFzIGVudHJlIGluZHVzdHJpYWxpemFjacOzbiB5IGRlbW9jcmF0aXphY2nDs24sIGxvIHF1ZSBzdWdpZXJlIHF1ZSBlc3RvcyBwcm9jZXNvcyBwdWVkZW4gZXN0YXIgaW50ZXJjb25lY3RhZG9zIGVuIGx1Z2FyIGRlIHNlciBmZW7Ds21lbm9zIGFpc2xhZG9zLiAgCgpFc3RlIG1vZGVsbyByZXNwYWxkYSBsYSB0ZW9yw61hIGRlIG1vZGVybml6YWNpw7NuLCBxdWUgcGxhbnRlYSBxdWUgZWwgZGVzYXJyb2xsbyBlY29uw7NtaWNvIGZvbWVudGEgbGEgZGVtb2NyYXRpemFjacOzbi4gU2luIGVtYmFyZ28sIGxhIHJlbGFjacOzbiBubyBlcyBjb21wbGV0YW1lbnRlIGRldGVybWluaXN0YTogcHVlZGVuIGV4aXN0aXIgb3Ryb3MgZmFjdG9yZXMgcG9sw610aWNvcywgY3VsdHVyYWxlcyBvIGluc3RpdHVjaW9uYWxlcyBxdWUgaW5mbHV5YW4gZW4gbGEgZXZvbHVjacOzbiBkZSBsYSBkZW1vY3JhY2lhLiAgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RWplcmNpY2lvIDMuIEFwbGljYWNpw7NuIGRlIG1vZGVsb3MgZGUgZWN1YWNpb25lcyBlc3RydWN0dXJhbGVzIDwvc3Bhbj4KCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW4iKSAjTGF0ZW50IFZhcmlhYmxlIEFuYWx5c2lzCmxpYnJhcnkoImxhdmFhbiIpCiNpbnN0YWxsLnBhY2thZ2VzKCJsYXZhYW5QbG90IikgI0xhdGVudCBWYXJpYWJsZSBBbmFseXNpcwpsaWJyYXJ5KCJsYXZhYW5QbG90IikKI2luc3RhbGwucGFja2FnZXMoInJlYWR4bCIpCmxpYnJhcnkoInJlYWR4bCIpCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5JbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPgpMYSBiYXNlIGRlIGRhdG9zIGNvbnRpZW5lIGRpc3RpbnRhcyBtZWRpY2lvbmVzIHNvYnJlIGxhIERlbW9jcmFjaWEgUG9sw610aWNhIGUgSW5kdXN0cmlhbGl6YWNpw7NuLCBlbiBwYcOtc2VzIGVuIGRlc2Fycm9sbG8gZHVyYW50ZSAxOTYwIHkgMTk2NS4KCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojIGZpbGUuY2hvb3NlKCkKZGYzIDwtIHJlYWRfZXhjZWwoIi9Vc2Vycy9tYXJpYW5hYWxlYWwvRGVza3RvcC9URUMgMjAyNS9HZW5lcmFjaW/MgW4gZGUgZXNjZW5hcmlvcyBmdXR1cm9zIGNvbiBhbmFsacyBdGljYS9NMS9EYXRvc19TRU0ueGxzeCIpCgpgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5FbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZjMpCnN0cihkZjMpCmhlYWQoZGYzKQpgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5FbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZjMpCnN0cihkZjMpCmhlYWQoZGYzKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+UGFydGUgMS4gRXhwZXJpZW5jaWFzIGRlIFJlY3VwZXJhY2nDs248L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9Cm1vZGVsbzMxIDwtICcgIyBSZWdyZXNpb25lcwogICAgICAgICAgICAgICNWYXJpYWJsZXMgTGF0ZW50ZXMKICAgICAgICAgICAgICBkZXNhcGVnbyA9fiBSUEQwMSArIFJQRDAyICsgUlBEMDMgKyBSUEQwNSArIFJQRDA2ICsgUlBEMDcgKyBSUEQwOCArIFJQRDA5ICsgUlBEMTAKICAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgICAgZG9taW5pbyA9fiBSTUEwMiArIFJNQTAzICsgUk1BMDQgKyBSTUEwNSArIFJNQTA2ICsgUk1BMDcgKyBSTUEwOCArIFJNQTA5ICsgUk1BMTAKICAgICAgICAgICAgICBjb250cm9sID1+IFJDTzAyKyBSQ08wMyArIFJDTzA0ICsgUkNPMDUgKyBSQ08wNiArIFJDTzA3CiAgICAgICAgICAgICAgcmVjdXBlcmFjaW9uID1+IGRlc2FwZWdvICsgcmVsYWphY2lvbiArIGRvbWluaW8gKyBjb250cm9sCiAgICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphCiAgICAgICAgICAgICBkZXNhcGVnbyA9fiBkZXNhcGVnbwogICAgICAgICAgICAgcmVsYWphY2lvbiA9fiByZWxhamFjaW9uCiAgICAgICAgICAgICBkb21pbmlvID1+IGRvbWluaW8KICAgICAgICAgICAgIGNvbnRyb2wgPX4gY29udHJvbAogICAgICAgICAgICAgIyBJbnRlcmNlcHRvCiAgICAgICAgICAgICAnCmBgYAoKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+R2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+CmBgYHtyfQpjZmEzMSA8LSBzZW0obW9kZWxvMzEsIGRhdGE9ZGYzKQpzdW1tYXJ5KGNmYTMxKQpsYXZhYW5QbG90KGNmYTMxLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQoKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RXZhbHVhciBlbCBtb2RlbG8gKENGQSk8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTMxLCBmaXQubWVhc3VyZXM9VFJVRSkKIyBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkgc2VhbiBjZXJjYW5vcyBvIG1heW9yZXMgYSAwLjk1LgojIEV4Y2VsZW50ZSBpcyBlcyA+PSBhIDAuOTUsIEFjZXB0YWJsZSBlbnRyZSAwLjkwIHkgMC45NSwgRGVmaWNpZW50ZSA8IDAuOTAuCgojIFVzZXIgTW9kZWwgdmVyc3VzIEJhc2VsaW5lIE1vZGVsOgojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSAgICAgICAgICAgICAgICAgICAgMC44ODcKIyBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkgICAgICAgICAgICAgICAgICAgICAgIDAuODc3CmBgYApDb25jbHVzacOzbj0gKipNb2RlbG8gRGVmaWNpZW50ZSoqLgoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5QYXJ0ZSAyLiBFbmVyZ8OtYSBSZWN1cGVyYWRhPC9zcGFuPgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQptb2RlbG8zMiA8LSAnICMgUmVncmVzaW9uZXMKICAgICAgICAgICAgICAjVmFyaWFibGVzIExhdGVudGVzCiAgICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQrIEVOMDQrIEVOMDYrIEVOMDcgKyBFTjA4CiAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgIyBWYXJpYW56YXMgeSBDb3ZhcmlhbnphCiAgICAgICAgICAgICBlbmVyZ2lhIH5+IGVuZXJnaWEKICAgICAgICAKICAgICAgICAgICAgICMgSW50ZXJjZXB0bwogICAgICAgICAgICAgJwpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+R2VuZXJhciBlbCBBbsOhbGlzaXMgRmFjdG9yaWFsIENvbmZpcm1hdG9yaW8gKENGQSk8L3NwYW4+CmBgYHtyfQpjZmEzMiA8LSBzZW0obW9kZWxvMzIsIGRhdGE9ZGYzKQpzdW1tYXJ5KGNmYTMyKQpsYXZhYW5QbG90KGNmYTMyLCBjb2VmPVRSVUUsIGNvdj1UUlVFKQoKYGBgCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+RXZhbHVhciBlbCBtb2RlbG8gKENGQSk8L3NwYW4+CmBgYHtyfQpzdW1tYXJ5KGNmYTMyLCBmaXQubWVhc3VyZXM9VFJVRSkKIyBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgeSBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkgc2VhbiBjZXJjYW5vcyBvIG1heW9yZXMgYSAwLjk1LgojIEV4Y2VsZW50ZSBpcyBlcyA+PSBhIDAuOTUsIEFjZXB0YWJsZSBlbnRyZSAwLjkwIHkgMC45NSwgRGVmaWNpZW50ZSA8IDAuOTAuCgojIFVzZXIgTW9kZWwgdmVyc3VzIEJhc2VsaW5lIE1vZGVsOgojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSAgICAgICAgICAgICAgICAgICAgMC45ODUKIyBUdWNrZXItTGV3aXMgSW5kZXggKFRMSSkgICAgICAgICAgICAgICAgICAgICAgIDAuOTc0CgpgYGAKQ29uY2x1c2nDs246ICoqTW9kZWxvIEV4Y2VsZW50ZSoqCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPlBhcnRlIDMuIEVuZ2FnZW1lbnQgTGFib3JhbDwvc3Bhbj4KYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbW9kZWxvMzMgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAgI1ZhcmlhYmxlcyBMYXRlbnRlcwogICAgICAgICAgICAgIHZpZ29yID1+IEVWSTAxICsgRVZJMDIgKyBFVkkwMwogICAgICAgICAgICAgIGRlZGljYWNpb24gID1+IEVERTAxICsgRURFMDIgK0VERTAzCiAgICAgICAgICAgICAgYWJzb3JjaW9uID1+IEVBQjAxICsgRUFCMDIgKyBFQUIwMwogICAgICAgICAgICAgICMgVmFyaWFuemFzIHkgQ292YXJpYW56YQogICAgICAgICAgICAgdmlnb3Igfn4gdmlnb3IKICAgICAgICAgICAgIGRlZGljYWNpb24gfn4gZGVkaWNhY2lvbgogICAgICAgICAgICAgYWJzb3JjaW9uIH5+IGFic29yY2lvbgogICAgICAgICAgICAgdmlnb3Igfn4gZGVkaWNhY2lvbiArIGFic29yY2lvbgogICAgICAgICAgICAgZGVkaWNhY2lvbiAgfn4gYWJzb3JjaW9uCiAgICAgICAgCiAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAgICcKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkdlbmVyYXIgZWwgQW7DoWxpc2lzIEZhY3RvcmlhbCBDb25maXJtYXRvcmlvIChDRkEpPC9zcGFuPgpgYGB7cn0KY2ZhMzMgPC0gc2VtKG1vZGVsbzMzLCBkYXRhPWRmMykKc3VtbWFyeShjZmEzMykKbGF2YWFuUGxvdChjZmEzMywgY29lZj1UUlVFLCBjb3Y9VFJVRSkKCmBgYAojIyA8c3BhbiBzdHlsZT0iY29sb3I6IHJlZDsiPkV2YWx1YXIgZWwgbW9kZWxvIChDRkEpPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShjZmEzMywgZml0Lm1lYXN1cmVzPVRSVUUpCiMgQ29tcGFyYXRpdmUgRml0IEluZGV4IChDRkkpIHkgVHVja2VyLUxld2lzIEluZGV4IChUTEkpIHNlYW4gY2VyY2Fub3MgbyBtYXlvcmVzIGEgMC45NS4KIyBFeGNlbGVudGUgaXMgZXMgPj0gYSAwLjk1LCBBY2VwdGFibGUgZW50cmUgMC45MCB5IDAuOTUsIERlZmljaWVudGUgPCAwLjkwLgoKIyBVc2VyIE1vZGVsIHZlcnN1cyBCYXNlbGluZSBNb2RlbDoKIyBDb21wYXJhdGl2ZSBGaXQgSW5kZXggKENGSSkgICAgICAgICAgICAgICAgICAgIDAuODg5CiMgVHVja2VyLUxld2lzIEluZGV4IChUTEkpICAgICAgICAgICAgICAgICAgICAgICAwLjgzMwoKYGBgCkNvbmNsdXNpw7NuOiAqKk1vZGVsbyBEZWZpY2llbnRlKioKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogcmVkOyI+TW9kZWxvIENvbXBsZXRvPC9zcGFuPgpgYGB7cn0KbW9kZWxvMzQgPC0gJyAjIFJlZ3Jlc2lvbmVzCiAgICAgICAgICAgICAjIFZhcmlhYmxlcyBsYXRlbnRlcwogICAgICAgICAgICAgZGVzYXBlZ28gPX4gUlBEMDEgKyBSUEQwMiArIFJQRDAzICsgUlBEMDUgKyBSUEQwNiArIFJQRDA3ICsgUlBEMDggKyBSUEQwOSArIFJQRDEwCiAgICAgICAgICAgICByZWxhamFjaW9uID1+IFJSRTAyICsgUlJFMDMgKyBSUkUwNCArIFJSRTA1ICsgUlJFMDYgKyBSUkUwNyArIFJSRTEwCiAgICAgICAgICAgICBkb21pbmlvID1+IFJNQTAyICsgUk1BMDMgKyBSTUEwNCArIFJNQTA1ICsgUk1BMDYgKyBSTUEwNyArIFJNQTA4ICsgUk1BMDkgKyBSTUExMAogICAgICAgICAgICAgY29udHJvbCA9fiBSQ08wMiArIFJDTzAzICsgUkNPMDQgKyBSQ08wNSArIFJDTzA2ICsgUkNPMDcKICAgICAgICAgICAgIHJlY3VwZXJhY2lvbiA9fiBkZXNhcGVnbyArIHJlbGFqYWNpb24gKyBkb21pbmlvICsgY29udHJvbAogICAgICAgICAgICAgZW5lcmdpYSA9fiBFTjAxICsgRU4wMiArIEVOMDQgKyBFTjA1ICsgRU4wNiArIEVOMDcgKyBFTjA4CiAgICAgICAgICAgICB2aWdvciA9fiBFVkkwMSArIEVWSTAyICsgRVZJMDMKICAgICAgICAgICAgIGRlZGljYWNpb24gPX4gRURFMDEgKyBFREUwMiArIEVERTAzCiAgICAgICAgICAgICBhYnNvcmNpb24gPX4gRUFCMDEgKyBFQUIwMiArIEVBQjAzCiAgICAgICAgICAgICAjIFZhcmlhbnphcyB5IENvdmFyaWFuemEKICAgICAgICAgICAgIGRlc2FwZWdvID1+IGRlc2FwZWdvCiAgICAgICAgICAgICByZWxhamFjaW9uID1+IHJlbGFqYWNpb24KICAgICAgICAgICAgIGRvbWluaW8gPX4gZG9taW5pbwogICAgICAgICAgICAgY29udHJvbCA9fiBjb250cm9sCiAgICAgICAgICAgICBlbmVyZ2lhIH5+IGVuZXJnaWEKICAgICAgICAgICAgIHZpZ29yIH5+IHZpZ29yCiAgICAgICAgICAgICBkZWRpY2FjaW9uIH5+IGRlZGljYWNpb24KICAgICAgICAgICAgIGFic29yY2lvbiB+fiBhYnNvcmNpb24KICAgICAgICAgICAgIHZpZ29yIH5+IGRlZGljYWNpb24gKyBhYnNvcmNpb24KICAgICAgICAgICAgIGRlZGljYWNpb24gfn4gYWJzb3JjaW9uCiAgICAgICAgICAgICByZWN1cGVyYWNpb24gfn4gZW5lcmdpYSArIHZpZ29yICsgZGVkaWNhY2lvbiArIGFic29yY2lvbgogICAgICAgICAgICAgZW5lcmdpYSB+fiB2aWdvciArICBkZWRpY2FjaW9uICsgYWJzb3JjaW9uICAgICAgCiAgICAgICAgICAgICAjIEludGVyY2VwdG8KICAgICAgICAgICAnCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5HZW5lcmFyIGVsIEFuw6FsaXNpcyBGYWN0b3JpYWwgQ29uZmlybWF0b3JpbyAoQ0ZBKTwvc3Bhbj4KYGBge3J9CmNmYTM0IDwtIHNlbShtb2RlbG8zNCwgZGF0YT1kZjMpCnN1bW1hcnkoY2ZhMzQpCmxhdmFhblBsb3QoY2ZhMzQsIGNvZWY9VFJVRSwgY292PVRSVUUpCgpgYGAKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiByZWQ7Ij5FdmFsdWFyIGVsIG1vZGVsbyAoQ0ZBKTwvc3Bhbj4KYGBge3J9CnN1bW1hcnkoY2ZhMzQsIGZpdC5tZWFzdXJlcz1UUlVFKQojIENvbXBhcmF0aXZlIEZpdCBJbmRleCAoQ0ZJKSB5IFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKSBzZWFuIGNlcmNhbm9zIG8gbWF5b3JlcyBhIDAuOTUuCiMgRXhjZWxlbnRlIGlzIGVzID49IGEgMC45NSwgQWNlcHRhYmxlIGVudHJlIDAuOTAgeSAwLjk1LCBEZWZpY2llbnRlIDwgMC45MC4KCiMgVXNlciBNb2RlbCB2ZXJzdXMgQmFzZWxpbmUgTW9kZWw6CiMgQ29tcGFyYXRpdmUgRml0IEluZGV4IChDRkkpICAgICAgICAgICAgICAgICAgICAwLjg4NAojIFR1Y2tlci1MZXdpcyBJbmRleCAoVExJKSAgICAgICAgICAgICAgICAgICAgICAgMC44NzYKYGBgCkNvbmNsdXNpw7NuOiAqKk1vZGVsbyBEZWZpY2llbnRlKioKCg==