Pemograman Ilmu Data
Pemograman Dasar
1 Praktikum 1
1.1 Mengidentifikasi Tipe Data
Menentukan tipe data variabel berikut dalam Python dan R:
a = 42
b = 3.14
c = "Hello"
d = FALSE
e = [1, 2, 3]
f = {"name": "Alice", "age" : 25}
1.1.1 Tipe Data di Python
# Python
a = 42 # Integer
b = 3.14 #Float
c = "Hello" # String
d = False # Boolean
e = [1, 2, 3] # List
f = {"name": "Alice", "age": 25} # Dictionary
# Mengidentifikasi tipe data
print("Tipe data a:", type(a))## Tipe data a: <class 'int'>
## Tipe data b: <class 'float'>
## Tipe data c: <class 'str'>
## Tipe data d: <class 'bool'>
## Tipe data e: <class 'list'>
## Tipe data f: <class 'dict'>
1.1.2 Tipe Data di R
# R
a <- 42 # Integer
b <- 3.14 # Numeric
c <- "Hello" # Character
d <- FALSE # Logical
e <- c(1, 2, 3) # Vektor
f <- list(name = "Alice", age = 25) # List
print(class(a)) # "integer"## [1] "numeric"
## [1] "numeric"
## [1] "character"
## [1] "logical"
## [1] "numeric"
## [1] "list"
1.2 Variabel dan Manipulasi Data
Membuat variabel berikut dalam Python dan R:
x = 20
y = 5
text1 = "Data"
text2 = "Science"
Kode Python
x = 20
y=5
text1 = "Data"
text2 = "Science"
# menggabungkan text1 dan text2
combined_text = text1 + " " + text2
# mengubah teks gabungan menjadi huruf besar.
combined_text_uppercase = combined_text.upper()
print (x + 10) # Output 30## 30
## Data Science
## DATA SCIENCE
Kode R
x <- 20
y <- 5
text1 <- "Data"
text2 <- "Science"
# menggabungkan text1 dan text2
combined_text <- paste (text1, text2)
# mengubah teks gabungan menjadi huruf besar.
combined_text_uppercase <- toupper(combined_text)
print (x + 10) # Output 30## [1] 30
## [1] "Data Science"
## [1] "DATA SCIENCE"
1.3 Operasi Aritmatika
Mengingat variabel berikut:
a = 15
b = 4
Kode Python
## 19
## 11
## 60
## 3.75
## 3
## 50625
## 3
Kode R
## [1] 19
## [1] 11
## [1] 60
## [1] 3.75
## [1] 3
## [1] 50625
## [1] 3
1.4 Operasi String
Diberikan teks berikut:
text = "Hello, Data Science!"
Kode Pyhton
## Hello
## 20
## hello, data science!
Kode R
## [1] "Hello"
## [1] 20
## [1] "hello, data science!"
1.5 Operator Perbandingan dan Logika
Mengingat variabel-variabel berikut:
x = 7
y = 10
Kode Pyhton
## False
## True
## True
## True
Kode R
## [1] FALSE
## [1] TRUE
## [1] TRUE
## [1] TRUE
1.6 Konfersi Tipe Data
Mengingat variabel-variabel berikut:
num_str = "123"
num_float = 45.67
Kode Pyhton
num_str = "123"
num_float = 45.67
# mengubah num_str ke bilangan bulat dan tambahkan 10
num_str = "123"
num = int(num_str)
print(num + 10)## 133
## 45
## 45.67
Kode R
num_str <- "123"
num_float <- 45.67
# mengubah num_str ke bilangan bulat dan tambahkan 10
num_str <- "123"
num <- as.integer(num_str)
print(num + 10)## [1] 133
## [1] 45
## [1] "45.67"
1.7 Tantangan Bonus
Membuat program interaktif yang meminta pengguna untuk memasukkan:
Nama
Usia
Kota kelahiran
Kemudian, cetak output sebagai berikut:
"Hello [Name], you are [Age] years old and from [Hometown]."
Kode Pyhton
https://colab.research.google.com/drive/1uPkD_aXIZvjYCVWQZGTrpr5gXiTq14Q7?usp=sharing
Kode R
## Masukkan nama anda:
## Masukkan usia anda:
## :
## Hello , you are years old and from .
Keterangan: Pada kode r dapat dijalankan dan memasukkan data dari console.
LS0tDQp0aXRsZTogIlBlbW9ncmFtYW4gSWxtdSBEYXRhIg0Kc3VidGl0bGU6ICJQZW1vZ3JhbWFuIERhc2FyIg0KYXV0aG9yOiANCiAgLSAiRHdpIFNyaSBZYW50aSBNYW51bGxhbmciDQpkYXRlOiAgImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0Og0KICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjogICAjIGh0dHBzOi8vZ2l0aHViLmNvbS9qdWJhL3JtZGZvcm1hdHMNCiAgICBzZWxmX2NvbnRhaW5lZDogdHJ1ZQ0KICAgIHRodW1ibmFpbHM6IHRydWUNCiAgICBsaWdodGJveDogdHJ1ZQ0KICAgIGdhbGxlcnk6IHRydWUNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICBsaWJfZGlyOiBsaWJzDQogICAgZGZfcHJpbnQ6ICJwYWdlZCINCiAgICBjb2RlX2ZvbGRpbmc6ICJzaG93Ig0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNzczogIkM6L1VzZXJzL0R3aSBNYW51bGxhbmcvRG93bmxvYWRzL3N0eWxlLmNzcyINCi0tLQ0KPGltZyBpZD0ibG9nby11dGFtYSIgc3JjPSJDOi9Vc2Vycy9Ed2kgTWFudWxsYW5nL0Rvd25sb2Fkcy9Gb3RvLmpwZWciIGFsdD0iTG9nbyIgc3R5bGU9IndpZHRoOjIwMHB4OyBkaXNwbGF5OiBibG9jazsgbWFyZ2luOiBhdXRvOyI+DQoNCi0tLQ0KDQojICoqUHJha3Rpa3VtIDEqKg0KDQojIyBNZW5naWRlbnRpZmlrYXNpIFRpcGUgRGF0YQ0KDQpNZW5lbnR1a2FuIHRpcGUgZGF0YSB2YXJpYWJlbCBiZXJpa3V0IGRhbGFtIFB5dGhvbiBkYW4gUjoNCg0KYGBgDQphID0gNDINCg0KYiA9IDMuMTQNCg0KYyA9ICJIZWxsbyINCg0KZCA9IEZBTFNFDQoNCmUgPSBbMSwgMiwgM10NCg0KZiA9IHsibmFtZSI6ICJBbGljZSIsICJhZ2UiIDogMjV9DQpgYGANCg0KIyMjIFRpcGUgRGF0YSBkaSBQeXRob24NCmBgYHtweXRob259DQojIFB5dGhvbg0KYSA9IDQyICMgSW50ZWdlcg0KYiA9IDMuMTQgI0Zsb2F0DQpjID0gIkhlbGxvIiAjIFN0cmluZw0KZCA9IEZhbHNlICMgQm9vbGVhbg0KZSA9IFsxLCAyLCAzXSAjIExpc3QNCmYgPSB7Im5hbWUiOiAiQWxpY2UiLCAiYWdlIjogMjV9ICMgRGljdGlvbmFyeQ0KDQojIE1lbmdpZGVudGlmaWthc2kgdGlwZSBkYXRhDQpwcmludCgiVGlwZSBkYXRhIGE6IiwgdHlwZShhKSkNCnByaW50KCJUaXBlIGRhdGEgYjoiLCB0eXBlKGIpKQ0KcHJpbnQoIlRpcGUgZGF0YSBjOiIsIHR5cGUoYykpDQpwcmludCgiVGlwZSBkYXRhIGQ6IiwgdHlwZShkKSkNCnByaW50KCJUaXBlIGRhdGEgZToiLCB0eXBlKGUpKQ0KcHJpbnQoIlRpcGUgZGF0YSBmOiIsIHR5cGUoZikpDQpgYGANCiMjIyBUaXBlIERhdGEgZGkgUg0KDQpgYGB7ciwgIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQojIFINCmEgPC0gNDIgIyBJbnRlZ2VyDQpiIDwtIDMuMTQgIyBOdW1lcmljDQpjIDwtICJIZWxsbyIgIyBDaGFyYWN0ZXINCmQgPC0gRkFMU0UgIyBMb2dpY2FsDQplIDwtIGMoMSwgMiwgMykgIyBWZWt0b3INCmYgPC0gbGlzdChuYW1lID0gIkFsaWNlIiwgYWdlID0gMjUpICMgTGlzdA0KDQpwcmludChjbGFzcyhhKSkgICMgImludGVnZXIiDQpwcmludChjbGFzcyhiKSkgICMgIm51bWVyaWMiDQpwcmludChjbGFzcyhjKSkgICMgImNoYXJhY3RlciINCnByaW50KGNsYXNzKGQpKSAgIyAibG9naWNhbCINCnByaW50KGNsYXNzKGUpKSAgIyAidmVrdG9yIg0KcHJpbnQoY2xhc3MoZikpICAjICJsaXN0Ig0KYGBgDQoNCiMjIFZhcmlhYmVsIGRhbiBNYW5pcHVsYXNpIERhdGENCg0KTWVtYnVhdCB2YXJpYWJlbCBiZXJpa3V0IGRhbGFtIFB5dGhvbiBkYW4gUjoNCg0KYGBgDQp4ID0gMjANCg0KeSA9IDUNCg0KdGV4dDEgPSAiRGF0YSINCg0KdGV4dDIgPSAiU2NpZW5jZSINCmBgYA0KDQpLb2RlIFB5dGhvbg0KYGBge3B5dGhvbn0NCnggPSAyMA0KeT01DQp0ZXh0MSA9ICJEYXRhIg0KdGV4dDIgPSAiU2NpZW5jZSINCg0KIyBtZW5nZ2FidW5na2FuIHRleHQxIGRhbiB0ZXh0MiANCmNvbWJpbmVkX3RleHQgPSB0ZXh0MSArICIgIiArIHRleHQyDQoNCiMgbWVuZ3ViYWggdGVrcyBnYWJ1bmdhbiBtZW5qYWRpIGh1cnVmIGJlc2FyLg0KY29tYmluZWRfdGV4dF91cHBlcmNhc2UgPSBjb21iaW5lZF90ZXh0LnVwcGVyKCkNCg0KcHJpbnQgKHggKyAxMCkgIyBPdXRwdXQgMzANCnByaW50IChjb21iaW5lZF90ZXh0KQ0KcHJpbnQgKGNvbWJpbmVkX3RleHRfdXBwZXJjYXNlKQ0KYGBgDQoNCg0KS29kZSBSDQpgYGB7ciwgIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQp4IDwtIDIwDQp5IDwtIDUNCnRleHQxIDwtICJEYXRhIg0KdGV4dDIgPC0gIlNjaWVuY2UiDQoNCiMgbWVuZ2dhYnVuZ2thbiB0ZXh0MSBkYW4gdGV4dDIgDQpjb21iaW5lZF90ZXh0IDwtIHBhc3RlICh0ZXh0MSwgdGV4dDIpDQoNCiMgbWVuZ3ViYWggdGVrcyBnYWJ1bmdhbiBtZW5qYWRpIGh1cnVmIGJlc2FyLg0KY29tYmluZWRfdGV4dF91cHBlcmNhc2UgPC0gdG91cHBlcihjb21iaW5lZF90ZXh0KQ0KDQpwcmludCAoeCArIDEwKSAjIE91dHB1dCAzMA0KcHJpbnQgKGNvbWJpbmVkX3RleHQpDQpwcmludCAoY29tYmluZWRfdGV4dF91cHBlcmNhc2UpDQpgYGANCg0KIyMgT3BlcmFzaSBBcml0bWF0aWthDQoNCk1lbmdpbmdhdCB2YXJpYWJlbCBiZXJpa3V0Og0KDQpgYGANCmEgPSAxNSANCg0KYiA9IDQNCmBgYA0KDQpLb2RlIFB5dGhvbg0KYGBge3B5dGhvbn0NCmEgPSAxNSANCmIgPSA0DQoNCiMgbWVuZ2hpdHVuZyBqdW1sYWgsIHNlbGlzaWgscHJvZHVrLHBlbWJhZ2lhbiwgZGFuIG1vZHVsbyANCg0KcHJpbnQoYSArIGIpDQpwcmludChhIC0gYikNCnByaW50KGEgKiBiKQ0KcHJpbnQoYSAvIGIpDQpwcmludChhICUgYikNCg0KIyBtZW5naGl0dW5nIGEgcGFuZ2thdCBiDQpwcmludChhICoqIGIpDQoNCiMgbWVtYnVhdCB2YXJpYWJlbCBiYXJ1IGMgDQpjID0gYSAvIGINCmMgPSBpbnQoYykgIyBtZW5ndWJhaCBtZW5qYWRpIGludGVnZXINCnByaW50KGMpIA0KDQoNCmBgYA0KDQpLb2RlIFINCmBgYHtyLCAgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCmEgPC0gMTUgDQpiIDwtIDQNCg0KIyBtZW5naGl0dW5nIGp1bWxhaCwgc2VsaXNpaCxwcm9kdWsscGVtYmFnaWFuLCBkYW4gbW9kdWxvIA0KDQpwcmludChhICsgYikNCnByaW50KGEgLSBiKQ0KcHJpbnQoYSAqIGIpDQpwcmludChhIC8gYikNCnByaW50KGEgJSUgYikNCg0KIyBtZW5naGl0dW5nIGEgcGFuZ2thdCBiDQpwcmludChhIF4gYikNCg0KIyBtZW1idWF0IHZhcmlhYmVsIGJhcnUgYyANCmMgPC0gYSAvIGINCmMgPC0gYXMuaW50ZWdlcihjKSAjIG1lbmd1YmFoIG1lbmphZGkgaW50ZWdlcg0KcHJpbnQoYykgDQoNCmBgYA0KIyMgT3BlcmFzaSBTdHJpbmcNCg0KRGliZXJpa2FuIHRla3MgYmVyaWt1dDoNCg0KYGBgDQp0ZXh0ID0gIkhlbGxvLCBEYXRhIFNjaWVuY2UhIg0KYGBgDQoNCktvZGUgUHlodG9uDQpgYGB7cHl0aG9ufQ0KdGV4dCA9ICJIZWxsbywgRGF0YSBTY2llbmNlISINCg0KIyBtZW5nZXN0cmFrIDUga2FyYWt0ZXIgcGVydGFtYSBkYXJpIHRla3MNCnByaW50KHRleHRbMDo1XSkNCg0KIyBtZW5naGl0dW5nIGp1bWxhaCBrYXJha3RlciBkYWxhbSB0ZWtzDQpwcmludChsZW4odGV4dCkpDQoNCiMgbWVuZ3ViYWggdGVrcyBtZW5qYWRpIGh1cnVmIGtlY2lsDQpwcmludCh0ZXh0Lmxvd2VyKCkpDQoNCmBgYA0KDQoNCktvZGUgUg0KYGBge3IsICBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KdGV4dCA8LSAiSGVsbG8sIERhdGEgU2NpZW5jZSEiDQoNCiMgbWVuZ2VzdHJhayA1IGthcmFrdGVyIHBlcnRhbWEgZGFyaSB0ZWtzDQpwcmludChzdWJzdHIodGV4dCwgMSwgNSkpDQoNCiMgbWVuZ2hpdHVuZyBqdW1sYWgga2FyYWt0ZXIgZGFsYW0gdGVrcw0KcHJpbnQobmNoYXIodGV4dCkpDQoNCiMgbWVuZ3ViYWggdGVrcyBtZW5qYWRpIGh1cnVmIGtlY2lsDQpwcmludCh0b2xvd2VyKHRleHQpKQ0KYGBgDQoNCiMjIE9wZXJhdG9yIFBlcmJhbmRpbmdhbiBkYW4gTG9naWthDQoNCk1lbmdpbmdhdCB2YXJpYWJlbC12YXJpYWJlbCBiZXJpa3V0Og0KDQpgYGANCnggPSA3DQoNCnkgPSAxMA0KYGBgDQoNCktvZGUgUHlodG9uDQpgYGB7cHl0aG9ufQ0KeCA9IDcNCnkgPSAxMA0KDQojIG1lbWVyaWtzYSBhcGFrYWggeCBsZWJpaCBiZXNhciBkYXJpIHkNCnByaW50KHggPiB5KSAjIEZhbHNlDQoNCiMgbWVtZXJpa3NhIGFwYWthaCB4IGt1cmFuZyBkYXJpIGF0YXUgc2FtYSBkZW5nYW4geQ0KcHJpbnQoeCA8IHkpICMgVHJ1ZQ0KDQojIG1lbWVyaWtzYSBhcGFrYWggeCB0aWRhayBzYW1hIGRlbmdhbiB5DQpwcmludCh4ICE9IHkpICMgVHJ1ZQ0KDQojIG1lbmdldmFsdWFzaSBla3NwcmVzaSAoeCA+IDUpIEFORCAoeSA8IDIwKQ0KcHJpbnQoKHggPiA1KSBhbmQgKHkgPCAyMCkpICMgVHJ1ZQ0KDQpgYGANCg0KDQpLb2RlIFINCmBgYHtyLCAgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCnggPC0gNw0KeSA8LSAxMA0KDQojIG1lbWVyaWtzYSBhcGFrYWggeCBsZWJpaCBiZXNhciBkYXJpIHkNCnByaW50KHggPiB5KSAjRkFMU0UNCg0KIyBtZW1lcmlrc2EgYXBha2FoIHgga3VyYW5nIGRhcmkgYXRhdSBzYW1hIGRlbmdhbiB5DQpwcmludCh4IDwgeSkgI1RSVUUNCg0KIyBtZW1lcmlrc2EgYXBha2FoIHggdGlkYWsgc2FtYSBkZW5nYW4geQ0KcHJpbnQoeCAhPSB5KSAjVFJVRQ0KDQojIG1lbmdldmFsdWFzaSBla3NwcmVzaSAoeCA+IDUpIEFORCAoeSA8IDIwKQ0KcHJpbnQoKHggPiA1KSAmICh5IDwgMjApKSAjVFJVRQ0KYGBgDQoNCiMjIEtvbmZlcnNpIFRpcGUgRGF0YQ0KDQpNZW5naW5nYXQgdmFyaWFiZWwtdmFyaWFiZWwgYmVyaWt1dDoNCg0KYGBgDQpudW1fc3RyID0gIjEyMyINCg0KbnVtX2Zsb2F0ID0gNDUuNjcNCmBgYA0KDQpLb2RlIFB5aHRvbg0KYGBge3B5dGhvbn0NCm51bV9zdHIgPSAiMTIzIg0KbnVtX2Zsb2F0ID0gNDUuNjcNCg0KIyBtZW5ndWJhaCBudW1fc3RyIGtlIGJpbGFuZ2FuIGJ1bGF0IGRhbiB0YW1iYWhrYW4gMTANCm51bV9zdHIgPSAiMTIzIg0KbnVtID0gaW50KG51bV9zdHIpDQpwcmludChudW0gKyAxMCkNCg0KIyBtZW5ndWJhaCBudW1fZmxvYXQga2UgYmlsYW5nYW4gYnVsYXQNCm51bV9pbnQgPSBpbnQobnVtX2Zsb2F0KQ0KcHJpbnQobnVtX2ludCkNCg0KIyBtZW5nb252ZXJzaSBudW1fZmxvYXQga2VtYmFsaSBtZW5qYWRpIHN0cmluZw0KbnVtX3N0ciA9IHN0cihudW1fZmxvYXQpDQpwcmludChudW1fc3RyKQ0KDQpgYGANCg0KDQpLb2RlIFINCmBgYHtyLCAgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCm51bV9zdHIgPC0gIjEyMyINCm51bV9mbG9hdCA8LSA0NS42Nw0KDQojIG1lbmd1YmFoIG51bV9zdHIga2UgYmlsYW5nYW4gYnVsYXQgZGFuIHRhbWJhaGthbiAxMA0KbnVtX3N0ciA8LSAiMTIzIg0KbnVtIDwtIGFzLmludGVnZXIobnVtX3N0cikgDQpwcmludChudW0gKyAxMCkNCg0KIyBtZW5ndWJhaCBudW1fZmxvYXQga2UgYmlsYW5nYW4gYnVsYXQNCm51bV9pbnQgPC0gYXMuaW50ZWdlcihudW1fZmxvYXQpDQpwcmludChudW1faW50KQ0KDQojIG1lbmdvbnZlcnNpIG51bV9mbG9hdCBrZW1iYWxpIG1lbmphZGkgc3RyaW5nDQoNCm51bV9zdHIgPC0gYXMuY2hhcmFjdGVyKG51bV9mbG9hdCkNCnByaW50KG51bV9zdHIpDQpgYGANCiMjIFRhbnRhbmdhbiBCb251cw0KDQpNZW1idWF0IHByb2dyYW0gaW50ZXJha3RpZiB5YW5nIG1lbWludGEgcGVuZ2d1bmEgdW50dWsgbWVtYXN1a2thbjoNCg0KMS4gTmFtYQ0KDQoyLiBVc2lhDQoNCjMuIEtvdGEga2VsYWhpcmFuDQoNCktlbXVkaWFuLCBjZXRhayBvdXRwdXQgc2ViYWdhaSBiZXJpa3V0Og0KDQpgYGANCiJIZWxsbyBbTmFtZV0sIHlvdSBhcmUgW0FnZV0geWVhcnMgb2xkIGFuZCBmcm9tIFtIb21ldG93bl0uIg0KYGBgDQoNCktvZGUgUHlodG9uDQoNCmh0dHBzOi8vY29sYWIucmVzZWFyY2guZ29vZ2xlLmNvbS9kcml2ZS8xdVBrRF9hWEladmpZQ1ZXUVpHVHJwcjVnWGlUcTE0UTc/dXNwPXNoYXJpbmcNCg0KDQpLb2RlIFINCmBgYHtyLCAgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCiMgTWVtaW50YSBpbnB1dCBkYXJpIHBlbmdndW5hDQpuYW1lIDwtIHJlYWRsaW5lKCJNYXN1a2thbiBuYW1hIGFuZGE6ICIpDQphZ2UgPC0gcmVhZGxpbmUoIk1hc3Vra2FuIHVzaWEgYW5kYTogIikNCmhvbWV0b3duIDwtIHJlYWRsaW5lKCI6ICIpDQoNCiMgTWVuYW1waWxrYW4gb3V0cHV0DQpjYXQoIkhlbGxvIiwgbmFtZSwgIiwgeW91IGFyZSIsIGFnZSwgInllYXJzIG9sZCBhbmQgZnJvbSIsIGhvbWV0b3duLCIuXG4iKQ0KDQpgYGANCioqS2V0ZXJhbmdhbjoqKg0KUGFkYSBrb2RlIHIgZGFwYXQgZGlqYWxhbmthbiBkYW4gbWVtYXN1a2thbiBkYXRhIGRhcmkgY29uc29sZS4NCg0KDQojIFJlZmVyZW5zaQ0KDQpodHRwczovL2Jvb2tkb3duLm9yZy9kc2NpZW5jZWxhYnMvZGF0YV9zY2llbmNlX3Byb2dyYW1taW5nLzAxLUJhc2ljLVByb2dyYW1taW5nLmh0bWwjcHJhY3RpY3VtDQoNCmh0dHBzOi8vY29sYWIucmVzZWFyY2guZ29vZ2xlLmNvbS9kcml2ZS8xdVBrRF9hWEladmpZQ1ZXUVpHVHJwcjVnWGlUcTE0UTc/dXNwPXNoYXJpbmc=