.importing data

Visit the following link for more information in R: RStudio

         Timestamp Institution
1 04/11/2024 11:42          UR
2 04/11/2024 11:42          UR
3 04/11/2024 11:43          UR
4 04/11/2024 11:43          UR
5 04/11/2024 11:43          UR
6 04/11/2024 11:44        AIMS
                                                             Background
1                                                          Data Science
2                                                          Data Science
3                                                    Applied Statistics
4 Bachelor in Science of Quantity Surveying and construction management
5                                                          Data science
6                                                          Data science
  Completed.Program Gender Date.of.Birth
1   Master's degree Female    02/04/1986
2   Master's degree   Male    08/04/1990
3 Bachelor's degree   Male    17/08/2000
4 Bachelor's degree   Male    01/01/2000
5   Master's degree Female    23/10/1994
6   Master's degree Female    01/01/1999

Quadratic equation: \[ax^2+bx+c\] whereby \[a,b,c\] are real numbers

Equation of normal distribution: \[p(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^2}{2 \sigma^2}}\]

       data.Institution
1                    UR
2                    UR
3                    UR
4                    UR
5                    UR
6                  AIMS
7                    UR
8                    UR
9                    UR
10                   UR
11                   UR
12                   UR
13                   UR
14                   UR
15                   UR
16                   UR
17                   UR
18                   UR
19                   UR
20                   UR
21                   UR
22                   UR
23                   UR
24 University of Kerala
25                   UR
26                 EAUR
27                   UR
28                   UR
29                  UTB
30                 EAUR
31                  UTB
32                   UR
33                   UR
34                   UR
35          AIMS Rwanda
36                  UTB
37       INES Ruhengeri
38                 INES
39                 INES
40                   UR
41                   UR
42                   UR
43                 AUCA
44                   UR
45                   UR
46                   UR
47                   UR
48                   UR
49                   UR
50                   UR
51                   UR
                                                        data.c.1.6...3.
1                                                          Data Science
2                                                          Data Science
3                                                    Applied Statistics
4 Bachelor in Science of Quantity Surveying and construction management
5                                                          Data science
6                                                          Data science

.Data filtering

 [1] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
 [4] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
 [7] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[10] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[13] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[16] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[19] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[22] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[25] "Bachelor's degree" "Bachelor's degree"
          Timestamp Institution
3  04/11/2024 11:43          UR
4  04/11/2024 11:43          UR
7  04/11/2024 11:45          UR
8  04/11/2024 11:46          UR
11 04/11/2024 11:48          UR
12 04/11/2024 11:48          UR
13 04/11/2024 11:48          UR
14 04/11/2024 11:49          UR
17 04/11/2024 11:49          UR
20 04/11/2024 11:50          UR
22 04/11/2024 11:51          UR
23 04/11/2024 11:51          UR
25 04/11/2024 11:55          UR
28 04/11/2024 11:57          UR
30 04/11/2024 11:57        EAUR
31 04/11/2024 11:58         UTB
33 04/11/2024 12:01          UR
36 04/11/2024 12:05         UTB
43  06/11/2024 9:26        AUCA
44  06/11/2024 9:56          UR
45 06/11/2024 10:08          UR
46 06/11/2024 10:26          UR
47  07/11/2024 9:04          UR
48  07/11/2024 9:16          UR
49  07/11/2024 9:37          UR
50 07/11/2024 10:24          UR
 [1] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
 [4] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
 [7] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[10] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[13] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[16] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[19] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[22] "Bachelor's degree" "Bachelor's degree" "Bachelor's degree"
[25] "Bachelor's degree" "Bachelor's degree"
[1] 26

.Data Visualization

        
         No Yes
  Female 29  27
  Male   26  18

    Pearson's Chi-squared test with Yates' continuity correction

data:  table_data
X-squared = 0.27712, df = 1, p-value = 0.5986
  nominal_predictor ordinal_predictor numeric_target categorical_target
1                 C              High       54.51504                 No
2                 C            Medium       50.41233                Yes
3                 C            Medium       45.77503                Yes
4                 B              High       29.46753                 No
5                 C               Low       61.31337                 No
6                 B               Low       35.39360                Yes

                  Df Sum Sq Mean Sq F value Pr(>F)
nominal_predictor  2    199   99.26   0.949  0.391
Residuals         97  10150  104.63               

    Kruskal-Wallis rank sum test

data:  numeric_target by nominal_predictor
Kruskal-Wallis chi-squared = 1.0731, df = 2, p-value = 0.5848

                  Df Sum Sq Mean Sq F value Pr(>F)
ordinal_predictor  2     47   23.68   0.223  0.801
Residuals         97  10301  106.19               

    Spearman's rank correlation rho

data:  as.numeric(data$ordinal_predictor) and data$numeric_target
S = 165872, p-value = 0.9632
alternative hypothesis: true rho is not equal to 0
sample estimates:
        rho 
0.004667927 

.Inferential statistics

.Contigency table

        
         No Yes
  High   20  12
  Low    18  12
  Medium 19  19

    Pearson's Chi-squared test

data:  data$ordinal_predictor and data$categorical_target
X-squared = 1.2648, df = 2, p-value = 0.5313
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
 [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
[11] "carb"

Call:
lm(formula = mpg ~ cyl + drat, data = mt_data)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.0845 -2.1061 -0.3432  1.8000  7.2096 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  28.7247     7.5921   3.783 0.000718 ***
cyl          -2.4835     0.4472  -5.554 5.45e-06 ***
drat          1.8720     1.4937   1.253 0.220124    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.176 on 29 degrees of freedom
Multiple R-squared:  0.7402,    Adjusted R-squared:  0.7223 
F-statistic: 41.32 on 2 and 29 DF,  p-value: 3.244e-09
 [1] "coefficients"  "residuals"     "effects"       "rank"         
 [5] "fitted.values" "assign"        "qr"            "df.residual"  
 [9] "xlevels"       "call"          "terms"         "model"        
(Intercept)         cyl        drat 
  28.724665   -2.483514    1.871983 
(Intercept)         cyl        drat 
  28.724665   -2.483514    1.871983 
                2.5 %    97.5 %
(Intercept) 13.196989 44.252341
cyl         -3.398123 -1.568905
drat        -1.182973  4.926938
                          lwr      upr
Mazda RX4           14.477977 27.77065
Mazda RX4 Wag       14.477977 27.77065
Datsun 710          19.219731 32.77575
Hornet 4 Drive      12.777079 26.40150
Hornet Sportabout    8.048752 21.45785
Valiant             11.871128 26.10938
Duster 360           8.164141 21.56709
Merc 240D           18.857724 32.53873
Merc 230            19.367170 32.89039
Merc 280            14.507722 27.81578
Merc 280C           14.507722 27.81578
Merc 450SE           7.887116 21.31996
Merc 450SL           7.887116 21.31996
Merc 450SLC          7.887116 21.31996
Cadillac Fleetwood   7.583004 21.09992
Lincoln Continental  7.738422 21.20658
Chrysler Imperial    8.201490 21.60462
Fiat 128            19.678835 33.17776
Honda Civic         20.760316 35.27865
Toyota Corolla      19.922538 33.45821
Toyota Corona       18.881356 32.55253
Dodge Challenger     7.178054 20.86840
AMC Javelin          8.048752 21.45785
Camaro Z28           8.956619 22.72148
Pontiac Firebird     7.907806 21.33671
Fiat X1-9           19.678835 33.17776
Porsche 914-2       20.237900 33.92908
Lotus Europa        19.043043 32.65292
Ford Pantera L       9.387272 24.12537
Ferrari Dino        14.002813 27.19750
Maserati Bora        8.709559 22.25719
Volvo 142E          19.733333 33.23558

Thank you!!!!