library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Dataset 1: Customers
customers <- tibble(
  customer_id = c(1, 2, 3, 4, 5),
  name = c("Alice", "Bob", "Charlie", "David", "Eve"),
  city = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix")
)
  # Dataset 2: Orders
orders <- tibble(
  order_id = c(101, 102, 103, 104, 105, 106),
  customer_id = c(1, 2, 3, 2, 6, 7),
  product = c("Laptop", "Phone", "Tablet", "Desktop", "Camera", "Printer"),
  amount = c(1200, 800, 300, 1500, 600, 150)
)

1. Inner Join (3 points) Perform an inner join between the customers and orders datasets.

How many rows are in the result?

4

Why are some customers or orders not included in the result?

Because they didn’t have a match in the other table

Display the result
q1 <- inner_join(customers , orders , by ='customer_id')

q1
## # A tibble: 4 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300

2. Left Join (3 points) Perform a left join with customers as the left table and orders as the right table.

How many rows are in the result?

5

Explain why this number differs from the inner join result.

It shows the Customers that didn’t order anything as well as the ones that did

Display the result
q2 <- left_join(customers, orders, by = 'customer_id')

q2
## # A tibble: 6 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300
## 5           4 David   Houston           NA <NA>        NA
## 6           5 Eve     Phoenix           NA <NA>        NA

3. Right Join (3 points) Perform a right join with customers as the left table and orders as the right table.

How many rows are in the result?

5 rows

Which customer_ids in the result have NULL for customer name and city? Explain why.

The customer ids of 6 and 7 have NA because they have no name or city connected with their id in the other table

Display the result
q3 <- right_join(customers, orders, by = 'customer_id')

q3
## # A tibble: 6 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300
## 5           6 <NA>    <NA>             105 Camera     600
## 6           7 <NA>    <NA>             106 Printer    150

4.Full Join (3 points) Perform a full join between customers and orders.

How many rows are in the result?

7 rows

Identify any rows where there’s information from only one table. Explain these results.

There are only information from one table on rows 4 through 7 because there are no order ids for customer ids 4 and 5, and no name or city for customer ids 6 and 7

Display the result
q4 <- full_join(customers, orders, by = 'customer_id')

q4
## # A tibble: 8 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300
## 5           4 David   Houston           NA <NA>        NA
## 6           5 Eve     Phoenix           NA <NA>        NA
## 7           6 <NA>    <NA>             105 Camera     600
## 8           7 <NA>    <NA>             106 Printer    150

5. Semi Join (3 points) Perform a semi join with customers as the left table and orders as the right table.

How many rows are in the result?

3 rows

How does this result differ from the inner join result?

It differes beceause it only shows the customer id numbers that have a complete set of information

Display the result
q5 <- semi_join(customers, orders, by = 'customer_id')

q5
## # A tibble: 3 × 3
##   customer_id name    city       
##         <dbl> <chr>   <chr>      
## 1           1 Alice   New York   
## 2           2 Bob     Los Angeles
## 3           3 Charlie Chicago

6.Anti Join (3 points) Perform an anti join with customers as the left table and orders as the right table.

Which customers are in the result?

The customers that don’t have an order id or product attached to them

Explain what this result tells you about these customers.

This result tells me that David and Eve didn’t order anything

Display the result
q6 <- anti_join(customers, orders, by = 'customer_id')

q6
## # A tibble: 2 × 3
##   customer_id name  city   
##         <dbl> <chr> <chr>  
## 1           4 David Houston
## 2           5 Eve   Phoenix

7. Practical Application (4 points) Imagine you’re analyzing customer behavior.

Which join would you use to find all customers, including those who haven’t placed any orders? Why?

I would use full join because it displays all the data, even those who haven’t placed orders or whose names are missing

Which join would you use to find only the customers who have placed orders? Why?

I would use right join because it displays all orders placed, including the ones where the names aren’t attached

Write the R code for both scenarios. Display the result
FJ <- full_join(customers, orders, by = 'customer_id')

FJ
## # A tibble: 8 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300
## 5           4 David   Houston           NA <NA>        NA
## 6           5 Eve     Phoenix           NA <NA>        NA
## 7           6 <NA>    <NA>             105 Camera     600
## 8           7 <NA>    <NA>             106 Printer    150
RJ <- right_join(customers, orders, by = 'customer_id')

RJ
## # A tibble: 6 × 6
##   customer_id name    city        order_id product amount
##         <dbl> <chr>   <chr>          <dbl> <chr>    <dbl>
## 1           1 Alice   New York         101 Laptop    1200
## 2           2 Bob     Los Angeles      102 Phone      800
## 3           2 Bob     Los Angeles      104 Desktop   1500
## 4           3 Charlie Chicago          103 Tablet     300
## 5           6 <NA>    <NA>             105 Camera     600
## 6           7 <NA>    <NA>             106 Printer    150

Challenge Question (3 points) Create a summary that shows each customer’s name, city, total number of orders, and total amount spent. Include all customers, even those without orders. Hint: You’ll need to use a combination of joins and group_by/summarize operations.

summary_table <- customers %>%
  left_join(orders, by = "customer_id") %>% 
  group_by(customer_id, name, city) %>% 
  summarize(
    total_orders = n_distinct(order_id, na.rm = TRUE), 
    total_amount_spent = sum(amount, na.rm = TRUE)      
  ) %>%
  ungroup()
## `summarise()` has grouped output by 'customer_id', 'name'. You can override
## using the `.groups` argument.
print(summary_table)
## # A tibble: 5 × 5
##   customer_id name    city        total_orders total_amount_spent
##         <dbl> <chr>   <chr>              <int>              <dbl>
## 1           1 Alice   New York               1               1200
## 2           2 Bob     Los Angeles            2               2300
## 3           3 Charlie Chicago                1                300
## 4           4 David   Houston                0                  0
## 5           5 Eve     Phoenix                0                  0