Final Project Data Products
Now let’s take a look at some ggplot2 barplots
We’ll start with making a data frame based on the tooth data
df <- data.frame (dose = c("D0.5", "D1", "D2"),
len = c(4.2, 10, 29.5))
df
## dose len
## 1 D0.5 4.2
## 2 D1 10.0
## 3 D2 29.5
And now let’s make a second dataframe
df2 <- data.frame(supp= rep(c("VC", "OJ"), each = 3),
dose = rep(c("D0.5", "D1", "D2"), 2),
len = c(6.8, 15, 33, 4.2, 10, 29.5))
df2
## supp dose len
## 1 VC D0.5 6.8
## 2 VC D1 15.0
## 3 VC D2 33.0
## 4 OJ D0.5 4.2
## 5 OJ D1 10.0
## 6 OJ D2 29.5
Let’s load up ggplot2
library(ggplot2)
Let’s start our parameters for ggplot
theme_set(
theme_classic() +
theme(legend.position = "top")
)
Let’s start with some basic barplots using the tooth data
f <- ggplot(df, aes(x = dose, y = len))
f + geom_col()
Now let’s change the fill and add labels to the top
f + geom_col(fill = "darkblue") +
geom_text(aes(label = len), vjust = -0.3)
Now let’s add labels inside the bars
f + geom_col(fill = "darkblue") +
geom_text(aes(label = len), vjust = 1.6, color = "white")
Now let’s change the barplot colors by group
f + geom_col(aes(color = dose), fill = "white") +
scale_color_manual(values = c("blue", "gold", "red" ))
This is kind of hard to see, so let’s change the fill
f + geom_col(aes(fill = dose)) +
scale_fill_manual(values = c("blue", "gold", "red"))
Now how do we do this with multiple groups?
ggplot(df2, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_stack()) +
scale_color_manual(values = c("blue", "gold")) +
scale_fill_manual(values = c("blue", "gold"))
p <- ggplot(df2, aes(x = dose, y = len)) +
geom_col(aes(color = supp, fill = supp), position = position_dodge(0.8), width = 0.7) +
scale_color_manual(values = c("blue", "gold")) +
scale_fill_manual(values = c("blue", "gold"))
p
Now let’s add those labels to the dodged barplot
p + geom_text(
aes(label = len, group = supp),
position = position_dodge(0.8),
vjust = -0.3, size = 3.5
)
Now what if we want to add labels to our stacked barplots? For this we need dplyr
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df2 <- df2 %>%
group_by(dose) %>%
arrange(dose, desc(supp)) %>%
mutate(lab_ypos = cumsum(len) - 0.5 * len)
df2
## # A tibble: 6 × 4
## # Groups: dose [3]
## supp dose len lab_ypos
## <chr> <chr> <dbl> <dbl>
## 1 VC D0.5 6.8 3.4
## 2 OJ D0.5 4.2 8.9
## 3 VC D1 15 7.5
## 4 OJ D1 10 20
## 5 VC D2 33 16.5
## 6 OJ D2 29.5 47.8
Now let us recreate our stacked graphs
ggplot(df2, aes(x = dose, y = len)) +
geom_col(aes(fill = supp), width = 0.7) +
geom_text(aes(y = lab_ypos, label = len, group = supp), color = "white") +
scale_color_manual(values = c("blue", "gold")) +
scale_fill_manual(values = c("blue", "gold"))
Let’s look at some boxplots
data("ToothGrowth")
Let’s change the dose to a factor, and look at the top of the dataframe
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
head(ToothGrowth, 4)
## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
Let’s load ggplot
library(ggplot2)
Let’s set the theme for our plots to classic
theme_set(
theme_bw() +
theme(legend.position = "top")
)
Let’s start with a very basic boxplot with dose vs length
tg <- ggplot(ToothGrowth, aes(x = dose, y = len))
tg + geom_boxplot()
Now let’s look at a boxplot with points for the mean
tg + geom_boxplot(notch = TRUE, fill = "lightgrey") +
stat_summary(fun.y = mean, geom = "point", shape = 18, size = 2.5, color = "indianred")
## Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
## ℹ Please use the `fun` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
We can also change the scale number of variables included and their order
tg + geom_boxplot() +
scale_x_discrete(limits = c("0.5", "2"))
## Warning: Removed 20 rows containing missing values (`stat_boxplot()`).
Let’s put our x-axis in descending order
tg +geom_boxplot() +
scale_x_discrete(limits = c("2", "1", "0.5"))
We can also change boxplot colors by group
tg + geom_boxplot(aes(color = dose)) +
scale_color_manual(values = c("indianred", "blue1", "green2"))
What if we want to display our data subset by OJ vs Vitamin C?
tg2 <- tg + geom_boxplot(aes(fill = supp), position = position_dodge(0.9)) +
scale_fill_manual(values = c("#999999", "#E69F00"))
tg2
We can also arrange this as two plots with facet_wrap
tg2 + facet_wrap(~supp)
Histograms
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 50), rnorm(200, 58))
)
head(wdata, 4)
## sex weight
## 1 F 48.79293
## 2 F 50.27743
## 3 F 51.08444
## 4 F 47.65430
Now let’s load dplyr
library(dplyr)
mu <- wdata %>%
group_by(sex) %>%
summarise(grp.mean = mean(weight))
Now let’s load the plotting package
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position = "bottom")
)
Now let’s create a ggplot oject
a <- ggplot(wdata, aes(x = weight))
a + geom_histogram(bins = 30, color = "black", fill = "grey") +
geom_vline(aes(xintercept = mean(weight)),
linetype = "dashed", size = 0.6)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Now let’s change the color by group
a + geom_histogram(aes(color = sex), fill = "white", position = "identity") +
scale_color_manual(values = c("#00AFBB", "#E7B800"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
a + geom_histogram(aes(color = sex, fill = sex), position = "identity") +
scale_color_manual(values = c("#00AFBB", "#E7B800")) +
scale_fill_manual(values = c("indianred", "lightblue"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
What if we want to combine density plots and histograms?
a + geom_histogram(aes(y = stat(density)),
color = "black", fill = "white") +
geom_density(alpha = 0.2, fill = "#FF6666")
## Warning: `stat(density)` was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
a + geom_histogram(aes(y = stat(density), color = sex),
fill = "white", position = "identity") +
geom_density(aes(color = sex), size = 1) +
scale_color_manual(values = c("indianred", "lightblue1"))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
First let’s load the required packages
library(ggplot2)
Let’s set the theme
theme_set(
theme_dark() +
theme(legend.position = "top")
)
First let’s initiate a ggplot object called TG
data("ToothGrowth")
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
tg <- ggplot(ToothGrowth, aes(x = dose, y = len))
Let’s create a dotplot with a summary statistic
tg + geom_dotplot(binaxis = "y", stackdir = "center", fill = "white") +
stat_summary(fun = mean, fun.args = list(mult = 1))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
## Warning: Removed 3 rows containing missing values (`geom_segment()`).
Let’s add a bxoplot and a dotplot together
tg + geom_boxplot(width = 0.5) +
geom_dotplot(binaxis = "y", stackdir = "center", fill = "white")
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
tg + geom_violin(trim = FALSE) +
geom_dotplot(binaxis= "y", stackdir = "center", fill = "#999999") +
stat_summary(fun = mean, fun.args = list(mult=1))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
## Warning: Removed 3 rows containing missing values (`geom_segment()`).
Let’s create a dotplot with multiple groups
tg + geom_boxplot(width = 0.5) +
geom_dotplot(aes(fill = supp), binaxis = 'y', stackdir = 'center') +
scale_fill_manual(values = c("indianred", "lightblue1"))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
tg + geom_boxplot(aes(color = supp), width = 0.5, position = position_dodge(0.8)) +
geom_dotplot(aes(fill = supp, color = supp), binaxis = 'y', stackdir = 'center',
dotsize = 0.8, position = position_dodge(0.8)) +
scale_fill_manual(values = c("#00AFBB", "#E7B800")) +
scale_color_manual(values = c("#00afbb", "#e7b800"))
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
Now let’s change it up and look at line plots
We will start by making a custom dataframe kind of like the tooth data set. This way we can see the lines and stuff that we are modifying
df <- data.frame(dose = c("D0.5", "D1", "D2"),
len = c(4.2, 10, 29.5))
Now let’s create a second dataframe for plotting by groups
df2 <- data.frame(supp = rep(c("VC", "OJ"), each = 3),
dose = rep(c("D0.5", "D1", "D2"), 2),
len = c(6.8, 15, 33, 4.2, 10, 29.5))
df2
## supp dose len
## 1 VC D0.5 6.8
## 2 VC D1 15.0
## 3 VC D2 33.0
## 4 OJ D0.5 4.2
## 5 OJ D1 10.0
## 6 OJ D2 29.5
Now let’s again load ggplot2 and set a theme
library(ggplot2)
theme_set(
theme_gray() +
theme(legend.position = "right")
)
Now let’s do some basic line plots. First we will build a function to display all the different line types
generateRLineTypes <- function(){
oldPar <- par()
par(font = 2, mar = c(0,0,0,0))
plot(1, pch="", ylim =c(0,6), xlim=c(0,0.7), axes = FALSE, xlab = "", ylab = "")
for(i in 0:6) lines(c(0.3, 0.7), c(i,i), lty=i, lwd = 3)
text(rep(0.1,6), 0:6, labels = c("0.'Blank'", "1.'solid'", "2.'dashed'", "3.'dotted'",
"4.'dotdash'", "5.'longdash'", "6.twodash'"))
par(mar=oldPar$mar, font=oldPar$font)
}
generateRLineTypes()
Now let’s build a basic line plot
p <- ggplot(data = df, aes(x = dose, y = len, group = 1))
p + geom_line() + geom_point()
Now let’s modify the line type and color
p + geom_line(linetype = "dashed", color = "steelblue") +
geom_point(color = "steelblue")
Now let’s try a step graph, which indicates a threshold type progression
p + geom_step() + geom_point()
Now let’s move on to making multiple groups. First we’ll create our ggplot object
p <- ggplot(df2, aes(x=dose, y=len, group=supp))
Now let’s change line types and point shapes by group
p + geom_line(aes(linetypes = supp, color = supp)) +
geom_point(aes(shape = supp, color = supp)) +
scale_color_manual(values = c("red", "blue"))
## Warning in geom_line(aes(linetypes = supp, color = supp)): Ignoring unknown
## aesthetics: linetypes
Now let’s look at line plots with a numeric x axis
df3 <- data.frame(supp = rep(c("VC", "OJ"), each = 3),
dose = rep(c("0.5", "1", "2"), 2),
len=c(6.8, 15, 33, 4.2, 10, 29.5))
df3
## supp dose len
## 1 VC 0.5 6.8
## 2 VC 1 15.0
## 3 VC 2 33.0
## 4 OJ 0.5 4.2
## 5 OJ 1 10.0
## 6 OJ 2 29.5
Now let’s plot where both axises are treated as continuous labels
df3$dose <- as.numeric(as.vector(df3$dose))
ggplot(data = df3, aes(x=dose, y=len, group = supp, color = supp)) +
geom_line() + geom_point()
Now let’s look at the line graph with having the x axis as dates. We will use the built in economics time series for this example.
head(economics)
## # A tibble: 6 × 6
## date pce pop psavert uempmed unemploy
## <date> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1967-07-01 507. 198712 12.6 4.5 2944
## 2 1967-08-01 510. 198911 12.6 4.7 2945
## 3 1967-09-01 516. 199113 11.9 4.6 2958
## 4 1967-10-01 512. 199311 12.9 4.9 3143
## 5 1967-11-01 517. 199498 12.8 4.7 3066
## 6 1967-12-01 525. 199657 11.8 4.8 3018
ggplot(data = economics, aes(x = date, y = pop)) +
geom_line()
Now let’s subset the data
ss <- subset(economics, date > as.Date("2006-1-1"))
ggplot(data = ss, aes(x = date, y = pop)) + geom_line()
We can also change the line size, for instance by another variable like unemployment
ggplot(data = economics, aes(x=date, y= pop)) +
geom_line(aes(size = unemploy/pop))
We can also plot multiple time-series data
ggplot(economics, aes(x = date)) +
geom_line(aes(y=psavert), color = "darkred") +
geom_line(aes(y = uempmed), color = "steelblue", linetype = "twodash")
Lastly, let’s make this into an area plot
ggplot(economics, aes(x=date)) +
geom_area(aes(y=psavert), fill = "#999999",
color= "#999999", alpha = 0.5) +
geom_area(aes(y = uempmed), fill = "#E69f00",
color= "#E69f00", alpha = 0.5)
First let’s load the required packages
library(ggplot2)
library(ggridges)
#BiocManager::install("ggridges")
Now let’s load some sample data
?airquality
air <- ggplot(airquality) + aes(Temp, Month, group = Month) + geom_density_ridges()
air
## Picking joint bandwidth of 2.65
Now let us add some extra things to our graph
library(viridis)
## Loading required package: viridisLite
ggplot(airquality) + aes(Temp, Month, group = Month, fill = after_stat(x)) +
geom_density_ridges_gradient() +
scale_fill_viridis(option = "C", name = "Temp")
## Picking joint bandwidth of 2.65
Last thing we will do is create a face plot for all our data
library(tidyr)
airquality %>%
gather(key = "Measurement", value = "value", Ozone, Solar.R, Wind, Temp) %>%
ggplot() + aes(value, Month, group = Month) +
geom_density_ridges() +
facet_wrap(~ Measurement, scales = "free")
## Picking joint bandwidth of 11
## Picking joint bandwidth of 40.1
## Picking joint bandwidth of 2.65
## Picking joint bandwidth of 1.44
## Warning: Removed 44 rows containing non-finite values
## (`stat_density_ridges()`).
A density plot is an alternative to a histogram
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 55), rnorm(200, 58))
)
library(dplyr)
mu <- wdata %>%
group_by(sex) %>%
summarise(grp.mean = mean(weight))
Now let’s load the graphing packages
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position = "right")
)
Now let’s do the basic plot functions. First, we will create a ggplot object
d <- ggplot(wdata, aes(x = weight))
Now let’s do a basic density plot
d + geom_density() +
geom_vline(aes(xintercept = mean(weight)), linetype = "dashed")
Now let’s change the y axis to count instead of density
d + geom_density(aes(y = stat(count)), fill = "lightgrey") +
geom_vline(aes(xintercept = mean(weight)), linetype = "dashed")
d + geom_density(aes(color = sex)) +
scale_color_manual(values = c("darkgrey", "gold"))
Lastly, let’s fill the density plots
d + geom_density(aes(fill = sex), alpha = 0.4) +
geom_vline(aes(xintercept = grp.mean, color = sex), data = mu, linetype = "dashed") +
scale_color_manual(values = c("grey", "gold")) +
scale_fill_manual(values = c("grey", "gold"))
First let’s load our required package
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
Let’s start with a scatter plot of the Orange dataset
Orange <- as.data.frame(Orange)
plot_ly(data = Orange, x = ~age, y = ~circumference)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No scatter mode specifed:
## Setting the mode to markers
## Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
Now let’s add some more information
plot_ly(data = Orange, x = ~age, y = ~circumference,
color = ~Tree, size = ~age,
text = ~paste("Tree ID", Tree, "<br>Age:", age, "Circ:", circumference)
)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No scatter mode specifed:
## Setting the mode to markers
## Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
Now let’s create a random distribution and add it to our dataframe
trace_1 <- rnorm(35, mean = 120, sd = 10)
new_data <- data.frame(Orange, trace_1)
We’ll use the random numbers as lines on the graph
plot_ly(data = new_data, x = ~age, y = ~circumference, color = ~Tree, size = ~age,
text = ~paste("Tree ID:", Tree, "<br>Age:", age, "<br>Circ:", circumference)) %>%
add_trace(y = ~trace_1, mode = 'lines') %>%
add_trace(y = ~circumference, mode = 'markers')
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
Now let’s create a graph with the option of showing as a scatter line and add labels
plot_ly(data = Orange, x = ~age, y = ~circumference,
color = ~Tree, size = ~circumference,
text = ~paste("TreeID:", Tree, "<br>Age:", age, "Circ:", circumference)) %>%
add_trace(y = ~circumference, mode = 'markers') %>%
layout(
title = "Plot or Orange data with switchable trace",
updatemenus = list(
list(
type = 'downdrop',
y = 0.8,
buttons = list(
list(method = 'restyle',
args = list('mode', 'markers'),
label = "Marker"
),
list(method = "restyle",
args = list('mode', 'lines'),
label = "Lines"
)
)
)
)
)
## No trace type specified:
## Based on info supplied, a 'scatter' trace seems appropriate.
## Read more about this trace type -> https://plotly.com/r/reference/#scatter
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
## Warning: `line.width` does not currently support multiple values.
First let’s load the required packages
library(plotly)
Now lets create a random 3D matrix
d <- data.frame(
x <- seq(1,10, by = 0.5),
y <- seq(1,10, by = 0.5)
)
z <- matrix(rnorm(length(d$x) * length(d$y)), nrow = length(d$x), ncol = length(d$y))
Now let’s plot our 3D data
plot_ly(d, x=~x, y = ~y, z = ~z) %>%
add_surface()
Let’s add some more aspects to it, such as at topography
plot_ly(d, x = ~x, y = ~y, z = ~z) %>%
add_surface(
contours = list(
z = list(
show = TRUE,
usecolormap = TRUE,
highlightcolor = "FF0000",
project = list(z = TRUE)
)
)
)
Now let’s look at a 3D scatter plot
plot_ly(longley, x = ~GNP, y = ~Population, z = ~Employed, marker = list(color = ~GNP)) %>%
add_markers()
First let’s load our required packages
library(ggplot2)
library(dplyr)
library(plotrix)
theme_set(
theme_classic() +
theme(legend.position = 'top')
)
Let’s again use the tooth data for this exercise
df <- ToothGrowth
df$dose <- as.factor(df$dose)
Now let’s use dplyr for manipulation purposes
df.summary <- df %>%
group_by(dose) %>%
summarise(
sd = sd(len, na.rm = TRUE),
stderr = std.error(len, na.rm = TRUE),
len = mean(len),
)
df.summary
## # A tibble: 3 × 4
## dose sd stderr len
## <fct> <dbl> <dbl> <dbl>
## 1 0.5 4.50 1.01 10.6
## 2 1 4.42 0.987 19.7
## 3 2 3.77 0.844 26.1
Let’s now look at some key functions
Let’s sstart by creating a ggplot object
tg <- ggplot(
df.summary,
aes(x = dose, y = len, ymin = len - sd, ymax = len + sd)
)
Now let’s look at the most basic error bars
tg + geom_pointrange()
tg + geom_errorbar(width = 0.2) +
geom_point(size = 1.5)
Now let’s create horizontal error bars by manipulating our graph
ggplot(df.summary, aes(x=len, y=dose, xmin= len-sd, xmax = len+sd)) +
geom_point() +
geom_errorbarh(height = 0.2)
This gives an idea of error bars on the horizontal axis
Now let’s look at adding jitter points (actual measurements) to our data
ggplot(df, aes(dose, len)) +
geom_jitter(position = position_jitter(0.2), color = "darkgrey") +
geom_pointrange(aes(ymin = len-sd, ymax = len+sd), data = df.summary)
Now let’s try error bars on a violin plot
ggplot(df, aes(dose, len)) +
geom_violin(color = "darkgrey", trim = FALSE) +
geom_pointrange(aes(ymin = len-sd, ymax = len+sd), data = df.summary)
Now what about a line graph?
ggplot(df.summary, aes(dose, len)) +
geom_line(aes(group = 1)) + # always specify this when you have 1 line
geom_errorbar(aes(ymin = len-stderr, ymax = len-stderr), width = 0.2) +
geom_point(size = 2)
Now let’s male a bar graph with halve error bars
ggplot(df.summary, aes(dose, len)) +
geom_col(fill = "lightgrey", color = "black") +
geom_errorbar(aes(ymin = len, ymax= len+stderr), width = 0.2)
You can see that by not specifying ymin = len-stderr, we have in essence, cut our error bars in half
How about we add jitter points to line plots? We need to yse the original dataframe for the jitter plot, and the summary df for the geom layers
ggplot(df, aes(dose, len)) +
geom_jitter(position = position_jitter(0.2), color = "darkgrey") +
geom_line(aes(group = 1), data = df.summary) +
geom_errorbar(
aes(ymin= len- stderr, ymax = len + stderr),
data = df.summary, width = 0.2) +
geom_point(data = df.summary, size = 0.2)
What about adding jitter points to a barplot?
ggplot(df, aes(dose, len)) +
geom_col(data = df.summary, fill = NA, color = "black") +
geom_jitter(postion = position_jitter(0,2), color = "darkgrey") +
geom_errorbar(aes(ymin = len-stderr, ymax = len+stderr),
data = df.summary, width = 0.2)
## Warning in geom_jitter(postion = position_jitter(0, 2), color = "darkgrey"):
## Ignoring unknown parameters: `postion`
What if we wanted to have our error bars per group?
df.summary2 <- df %>%
group_by(dose, supp) %>%
summarise(
sd = sd(len),
stderr = std.error(len),
len = mean(len)
)
## `summarise()` has grouped output by 'dose'. You can override using the
## `.groups` argument.
df.summary2
## # A tibble: 6 × 5
## # Groups: dose [3]
## dose supp sd stderr len
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 0.5 OJ 4.46 1.41 13.2
## 2 0.5 VC 2.75 0.869 7.98
## 3 1 OJ 3.91 1.24 22.7
## 4 1 VC 2.52 0.795 16.8
## 5 2 OJ 2.66 0.840 26.1
## 6 2 VC 4.80 1.52 26.1
Now you can see we have a mean and error for each dose and supp
ggplot(df.summary2, aes(dose, len)) +
geom_pointrange(
aes(ymin = len-stderr, ymax = len + stderr, color = supp),
position = position_dodge(0.3)) +
scale_color_manual(values = c("indianred", "lightblue"))
How about line plots with multiple error bars?
ggplot(df.summary2, aes(dose, len)) +
geom_line(aes(linetype = supp, group = supp)) +
geom_point() +
geom_errorbar(aes(ymin = len-stderr, ymax = len+stderr, group = supp), width = 0.2)
And the same with a bar plot
ggplot(df.summary2, aes(dose, len)) +
geom_col(aes(fill = supp), position = position_dodge(0.8), width = 0.7) +
geom_errorbar(
aes(ymin = len-sd, ymax = len+sd, group = supp),
width = 0.2, position = position_dodge(0.8)) +
scale_fill_manual(values = c("indianred", "lightblue"))
Now let’s add some jitter points
ggplot(df, aes(dose, len, color = supp)) +
geom_jitter(position = position_dodge(0.2)) +
geom_line(aes(group = supp), data = df.summary2) +
geom_point() +
geom_errorbar(aes(ymin = len-stderr, ymax = len+ stderr, group =supp), data = df.summary2, width=0.2)
ggplot(df, aes(dose, len, color = supp)) +
geom_col(data = df.summary2, position = position_dodge(0.8), width = 0.7, fill = "white") +
geom_jitter(
position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.8)) +
geom_errorbar(
aes(ymin = len - stderr, ymax = len + stderr), data = df.summary2,
width = 0.2, position = position_dodge(0.8)) +
scale_color_manual(values = c("indianred", "lightblue")) +
theme(legend.position = "top")
Now let’s do an emperical cumulative distribution function. This reports any given number percentile of individuals that are above or below that threshold.
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 50), rnorm(200, 58)))
Now let’s look at our dataframe
head(wdata, 5)
## sex weight
## 1 F 48.79293
## 2 F 50.27743
## 3 F 51.08444
## 4 F 47.65430
## 5 F 50.42912
Now let’s load our plotting packages
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position = "bottom")
)
Now let’s create our ECDF Plot
ggplot(wdata, aes(x=weight)) +
stat_ecdf(aes(color = sex, linetype = sex),
geom = "step", linewidth = 1.5) +
scale_color_manual(values = c("#00AFBB", "#E7B900")) +
labs(y = "weight")
Now let’s take a look at qq plots. These are used to determine if the given data follows a normal distribution.
#install.packages("ggpubr")
set.seed(1234)
Now let’s randomly generate some data
wdata = data.frame(
sex = factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 55), rnorm(200, 58))
)
Let’s set our theme for the graphing with ggplot
library(ggplot2)
theme_set(
theme_classic() +
theme(legend.position = "top")
)
Create a qq plot of the weight
ggplot(wdata, aes(sample=weight)) +
stat_qq(aes(color = sex)) +
scale_color_manual(values = c("#0073c2ff", "#fc4e07")) +
labs(y = "weight")
#install.packages("ggpubr")
library(ggpubr)
ggqqplot(wdata, x = "weight",
color = "sex",
palettes = c("#0073c2ff", "#fc4e07"),
ggtheme = theme_pubclean())
Now what would a non-normal distribution look like?
#install.packages(mnonr)
library(mnonr)
data2 <- mnonr::mnonr(n = 1000, p=2, ms=3, mk=61, Sigma = matrix(c(1,0.5,0.5,1), 2,2), initial = NULL)
data2 <- as.data.frame(data2)
Now let’s plot the non-normal data
ggplot(data2, aes(sample=V1)) +
stat_qq()
ggqqplot(data2, x = "V1",
palatte = "#0073c2ff",
ggtheme = theme_pubclean())
Let’s look at how to put multiple plots together into a single figure
library(ggpubr)
library(ggplot2)
theme_set(
theme_bw() +
theme(legend.position = "top")
)
First let’s create a nice boxplot
Let’s load the data
df <- ToothGrowth
df$dose <- as.factor(df$dose)
and create the plot object
p <- ggplot(df, aes(x=dose, y=len)) +
geom_boxplot(aes(fill = supp), position = position_dodge(0.9)) +
scale_fill_manual(values = c("#00afbb", "#e7b800"))
p
Now let’s look at the gwplot facit function
p + facet_grid(rows = vars(supp))
Now let’s do a facet with multiple variables
p + facet_grid(rows = vars(dose), cols = vars(supp))
p
Now let’s look at the facet_wrap function that allows facets to be placed side-by-side
p + facet_wrap(vars(dose), ncol = 2)
Now how do we combine multiple plots using ggarrange()
Let’s start by making some basic plots. First, we will define a color palette and data
my3cols <- c("#e7b800", "#2e9FDF", "#fc4e07")
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
Now let’s make some basic plots
p <- ggplot(ToothGrowth, aes(x =dose, y = len))
bxp <- p + geom_boxplot(aes(color = dose)) +
scale_color_manual(values = my3cols)
Now, let’s do a dotplot
dp <- p + geom_dotplot(aes(color = dose, fill = dose),
binaxis = 'y', stackdir = 'center') +
scale_color_manual(values = my3cols) +
scale_fill_manual(values = my3cols)
Now let’s create a lineplot
lp <- ggplot(economics, aes(x=date, y=psavert)) +
geom_line(color = "indianred")
Now, we can make the figure
figure <- ggarrange(bxp, dp, lp, labels= c("A", "B", "C"), ncol = 2, nrow = 2)
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
figure
We can make this look even better
figure2 <- ggarrange(
lp,
ggarrange(bxp, dp, ncol =2, labels = c("B", "C")),
nrow=2,
labels = "A")
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
figure2
This looks good too, but two of the legends are the same
ggarrange(
bxp, dp, labels = c("A", "B"),
common.legend = TRUE, legend = "bottom")
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
Lastly, we should export the plot
ggexport(figure2, filename = "facetfigure.pdf")
## file saved to facetfigure.pdf
We can also export multiple plots to a pdf
ggexport(bxp, dp, lp, filename = "multi.pdf")
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
## file saved to multi.pdf
Lastly, we can export to pdf with multiple pages and columns
ggexport(bxp, dp, lp, bxp, filename = "test2.pdf", nrow =2, ncol=1)
## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.
## file saved to test2.pdf
Let’s get started with heatmaps
#install.packages(heatmap3)
library(heatmap3)
Now, let’s get our data
data <- ldeaths
data2 <- do.call(cbind, split(data, cycle(data)))
dimnames(data2) <- dimnames(.preformat.ts(data))
Now let’s generate a heat map
heatmap(data2)
heatmap(data2, Rowv = NA, Colv = NA)
Now, let’s play with the colors
rc <- rainbow(nrow(data2), start = 0, end = 0.3)
cc <- rainbow(ncol(data2), start = 0, end = 0.3)
Now let’s apply our color selections
heatmap(data2, ColSideColors = cc)
library(RColorBrewer)
heatmap(data2, ColSideColors = cc,
col = colorRampPalette(brewer.pal(8, "PiYG"))(25))
There are more things to customize
library(gplots)
##
## Attaching package: 'gplots'
## The following object is masked from 'package:plotrix':
##
## plotCI
## The following object is masked from 'package:stats':
##
## lowess
heatmap.2(data2, ColSideColors = cc,
col = colorRampPalette(brewer.pal(8, "PiYG"))(25))
Missing Values
If you encounter an unusual value in your dataset, and simply want to move on to the rest of your analysis, you have two options:
Drop the entire row with the strange values:
library(dplyr)
library(ggplot2)
diamonds <- diamonds
diamonds2 <- diamonds %>%
filter(between(y, 3, 20))
In this instance, y id the width of the diamond, so anything under 3 mm or above 20 is excluded
I do not recommend this option. Just because there is one bad measurement does not mean they are all bad
Instead, I recommend replacing the unusual values with missing values
diamonds3 <- diamonds %>%
mutate(y = ifelse(y < 3 | y > 20, NA, y))
Like R, ggplot2 subscribes to the idea that missing values should not pass silently into the night
ggplot(data = diamonds3, mapping = aes(x = x, y = y)) +
geom_point()
## Warning: Removed 9 rows containing missing values (`geom_point()`).
If you want to suppress that warning, you can use na.rm = TRUE
ggplot(data = diamonds3, mapping = aes(x = x, y = y)) +
geom_point(na.rm = TRUE)
Other times, you want to understand what makes observations with missing values different to the observations with recorded values. For example, in the NYCflights13 dataset, missing values in the dep_time variable indicate that the flgiht was cancelled. So, you might want to compare the scheduled departure times for cancelled and non-cancelled times
library(nycflights13)
nycflights13::flights %>%
mutate(
cancelled = is.na(dep_time),
sched_hour = sched_dep_time %/% 100,
sched_min = sched_dep_time %% 100,
sched_dep_time = sched_hour +sched_min / 60
) %>%
ggplot(mapping = aes(sched_dep_time)) +
geom_freqpoly(mapping = aes(color = cancelled), binwidth = 1/4)
What if we want to identify outliers?
First we need to load the required libraries
library(outliers)
library(ggplot2)
And reload the dataset because we removed outliers
Air_data <- readxl::read_excel("AirQualityUCI.xlsx")
Let’s create a function using the grubb test to identify all outliers The grubb test identifies outliers in a univariate dataset that is presumed to come from a normal distribution
grubbs.flag <- function(x) {
#lets create a variable called outliers and save nothing in it. We'll add to the variable
#as we identify them
outliers <- NULL
#We'll create a variable called test to identify which unvariate we are testing
test <- x
#Now using the outliers package, use grubbs.test to find outliers in our variable
grubbs.result <- grubbs.test(test)
#Let's get the p-values of all tested variables
pv <- grubbs.result$p.value
#Now let's search through our p-values for ones that are outside of 0.5
while(pv < 0.05) {
#Anything with a pvalue greater than p = 0.05 , we add to our empty outliers vector
outliers <- c(outliers, as.numeric(strsplit(grubbs.result$alternative, " ")[[1]][3]))
#Now we want to remove those outliers from our test variable
test <- x[!x %in% outliers]
#And run the grubbs test again without outliers
grubbs.result <- grubbs.test(test)
#And save the new p values
pv <- grubbs.result$p.value
}
return(data.frame(x=x, Outliers = (x %in% outliers)))
}
identified_outliers <- grubbs.flag(Air_data$AH)
Now we can create a histogram showing where the outliers were
ggplot(grubbs.flag(Air_data$AH), aes(x=Air_data$AH, color = Outliers, fill = Outliers)) +
geom_histogram(binwidth = diff(range(Air_data$AH))/30)+
theme_bw()
CATEGORICAL VARIABLES
First, let’s load the required libraries and plot some data
library(ggplot2)
ggplot(data = diamonds, mapping = aes(x = price)) +
geom_freqpoly(mapping = aes(color = cut), bindwidth = 500)
## Warning in geom_freqpoly(mapping = aes(color = cut), bindwidth = 500): Ignoring
## unknown parameters: `bindwidth`
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
It’s hard to see the difference in distribution because the counts differ so much
ggplot(diamonds) +
geom_bar(mapping = aes(x = cut))
To make the comparison easier, we need to swap the display on the
y-axis. Instead of displaying count, we’ll display density, which is the
count standardized so that the area curve is one.
ggplot(data = diamonds, mapping = aes(x = price, y = ..density..)) +
geom_freqpoly(mapping = aes(color = cut), bindwidth = 500)
## Warning in geom_freqpoly(mapping = aes(color = cut), bindwidth = 500): Ignoring
## unknown parameters: `bindwidth`
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
It appears that fair diamonds (the lowest cut quallity) have the highest average price. But, maybe that’s is because frequency polygons are a little hard to interpret.
Another alternative is the boxplot. A boxplot is a type of visual shorthand for a distribution of values.
ggplot(data = diamonds, mapping = aes(x=cut, y=price)) +
geom_boxplot()
We see much less information about the distribution, but the boxplots are much more compact, so we can more easily compare them. It supports the conterintuitve finding that better quality diamonds are cheaper on average!
Let’s look at some car data
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
geom_boxplot()
ggplot(data = mpg) +
geom_boxplot(mapping = aes(x = reorder(class, hwy, FUN = median), y = hwy))
If you have long variable names, you can switch the axis and flip it to 90 degrees
ggplot(data = mpg) +
geom_boxplot(mapping = aes(x = reorder(class, hwy, FUN = median), y = hwy)) +
coord_flip()
To visualize the correlation between two continuous variables, we can use a scatter plot
ggplot(data = diamonds) +
geom_point(mapping = aes(x = carat, y = price))
Scatterplots become less useful as the size of your dataset grows, because we get overplot. We can fix this using the alpha asthetic.
ggplot(data = diamonds) +
geom_point(mapping = aes(x= carat, y = price), alpha = 1/100)
First, let’s load a required library
library(RCurl)
##
## Attaching package: 'RCurl'
## The following object is masked from 'package:tidyr':
##
## complete
library(dplyr)
Now let’s get our data
site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/colleges/colleges.csv"
College_Data <- read.csv(site)
First, let’s use the str function. This shows the structure of the object.
str(College_Data)
## 'data.frame': 1948 obs. of 9 variables:
## $ date : chr "2021-05-26" "2021-05-26" "2021-05-26" "2021-05-26" ...
## $ state : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
## $ county : chr "Madison" "Montgomery" "Limestone" "Lee" ...
## $ city : chr "Huntsville" "Montgomery" "Athens" "Auburn" ...
## $ ipeds_id : chr "100654" "100724" "100812" "100858" ...
## $ college : chr "Alabama A&M University" "Alabama State University" "Athens State University" "Auburn University" ...
## $ cases : int 41 2 45 2742 220 4 263 137 49 76 ...
## $ cases_2021: int NA NA 10 567 80 NA 49 53 10 35 ...
## $ notes : chr "" "" "" "" ...
What if we want to arrange our dataset alphabetically by college?
alphabetical <- College_Data %>%
arrange(College_Data$college)
The glimpse package is another way to preview data
glimpse(College_Data)
## Rows: 1,948
## Columns: 9
## $ date <chr> "2021-05-26", "2021-05-26", "2021-05-26", "2021-05-26", "20…
## $ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Ala…
## $ county <chr> "Madison", "Montgomery", "Limestone", "Lee", "Montgomery", …
## $ city <chr> "Huntsville", "Montgomery", "Athens", "Auburn", "Montgomery…
## $ ipeds_id <chr> "100654", "100724", "100812", "100858", "100830", "102429",…
## $ college <chr> "Alabama A&M University", "Alabama State University", "Athe…
## $ cases <int> 41, 2, 45, 2742, 220, 4, 263, 137, 49, 76, 67, 0, 229, 19, …
## $ cases_2021 <int> NA, NA, 10, 567, 80, NA, 49, 53, 10, 35, 5, NA, 10, NA, 19,…
## $ notes <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "",…
We can also subset with select()
College_Cases <- select(College_Data, college, cases)
We can also filter or subset with the filter function
Louisiana_Cases <- filter(College_Data, state == "Louisiana")
Let’s filter out smaller amount of states
South_Cases <- filter(College_Data, state == "Louisiana" | state == "Texas" | state == "Arkansas" | state == "Mississippi")
Let’s look at some time series data
First, we’ll load the required libraries
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(dplyr)
library(ggplot2)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:plotrix':
##
## rescale
## The following object is masked from 'package:viridis':
##
## viridis_pal
Now, let’s load some data
state_site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv"
State_Data <- read.csv(state_site)
Let’s create a group_by object using the state column
state_cases <- group_by(State_Data, state)
class(state_cases)
## [1] "grouped_df" "tbl_df" "tbl" "data.frame"
How many measurements were made by state? This gives us an idea of when states started reporting
Days_since_first_reported <- tally(state_cases)
Let’s visualize some data
First, let’s start off with some definitions
Data- obvious- the stuff we want to visualize
Layer- made of geometric elements and requisite statistical information; include geometric objects which represents the plot
Scales- used to map values in the data space that are used for creation of values (color, size, shape, etc)
Coordinate system- describes how the data coordinated are mapped together in relation to the plan on the graphic
Faceting- how to break up data into subsets to display multiple types or groups of data
Theme- controls the finer points of the display, such as font size and background color
options(repr.plot.width = 6, repr.plot.height = 6)
class(College_Data)
## [1] "data.frame"
head(College_Data)
## date state county city ipeds_id
## 1 2021-05-26 Alabama Madison Huntsville 100654
## 2 2021-05-26 Alabama Montgomery Montgomery 100724
## 3 2021-05-26 Alabama Limestone Athens 100812
## 4 2021-05-26 Alabama Lee Auburn 100858
## 5 2021-05-26 Alabama Montgomery Montgomery 100830
## 6 2021-05-26 Alabama Walker Jasper 102429
## college cases cases_2021 notes
## 1 Alabama A&M University 41 NA
## 2 Alabama State University 2 NA
## 3 Athens State University 45 10
## 4 Auburn University 2742 567
## 5 Auburn University at Montgomery 220 80
## 6 Bevill State Community College 4 NA
summary(College_Data)
## date state county city
## Length:1948 Length:1948 Length:1948 Length:1948
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## ipeds_id college cases cases_2021
## Length:1948 Length:1948 Min. : 0.0 Min. : 0.0
## Class :character Class :character 1st Qu.: 32.0 1st Qu.: 23.0
## Mode :character Mode :character Median : 114.5 Median : 65.0
## Mean : 363.5 Mean : 168.1
## 3rd Qu.: 303.0 3rd Qu.: 159.0
## Max. :9914.0 Max. :3158.0
## NA's :337
## notes
## Length:1948
## Class :character
## Mode :character
##
##
##
##
Now let’s take a look at a different dataset
iris <- as.data.frame(iris)
class(iris)
## [1] "data.frame"
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
Let’s start by creating a scatter plot of the College Data
ggplot(data = College_Data, aes(x = cases, y = cases_2021)) +
geom_point() +
theme_minimal()
## Warning: Removed 337 rows containing missing values (`geom_point()`).
Now let’s do the iris data
ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length)) +
geom_point() +
theme_minimal()
Let’s color coordinate our college data
ggplot(data = College_Data, aes(x = cases, y = cases_2021, color = state)) +
geom_point() +
theme_minimal()
## Warning: Removed 337 rows containing missing values (`geom_point()`).
Let’s color coordinate iris data
ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
geom_point() +
theme_minimal()
Let’s run a simple histogram of our Louisiana Case Data
hist(Louisiana_Cases$cases, freq = NULL, desnity = NULL, breaks = 10, xlab = "Total Cases", ylab = "Frequency",
main = "Total College Covid-19 Infections (Louisiana)")
Let’s run a simple histogram for the Iris data
hist(iris$Sepal.Width, freq = NULL, density = NULL, breaks = 10, xlab = "Sepal Width",
ylab = "Frequency", main = "Iris Sepal Width")
histogram_college <- ggplot(data = Louisiana_Cases, aes(x = cases))
histogram_college + geom_histogram(binwidth = 100, color = "black", aes(fill = county)) +
xlab("cases") + ylab("Frequency") + ggtitle("Histogram of Covid 19 cases in Louisiana")
Let’s create a ggplot for the IRIS data
historgram_iris <- ggplot(data = iris, aes(x = Sepal.Width))
historgram_iris + geom_histogram(binwidth = 0.2, color = "black", aes(fill = Species)) +
xlab("Sepal Width") + ylab("Frequency") + ggtitle("Histogram of Iris Sepal Width by Species")
Maybe a density plot makes more sense for college data
ggplot(South_Cases) +
geom_density(aes(x = cases, fill = state), alpha = 0.25)
Let’s do it with Iris data
ggplot(iris) +
geom_density(aes(x = Sepal.Width, fill = Species), alpha = 0.25)
Let’s look at violin plots for iris
ggplot(data = iris, aes(x = Species, y = Sepal.Length, color = Species)) +
geom_violin() +
theme_classic() +
theme(legend.position = "none")
Now, let’s try the south data
ggplot(data = South_Cases, aes(x=state, y=cases, color=state)) +
geom_violin () +
theme_gray () +
theme(legend.position = "none")
Now let’s take a look at residual plots. This is a graph that displays the residuals on the vertical axis and the independent variable on the horizontal. In the event that the points in a residual plot are dispersed in a random manner around the horizontal axis, it is appropriate to use a linear regression. If they are not randomly dispersed, a non linear model is more appropriate.
Let’s start with the iris data
ggplot(lm(Sepal.Length ~ Sepal.Width, data = iris)) +
geom_point(aes(x = .fitted, y = .resid))
Now look at the southern state’s cases
ggplot(lm(cases ~ cases_2021, data = South_Cases)) +
geom_point(aes(x= .fitted, y = .resid))
A linear model is not a good call for the state cases
Now let’s do some correlations
library(readr)
##
## Attaching package: 'readr'
## The following object is masked from 'package:scales':
##
## col_factor
obesity <- read_csv("Obesity_insurance.csv")
## Rows: 1338 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): sex, smoker, region
## dbl (4): age, bmi, children, charges
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
library(tidyr)
library(dplyr)
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following object is masked from 'package:ggpubr':
##
## mutate
## The following objects are masked from 'package:plotly':
##
## arrange, mutate, rename, summarise
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
Let’s look at the structure of the dataset
str(obesity)
## spc_tbl_ [1,338 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ age : num [1:1338] 19 18 28 33 32 31 46 37 37 60 ...
## $ sex : chr [1:1338] "female" "male" "male" "male" ...
## $ bmi : num [1:1338] 27.9 33.8 33 22.7 28.9 ...
## $ children: num [1:1338] 0 1 3 0 0 0 1 3 2 0 ...
## $ smoker : chr [1:1338] "yes" "no" "no" "no" ...
## $ region : chr [1:1338] "southwest" "southeast" "southeast" "northwest" ...
## $ charges : num [1:1338] 16885 1726 4449 21984 3867 ...
## - attr(*, "spec")=
## .. cols(
## .. age = col_double(),
## .. sex = col_character(),
## .. bmi = col_double(),
## .. children = col_double(),
## .. smoker = col_character(),
## .. region = col_character(),
## .. charges = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
Now let’s look at the column classes
class(obesity)
## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
And get a summary of distribution of the variables
summary(obesity)
## age sex bmi children
## Min. :18.00 Length:1338 Min. :15.96 Min. :0.000
## 1st Qu.:27.00 Class :character 1st Qu.:26.30 1st Qu.:0.000
## Median :39.00 Mode :character Median :30.40 Median :1.000
## Mean :39.21 Mean :30.66 Mean :1.095
## 3rd Qu.:51.00 3rd Qu.:34.69 3rd Qu.:2.000
## Max. :64.00 Max. :53.13 Max. :5.000
## smoker region charges
## Length:1338 Length:1338 Min. : 1122
## Class :character Class :character 1st Qu.: 4740
## Mode :character Mode :character Median : 9382
## Mean :13270
## 3rd Qu.:16640
## Max. :63770
Now let’s look at the distribution for insurance charges
hist(obesity$charges)
We can also get an idea of the distribution using a boxplot
boxplot(obesity$charges)
boxplot(obesity$bmi)
Now let’s look at correlations. The cor() command is used to determine
correlation between two vectors. All of the columns of a data frame, or
two data frames. The cov() command, on the other hand examines the
covariance. This cor.test() command carries out a test to the
significance of teh correlation
cor(obesity$charges, obesity$bmi)
## [1] 0.198341
This test uses a spearman Rho correlation, or you can use Kendall’s tau by specifying it
cor(obesity$charges, obesity$bmi, method = 'kendall')
## [1] 0.08252397
This correlation measures the strength of a correlation between -1 and 1.
Now let’s look at the Tietjen=Moore test. This is used for unvariate datasets. The algorithm depicts the detection of the outliers in an unvariate dataset.
TietjenMoore <- function(dataSeries, k)
{
n = length(dataSeries)
## Compute the absolute residuals
r = abs(dataSeries - mean(dataSeries))
## Sort data according to size of residual
df = data.frame(dataSeries, r)
dfs = df[order(df$r),]
## Create a subset of the data without the largest values
klarge = c((n-k+1):n)
subdataSeries = dfs$dataSeries[-klarge]
## Compute the sums of squares
ksub = (subdataSeries - mean(subdataSeries)) **2
all = (df$dataSeries - mean(df$dataSeries)) **2
## Compute the test statistic
sum(ksub)/sum(all)
}
This function helps to compute the absolute residuals and sorts data according to the size of the residuals. Later, we will focus on the computation of the sum of squares.
FindOutliersTietjenMooreTest <- function(dataSeries, k, alpha = 0.5){
ek <- TietjenMoore(dataSeries, k)
#Compute critical values based on simulation
test = c(1:10000)
for (i in 1:10000){
dataSeriesdataSeries = rnorm(length(dataSeries))
test[i] = TietjenMoore(dataSeriesdataSeries, k)}
Talpha = quantile(test, alpha)
list(T = ek, Talpha = Talpha)
}
This function helps us to compute the critical values based on simulation data. Now let’s demonstrate these functions with sample data and the obesity dataset for evaluating this algorithm.
The critical region for the Tietjen-Moore test is determined by simulation. The simulation is performed by generating a standard normal random sample size and computing the Tietjen-Moore test statistic. Typically, 10,000 random samples are in use. The values of the Tietjen-Moore statistic is obtained from the data is compared to this reference distribution. The values of the test statistic are between zero and one. If there are no outliers in the data, the test statistic is close to 1. If there are outliers the test statistic will be closer to zero. Thus, the test is always a lower, one-tailed test regardless of which test statistics issued, Lk or Ek.
First we will look at charges
boxplot(obesity$charges)
FindOutliersTietjenMooreTest(obesity$charges, 100)
## $T
## [1] 0.4556033
##
## $Talpha
## 50%
## 0.6350056
Let’s check out bmi
boxplot(obesity$bmi)
FindOutliersTietjenMooreTest(obesity$bmi, 7)
## $T
## [1] 0.9475628
##
## $Talpha
## 50%
## 0.950515
Probability Plots
library(ggplot2)
library(tigerstats)
## Loading required package: abd
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
## collapse
## Loading required package: lattice
## Loading required package: grid
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:plyr':
##
## count
## The following object is masked from 'package:scales':
##
## rescale
## The following object is masked from 'package:plotrix':
##
## rescale
## The following object is masked from 'package:plotly':
##
## do
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Welcome to tigerstats!
## To learn more about this package, consult its website:
## http://homerhanumat.github.io/tigerstats
We will use the probability plot function and their output dnorm: density function of the normal distribution. Using the density, it is possible to determine the probability of events. Or, for example, you may wonder “what is the likelihood that a person has an IQ of exactly 140? In this case, you would need to determine the probabilty of events. The IQ distribution can be modeled with a mean of 100 and a standard deviation of 15. The corresponding density is:
bmi.mean <- mean(obesity$bmi)
bmi.sd <- sd(obesity$bmi)
Let’s create a plot of our normal distribution
bmi.dist <- dnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x = bmi, y = Density)) +
geom_point()
This gives us the probability of every single point occurring
Now let’s use the pnorm function for more information
bmi.dist <- pnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x=bmi, y = Density)) +
geom_point()
What if we want to find the probability of the bmi being greater thatn 40 in our distribution?
pp_greater <- function(x) {
paste(round(100 * pnorm(x, , mean = 30.66339, sd = 6.09818, lower.tail = FALSE), 2), "%")
}
pp_greater(40)
## [1] "6.29 %"
pnormGC(40, region = "above", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.06287869
What about the probability that a bmi is less than 40 in our population?
pp_less <- function(x) {
paste(round(100 *(1-pnorm(x, mean = 30.66339, sd = 6.09818, lower.tail = FALSE)),2), "%")
}
pp_less(40)
## [1] "93.71 %"
pnormGC(40, region = "below", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.9371213
What if we want to find the area in between?
pnormGC(c(20, 40), region = "between", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.8969428
What if we want to know the quantiles? Let’s use the qnorm function. We need to assume a normal distrubtion for this.
What bmi represents the lowest 1% of the population?
qnorm(0.01, mean = 30.66339, sd = 6.09818, lower.tail = TRUE)
## [1] 16.4769
What if we want a random sampling of values within our distribution?
subset <- rnorm(50, mean = 30.66339, sd = 6.09818)
hist(subset)
subset2 <- rnorm(5000, mean = 30.66339, sd = 6.09818)
hist(subset2)
Shapiro-Wilk Test
So now we know how to generate a normal distribution. How do we tell if our samples came from a normal distribution?
shapiro.test(obesity$charges[1:5])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:5]
## W = 0.84164, p-value = 0.1695
You can see here, with a small sample size, we would reject the null hypothesis that the samples came from a normal distribution. We can increase the power of the test by increasing the sample size.
shapiro.test(obesity$charges[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:1000]
## W = 0.8119, p-value < 2.2e-16
Now, let’s check out age
shapiro.test(obesity$age[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$age[1:1000]
## W = 0.94406, p-value < 2.2e-16
And lastly, bmi
shapiro.test(obesity$bmi[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$bmi[1:1000]
## W = 0.99471, p-value = 0.001426
Time series data
First, let’s load our packages
library(readr)
library(readxl)
Air_data <- read_excel("AirQualityUCI.xlsx")
Date- date of measurement Time- time of measurement CO(GT)- average hourly CO2 PT08, s1(CO)- tin oxide hourly average sensor response NMHC- average hourly non-metallic hydrocarbon concentration C6HC- average benzene concentration PT08.s3(NMHC)- titanium average hourly sensor response NOx- average hourly NOx concentration NO2- average hourly NO2 concentration T- temper RH- relative humidity AH- absolute humidity
str(Air_data)
## tibble [9,357 × 15] (S3: tbl_df/tbl/data.frame)
## $ Date : POSIXct[1:9357], format: "2004-03-10" "2004-03-10" ...
## $ Time : POSIXct[1:9357], format: "1899-12-31 18:00:00" "1899-12-31 19:00:00" ...
## $ CO(GT) : num [1:9357] 2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...
## $ PT08.S1(CO) : num [1:9357] 1360 1292 1402 1376 1272 ...
## $ NMHC(GT) : num [1:9357] 150 112 88 80 51 38 31 31 24 19 ...
## $ C6H6(GT) : num [1:9357] 11.88 9.4 9 9.23 6.52 ...
## $ PT08.S2(NMHC): num [1:9357] 1046 955 939 948 836 ...
## $ NOx(GT) : num [1:9357] 166 103 131 172 131 89 62 62 45 -200 ...
## $ PT08.S3(NOx) : num [1:9357] 1056 1174 1140 1092 1205 ...
## $ NO2(GT) : num [1:9357] 113 92 114 122 116 96 77 76 60 -200 ...
## $ PT08.S4(NO2) : num [1:9357] 1692 1559 1554 1584 1490 ...
## $ PT08.S5(O3) : num [1:9357] 1268 972 1074 1203 1110 ...
## $ T : num [1:9357] 13.6 13.3 11.9 11 11.2 ...
## $ RH : num [1:9357] 48.9 47.7 54 60 59.6 ...
## $ AH : num [1:9357] 0.758 0.725 0.75 0.787 0.789 ...
library(tidyr)
library(dplyr)
library(lubridate)
library(hms)
##
## Attaching package: 'hms'
## The following object is masked from 'package:lubridate':
##
## hms
library(ggplot2)
Let’s get rid of our date in the time column
Air_data$Time <- as_hms(Air_data$Time)
glimpse(Air_data)
## Rows: 9,357
## Columns: 15
## $ Date <dttm> 2004-03-10, 2004-03-10, 2004-03-10, 2004-03-10, 2004-…
## $ Time <time> 18:00:00, 19:00:00, 20:00:00, 21:00:00, 22:00:00, 23:…
## $ `CO(GT)` <dbl> 2.6, 2.0, 2.2, 2.2, 1.6, 1.2, 1.2, 1.0, 0.9, 0.6, -200…
## $ `PT08.S1(CO)` <dbl> 1360.00, 1292.25, 1402.00, 1375.50, 1272.25, 1197.00, …
## $ `NMHC(GT)` <dbl> 150, 112, 88, 80, 51, 38, 31, 31, 24, 19, 14, 8, 16, 2…
## $ `C6H6(GT)` <dbl> 11.881723, 9.397165, 8.997817, 9.228796, 6.518224, 4.7…
## $ `PT08.S2(NMHC)` <dbl> 1045.50, 954.75, 939.25, 948.25, 835.50, 750.25, 689.5…
## $ `NOx(GT)` <dbl> 166, 103, 131, 172, 131, 89, 62, 62, 45, -200, 21, 16,…
## $ `PT08.S3(NOx)` <dbl> 1056.25, 1173.75, 1140.00, 1092.00, 1205.00, 1336.50, …
## $ `NO2(GT)` <dbl> 113, 92, 114, 122, 116, 96, 77, 76, 60, -200, 34, 28, …
## $ `PT08.S4(NO2)` <dbl> 1692.00, 1558.75, 1554.50, 1583.75, 1490.00, 1393.00, …
## $ `PT08.S5(O3)` <dbl> 1267.50, 972.25, 1074.00, 1203.25, 1110.00, 949.25, 73…
## $ T <dbl> 13.600, 13.300, 11.900, 11.000, 11.150, 11.175, 11.325…
## $ RH <dbl> 48.875, 47.700, 53.975, 60.000, 59.575, 59.175, 56.775…
## $ AH <dbl> 0.7577538, 0.7254874, 0.7502391, 0.7867125, 0.7887942,…
plot(Air_data$AH, Air_data$RH, main = "Humidity Analysis", xlab= "Absolute Humidity", ylab = "Relative Humidity")
Notice we have an outlier in our data
t.test(Air_data$RH, Air_data$AH)
##
## Welch Two Sample t-test
##
## data: Air_data$RH and Air_data$AH
## t = 69.62, df = 17471, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 45.01707 47.62536
## sample estimates:
## mean of x mean of y
## 39.483611 -6.837604
First, let’s load a required library
library(RCurl)
library(dplyr)
Now let’s get our data
site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/colleges/colleges.csv"
College_Data <- read.csv(site)
First, let’s use the str function. This shows the structure of the object.
str(College_Data)
## 'data.frame': 1948 obs. of 9 variables:
## $ date : chr "2021-05-26" "2021-05-26" "2021-05-26" "2021-05-26" ...
## $ state : chr "Alabama" "Alabama" "Alabama" "Alabama" ...
## $ county : chr "Madison" "Montgomery" "Limestone" "Lee" ...
## $ city : chr "Huntsville" "Montgomery" "Athens" "Auburn" ...
## $ ipeds_id : chr "100654" "100724" "100812" "100858" ...
## $ college : chr "Alabama A&M University" "Alabama State University" "Athens State University" "Auburn University" ...
## $ cases : int 41 2 45 2742 220 4 263 137 49 76 ...
## $ cases_2021: int NA NA 10 567 80 NA 49 53 10 35 ...
## $ notes : chr "" "" "" "" ...
What if we want to arrange our dataset alphabetically by college?
alphabetical <- College_Data %>%
arrange(College_Data$college)
The glimpse package is another way to preview data
glimpse(College_Data)
## Rows: 1,948
## Columns: 9
## $ date <chr> "2021-05-26", "2021-05-26", "2021-05-26", "2021-05-26", "20…
## $ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Ala…
## $ county <chr> "Madison", "Montgomery", "Limestone", "Lee", "Montgomery", …
## $ city <chr> "Huntsville", "Montgomery", "Athens", "Auburn", "Montgomery…
## $ ipeds_id <chr> "100654", "100724", "100812", "100858", "100830", "102429",…
## $ college <chr> "Alabama A&M University", "Alabama State University", "Athe…
## $ cases <int> 41, 2, 45, 2742, 220, 4, 263, 137, 49, 76, 67, 0, 229, 19, …
## $ cases_2021 <int> NA, NA, 10, 567, 80, NA, 49, 53, 10, 35, 5, NA, 10, NA, 19,…
## $ notes <chr> "", "", "", "", "", "", "", "", "", "", "", "", "", "", "",…
We can also subset with select()
College_Cases <- select(College_Data, college, cases)
We can also filter or subset with the filter function
Louisiana_Cases <- filter(College_Data, state == "Louisiana")
Let’s filter out smaller amount of states
South_Cases <- filter(College_Data, state == "Louisiana" | state == "Texas" | state == "Arkansas" | state == "Mississippi")
Let’s look at some time series data
First, we’ll load the required libraries
library(lubridate)
library(dplyr)
library(ggplot2)
library(gridExtra)
library(scales)
Now, let’s load some data
state_site <- "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv"
State_Data <- read.csv(state_site)
Let’s create a group_by object using the state column
state_cases <- group_by(State_Data, state)
class(state_cases)
## [1] "grouped_df" "tbl_df" "tbl" "data.frame"
How many measurements were made by state? This gives us an idea of when states started reporting
Days_since_first_reported <- tally(state_cases)
Let’s visualize some data
First, let’s start off with some definitions
Data- obvious- the stuff we want to visualize
Layer- made of geometric elements and requisite statistical information; include geometric objects which represents the plot
Scales- used to map values in the data space that are used for creation of values (color, size, shape, etc)
Coordinate system- describes how the data coordinated are mapped together in relation to the plan on the graphic
Faceting- how to break up data into subsets to display multiple types or groups of data
Theme- controls the finer points of the display, such as font size and background color
options(repr.plot.width = 6, repr.plot.height = 6)
class(College_Data)
## [1] "data.frame"
head(College_Data)
## date state county city ipeds_id
## 1 2021-05-26 Alabama Madison Huntsville 100654
## 2 2021-05-26 Alabama Montgomery Montgomery 100724
## 3 2021-05-26 Alabama Limestone Athens 100812
## 4 2021-05-26 Alabama Lee Auburn 100858
## 5 2021-05-26 Alabama Montgomery Montgomery 100830
## 6 2021-05-26 Alabama Walker Jasper 102429
## college cases cases_2021 notes
## 1 Alabama A&M University 41 NA
## 2 Alabama State University 2 NA
## 3 Athens State University 45 10
## 4 Auburn University 2742 567
## 5 Auburn University at Montgomery 220 80
## 6 Bevill State Community College 4 NA
summary(College_Data)
## date state county city
## Length:1948 Length:1948 Length:1948 Length:1948
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## ipeds_id college cases cases_2021
## Length:1948 Length:1948 Min. : 0.0 Min. : 0.0
## Class :character Class :character 1st Qu.: 32.0 1st Qu.: 23.0
## Mode :character Mode :character Median : 114.5 Median : 65.0
## Mean : 363.5 Mean : 168.1
## 3rd Qu.: 303.0 3rd Qu.: 159.0
## Max. :9914.0 Max. :3158.0
## NA's :337
## notes
## Length:1948
## Class :character
## Mode :character
##
##
##
##
Now let’s take a look at a different dataset
iris <- as.data.frame(iris)
class(iris)
## [1] "data.frame"
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
Let’s start by creating a scatter plot of the College Data
ggplot(data = College_Data, aes(x = cases, y = cases_2021)) +
geom_point() +
theme_minimal()
## Warning: Removed 337 rows containing missing values (`geom_point()`).
Now let’s do the iris data
ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length)) +
geom_point() +
theme_minimal()
Let’s color coordinate our college data
ggplot(data = College_Data, aes(x = cases, y = cases_2021, color = state)) +
geom_point() +
theme_minimal()
## Warning: Removed 337 rows containing missing values (`geom_point()`).
Let’s color coordinate iris data
ggplot(data = iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
geom_point() +
theme_minimal()
Let’s run a simple histogram of our Louisiana Case Data
hist(Louisiana_Cases$cases, freq = NULL, desnity = NULL, breaks = 10, xlab = "Total Cases", ylab = "Frequency",
main = "Total College Covid-19 Infections (Louisiana)")
Let’s run a simple histogram for the Iris data
hist(iris$Sepal.Width, freq = NULL, density = NULL, breaks = 10, xlab = "Sepal Width",
ylab = "Frequency", main = "Iris Sepal Width")
histogram_college <- ggplot(data = Louisiana_Cases, aes(x = cases))
histogram_college + geom_histogram(binwidth = 100, color = "black", aes(fill = county)) +
xlab("cases") + ylab("Frequency") + ggtitle("Histogram of Covid 19 cases in Louisiana")
Let’s create a ggplot for the IRIS data
historgram_iris <- ggplot(data = iris, aes(x = Sepal.Width))
historgram_iris + geom_histogram(binwidth = 0.2, color = "black", aes(fill = Species)) +
xlab("Sepal Width") + ylab("Frequency") + ggtitle("Histogram of Iris Sepal Width by Species")
Maybe a density plot makes more sense for college data
ggplot(South_Cases) +
geom_density(aes(x = cases, fill = state), alpha = 0.25)
Let’s do it with Iris data
ggplot(iris) +
geom_density(aes(x = Sepal.Width, fill = Species), alpha = 0.25)
Let’s look at violin plots for iris
ggplot(data = iris, aes(x = Species, y = Sepal.Length, color = Species)) +
geom_violin() +
theme_classic() +
theme(legend.position = "none")
Now, let’s try the south data
ggplot(data = South_Cases, aes(x=state, y=cases, color=state)) +
geom_violin () +
theme_gray () +
theme(legend.position = "none")
Now let’s take a look at residual plots. This is a graph that displays the residuals on the vertical axis and the independent variable on the horizontal. In the event that the points in a residual plot are dispersed in a random manner around the horizontal axis, it is appropriate to use a linear regression. If they are not randomly dispersed, a non linear model is more appropriate.
Let’s start with the iris data
ggplot(lm(Sepal.Length ~ Sepal.Width, data = iris)) +
geom_point(aes(x = .fitted, y = .resid))
Now look at the southern state’s cases
ggplot(lm(cases ~ cases_2021, data = South_Cases)) +
geom_point(aes(x= .fitted, y = .resid))
A linear model is not a good call for the state cases
Now let’s do some correlations
library(readr)
obesity <- read_csv("Obesity_insurance.csv")
## Rows: 1338 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): sex, smoker, region
## dbl (4): age, bmi, children, charges
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
library(tidyr)
library(dplyr)
library(plyr)
Let’s look at the structure of the dataset
str(obesity)
## spc_tbl_ [1,338 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ age : num [1:1338] 19 18 28 33 32 31 46 37 37 60 ...
## $ sex : chr [1:1338] "female" "male" "male" "male" ...
## $ bmi : num [1:1338] 27.9 33.8 33 22.7 28.9 ...
## $ children: num [1:1338] 0 1 3 0 0 0 1 3 2 0 ...
## $ smoker : chr [1:1338] "yes" "no" "no" "no" ...
## $ region : chr [1:1338] "southwest" "southeast" "southeast" "northwest" ...
## $ charges : num [1:1338] 16885 1726 4449 21984 3867 ...
## - attr(*, "spec")=
## .. cols(
## .. age = col_double(),
## .. sex = col_character(),
## .. bmi = col_double(),
## .. children = col_double(),
## .. smoker = col_character(),
## .. region = col_character(),
## .. charges = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
Now let’s look at the column classes
class(obesity)
## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
And get a summary of distribution of the variables
summary(obesity)
## age sex bmi children
## Min. :18.00 Length:1338 Min. :15.96 Min. :0.000
## 1st Qu.:27.00 Class :character 1st Qu.:26.30 1st Qu.:0.000
## Median :39.00 Mode :character Median :30.40 Median :1.000
## Mean :39.21 Mean :30.66 Mean :1.095
## 3rd Qu.:51.00 3rd Qu.:34.69 3rd Qu.:2.000
## Max. :64.00 Max. :53.13 Max. :5.000
## smoker region charges
## Length:1338 Length:1338 Min. : 1122
## Class :character Class :character 1st Qu.: 4740
## Mode :character Mode :character Median : 9382
## Mean :13270
## 3rd Qu.:16640
## Max. :63770
Now let’s look at the distribution for insurance charges
hist(obesity$charges)
We can also get an idea of the distribution using a boxplot
boxplot(obesity$charges)
boxplot(obesity$bmi)
Now let’s look at correlations. The cor() command is used to determine
correlation between two vectors. All of the columns of a data frame, or
two data frames. The cov() command, on the other hand examines the
covariance. This cor.test() command carries out a test to the
significance of teh correlation
cor(obesity$charges, obesity$bmi)
## [1] 0.198341
This test uses a spearman Rho correlation, or you can use Kendall’s tau by specifying it
cor(obesity$charges, obesity$bmi, method = 'kendall')
## [1] 0.08252397
This correlation measures the strength of a correlation between -1 and 1.
Now let’s look at the Tietjen=Moore test. This is used for unvariate datasets. The algorithm depicts the detection of the outliers in an unvariate dataset.
TietjenMoore <- function(dataSeries, k)
{
n = length(dataSeries)
## Compute the absolute residuals
r = abs(dataSeries - mean(dataSeries))
## Sort data according to size of residual
df = data.frame(dataSeries, r)
dfs = df[order(df$r),]
## Create a subset of the data without the largest values
klarge = c((n-k+1):n)
subdataSeries = dfs$dataSeries[-klarge]
## Compute the sums of squares
ksub = (subdataSeries - mean(subdataSeries)) **2
all = (df$dataSeries - mean(df$dataSeries)) **2
## Compute the test statistic
sum(ksub)/sum(all)
}
This function helps to compute the absolute residuals and sorts data according to the size of the residuals. Later, we will focus on the computation of the sum of squares.
FindOutliersTietjenMooreTest <- function(dataSeries, k, alpha = 0.5){
ek <- TietjenMoore(dataSeries, k)
#Compute critical values based on simulation
test = c(1:10000)
for (i in 1:10000){
dataSeriesdataSeries = rnorm(length(dataSeries))
test[i] = TietjenMoore(dataSeriesdataSeries, k)}
Talpha = quantile(test, alpha)
list(T = ek, Talpha = Talpha)
}
This function helps us to compute the critical values based on simulation data. Now let’s demonstrate these functions with sample data and the obesity dataset for evaluating this algorithm.
The critical region for the Tietjen-Moore test is determined by simulation. The simulation is performed by generating a standard normal random sample size and computing the Tietjen-Moore test statistic. Typically, 10,000 random samples are in use. The values of the Tietjen-Moore statistic is obtained from the data is compared to this reference distribution. The values of the test statistic are between zero and one. If there are no outliers in the data, the test statistic is close to 1. If there are outliers the test statistic will be closer to zero. Thus, the test is always a lower, one-tailed test regardless of which test statistics issued, Lk or Ek.
First we will look at charges
boxplot(obesity$charges)
FindOutliersTietjenMooreTest(obesity$charges, 100)
## $T
## [1] 0.4556033
##
## $Talpha
## 50%
## 0.6352265
Let’s check out bmi
boxplot(obesity$bmi)
FindOutliersTietjenMooreTest(obesity$bmi, 7)
## $T
## [1] 0.9475628
##
## $Talpha
## 50%
## 0.9505177
Probability Plots
library(ggplot2)
library(tigerstats)
We will use the probability plot function and their output dnorm: density function of the normal distribution. Using the density, it is possible to determine the probability of events. Or, for example, you may wonder “what is the likelihood that a person has an IQ of exactly 140? In this case, you would need to determine the probabilty of events. The IQ distribution can be modeled with a mean of 100 and a standard deviation of 15. The corresponding density is:
bmi.mean <- mean(obesity$bmi)
bmi.sd <- sd(obesity$bmi)
Let’s create a plot of our normal distribution
bmi.dist <- dnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x = bmi, y = Density)) +
geom_point()
This gives us the probability of every single point occurring
Now let’s use the pnorm function for more information
bmi.dist <- pnorm(obesity$bmi, mean = bmi.mean, sd = bmi.sd)
bmi.df <- data.frame("bmi" = obesity$bmi, "Density" = bmi.dist)
ggplot(bmi.df, aes(x=bmi, y = Density)) +
geom_point()
What if we want to find the probability of the bmi being greater thatn 40 in our distribution?
pp_greater <- function(x) {
paste(round(100 * pnorm(x, , mean = 30.66339, sd = 6.09818, lower.tail = FALSE), 2), "%")
}
pp_greater(40)
## [1] "6.29 %"
pnormGC(40, region = "above", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.06287869
What about the probability that a bmi is less than 40 in our population?
pp_less <- function(x) {
paste(round(100 *(1-pnorm(x, mean = 30.66339, sd = 6.09818, lower.tail = FALSE)),2), "%")
}
pp_less(40)
## [1] "93.71 %"
pnormGC(40, region = "below", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.9371213
What if we want to find the area in between?
pnormGC(c(20, 40), region = "between", mean = 30.66339, sd = 6.09818, graph = TRUE)
## [1] 0.8969428
What if we want to know the quantiles? Let’s use the qnorm function. We need to assume a normal distrubtion for this.
What bmi represents the lowest 1% of the population?
qnorm(0.01, mean = 30.66339, sd = 6.09818, lower.tail = TRUE)
## [1] 16.4769
What if we want a random sampling of values within our distribution?
subset <- rnorm(50, mean = 30.66339, sd = 6.09818)
hist(subset)
subset2 <- rnorm(5000, mean = 30.66339, sd = 6.09818)
hist(subset2)
Shapiro-Wilk Test
So now we know how to generate a normal distribution. How do we tell if our samples came from a normal distribution?
shapiro.test(obesity$charges[1:5])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:5]
## W = 0.84164, p-value = 0.1695
You can see here, with a small sample size, we would reject the null hypothesis that the samples came from a normal distribution. We can increase the power of the test by increasing the sample size.
shapiro.test(obesity$charges[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$charges[1:1000]
## W = 0.8119, p-value < 2.2e-16
Now, let’s check out age
shapiro.test(obesity$age[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$age[1:1000]
## W = 0.94406, p-value < 2.2e-16
And lastly, bmi
shapiro.test(obesity$bmi[1:1000])
##
## Shapiro-Wilk normality test
##
## data: obesity$bmi[1:1000]
## W = 0.99471, p-value = 0.001426
Time series data
First, let’s load our packages
library(readr)
library(readxl)
Air_data <- read_excel("AirQualityUCI.xlsx")
Date- date of measurement Time- time of measurement CO(GT)- average hourly CO2 PT08, s1(CO)- tin oxide hourly average sensor response NMHC- average hourly non-metallic hydrocarbon concentration C6HC- average benzene concentration PT08.s3(NMHC)- titanium average hourly sensor response NOx- average hourly NOx concentration NO2- average hourly NO2 concentration T- temper RH- relative humidity AH- absolute humidity
str(Air_data)
## tibble [9,357 × 15] (S3: tbl_df/tbl/data.frame)
## $ Date : POSIXct[1:9357], format: "2004-03-10" "2004-03-10" ...
## $ Time : POSIXct[1:9357], format: "1899-12-31 18:00:00" "1899-12-31 19:00:00" ...
## $ CO(GT) : num [1:9357] 2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...
## $ PT08.S1(CO) : num [1:9357] 1360 1292 1402 1376 1272 ...
## $ NMHC(GT) : num [1:9357] 150 112 88 80 51 38 31 31 24 19 ...
## $ C6H6(GT) : num [1:9357] 11.88 9.4 9 9.23 6.52 ...
## $ PT08.S2(NMHC): num [1:9357] 1046 955 939 948 836 ...
## $ NOx(GT) : num [1:9357] 166 103 131 172 131 89 62 62 45 -200 ...
## $ PT08.S3(NOx) : num [1:9357] 1056 1174 1140 1092 1205 ...
## $ NO2(GT) : num [1:9357] 113 92 114 122 116 96 77 76 60 -200 ...
## $ PT08.S4(NO2) : num [1:9357] 1692 1559 1554 1584 1490 ...
## $ PT08.S5(O3) : num [1:9357] 1268 972 1074 1203 1110 ...
## $ T : num [1:9357] 13.6 13.3 11.9 11 11.2 ...
## $ RH : num [1:9357] 48.9 47.7 54 60 59.6 ...
## $ AH : num [1:9357] 0.758 0.725 0.75 0.787 0.789 ...
library(tidyr)
library(dplyr)
library(lubridate)
library(hms)
library(ggplot2)
Let’s get rid of our date in the time column
Air_data$Time <- as_hms(Air_data$Time)
glimpse(Air_data)
## Rows: 9,357
## Columns: 15
## $ Date <dttm> 2004-03-10, 2004-03-10, 2004-03-10, 2004-03-10, 2004-…
## $ Time <time> 18:00:00, 19:00:00, 20:00:00, 21:00:00, 22:00:00, 23:…
## $ `CO(GT)` <dbl> 2.6, 2.0, 2.2, 2.2, 1.6, 1.2, 1.2, 1.0, 0.9, 0.6, -200…
## $ `PT08.S1(CO)` <dbl> 1360.00, 1292.25, 1402.00, 1375.50, 1272.25, 1197.00, …
## $ `NMHC(GT)` <dbl> 150, 112, 88, 80, 51, 38, 31, 31, 24, 19, 14, 8, 16, 2…
## $ `C6H6(GT)` <dbl> 11.881723, 9.397165, 8.997817, 9.228796, 6.518224, 4.7…
## $ `PT08.S2(NMHC)` <dbl> 1045.50, 954.75, 939.25, 948.25, 835.50, 750.25, 689.5…
## $ `NOx(GT)` <dbl> 166, 103, 131, 172, 131, 89, 62, 62, 45, -200, 21, 16,…
## $ `PT08.S3(NOx)` <dbl> 1056.25, 1173.75, 1140.00, 1092.00, 1205.00, 1336.50, …
## $ `NO2(GT)` <dbl> 113, 92, 114, 122, 116, 96, 77, 76, 60, -200, 34, 28, …
## $ `PT08.S4(NO2)` <dbl> 1692.00, 1558.75, 1554.50, 1583.75, 1490.00, 1393.00, …
## $ `PT08.S5(O3)` <dbl> 1267.50, 972.25, 1074.00, 1203.25, 1110.00, 949.25, 73…
## $ T <dbl> 13.600, 13.300, 11.900, 11.000, 11.150, 11.175, 11.325…
## $ RH <dbl> 48.875, 47.700, 53.975, 60.000, 59.575, 59.175, 56.775…
## $ AH <dbl> 0.7577538, 0.7254874, 0.7502391, 0.7867125, 0.7887942,…
plot(Air_data$AH, Air_data$RH, main = "Humidity Analysis", xlab= "Absolute Humidity", ylab = "Relative Humidity")
Notice we have an outlier in our data
t.test(Air_data$RH, Air_data$AH)
##
## Welch Two Sample t-test
##
## data: Air_data$RH and Air_data$AH
## t = 69.62, df = 17471, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 45.01707 47.62536
## sample estimates:
## mean of x mean of y
## 39.483611 -6.837604
First we’ll look at the unnest_token function
Let’s start by looking at an Emily Dickenson passage
text <- c("Because I could not stop from Death - ",
"He kindly stopped for me - ",
"The Carriage held but just Ourselves -",
"and Immortality")
text
## [1] "Because I could not stop from Death - "
## [2] "He kindly stopped for me - "
## [3] "The Carriage held but just Ourselves -"
## [4] "and Immortality"
This is the typical character vecotr that we might want to analyze. In order to turn it into a tidytext dataset, we first need to put it into a dataframe.
library(dplyr)
text_df <- tibble(line = 1:4, text = text)
text_df
## # A tibble: 4 × 2
## line text
## <int> <chr>
## 1 1 "Because I could not stop from Death - "
## 2 2 "He kindly stopped for me - "
## 3 3 "The Carriage held but just Ourselves -"
## 4 4 "and Immortality"
Reminder: A tibble is a modern class of data frame within R. It’s available in the dplyr and tibble packages that have convenient print method, will not convert strongs to factors, and do not use row names. Tibbles are great for use with tidy tools.
Next, we will use the ‘unest_tokens’ function
First, we have the output column name that will be created as the text is unnested into it
library(tidytext)
text_df %>%
unnest_tokens(word, text)
## # A tibble: 20 × 2
## line word
## <int> <chr>
## 1 1 because
## 2 1 i
## 3 1 could
## 4 1 not
## 5 1 stop
## 6 1 from
## 7 1 death
## 8 2 he
## 9 2 kindly
## 10 2 stopped
## 11 2 for
## 12 2 me
## 13 3 the
## 14 3 carriage
## 15 3 held
## 16 3 but
## 17 3 just
## 18 3 ourselves
## 19 4 and
## 20 4 immortality
Let’s use the janeustenr package to analyze some Jane Austen texts. There are 6 books in this package.
library(janeaustenr)
library(stringr)
detach("package:plyr", unload=TRUE)
library(dplyr)
original_books <- austen_books() %>%
group_by(book) %>%
mutate(linenumber = row_number(),
chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",
ignore_case = TRUE)))) %>%
ungroup()
original_books
## # A tibble: 73,422 × 4
## text book linenumber chapter
## <chr> <fct> <int> <int>
## 1 "SENSE AND SENSIBILITY" Sense & Sensibility 1 0
## 2 "" Sense & Sensibility 2 0
## 3 "by Jane Austen" Sense & Sensibility 3 0
## 4 "" Sense & Sensibility 4 0
## 5 "(1811)" Sense & Sensibility 5 0
## 6 "" Sense & Sensibility 6 0
## 7 "" Sense & Sensibility 7 0
## 8 "" Sense & Sensibility 8 0
## 9 "" Sense & Sensibility 9 0
## 10 "CHAPTER 1" Sense & Sensibility 10 1
## # ℹ 73,412 more rows
To work with this as a tidy dataset, we need to restruture it in the one-token-per-row format, which as we saw earlier, is done with the unnest_tokens() function
library(tidytext)
tidy_books <- original_books %>%
unnest_tokens(word, text)
tidy_books
## # A tibble: 725,055 × 4
## book linenumber chapter word
## <fct> <int> <int> <chr>
## 1 Sense & Sensibility 1 0 sense
## 2 Sense & Sensibility 1 0 and
## 3 Sense & Sensibility 1 0 sensibility
## 4 Sense & Sensibility 3 0 by
## 5 Sense & Sensibility 3 0 jane
## 6 Sense & Sensibility 3 0 austen
## 7 Sense & Sensibility 5 0 1811
## 8 Sense & Sensibility 10 1 chapter
## 9 Sense & Sensibility 10 1 1
## 10 Sense & Sensibility 13 1 the
## # ℹ 725,045 more rows
This function uses the tokenizers package to seperate each line of text in the original dataframe into tokens.
The default tokenizing is for words, but other options including characters, n-grams, sentences, lines, or paragraphs can be used.
Now that the data is in a one-word-per-row format, we can manipulate it with tools like dplyr.
Often in text analysis, we will want to remove stop words. Stop words are words that are NOT USEFUL for an analysis. These include words like the, of, to, and, and so forth.
We can remove stop words (kept in the tidytext dataset ‘stop_words’) with an anti_join().
data(stop_words)
tidy_books <- tidy_books %>%
anti_join(stop_words)
## Joining with `by = join_by(word)`
The stop words dataset in the tidytext package contains stop words from three lexicons. We can use them all together, as we have three, or filter() to only use one set of stop words if that’s more appropriate for your analysis.
tidy_books %>%
count(word, sort = TRUE)
## # A tibble: 13,914 × 2
## word n
## <chr> <int>
## 1 miss 1855
## 2 time 1337
## 3 fanny 862
## 4 dear 822
## 5 lady 817
## 6 sir 806
## 7 day 797
## 8 emma 787
## 9 sister 727
## 10 house 699
## # ℹ 13,904 more rows
Because we’ve been using tidy tools, our word counts are stored in a tidy dataframe. This allows us to pipe this directly into ggplot2. For example, we can create a visualization of the most common words.
library(ggplot2)
tidy_books %>%
count(word, sort = TRUE) %>%
filter(n > 600) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word)) +
geom_col() +
labs(y = NULL)
The gutenbergr package
This package provides access to the public domain works from the gutenberg project (www.gutenberg.org). This package includes tools for both downloading books and a complete dataset of project gutenberg metadata that can be used to find works of interest. We will mostly use the function gutenberg_download().
Word Frequencies
Let’s look at some biology texts, starting with Darwin.
The Voyage od the Beagle - 944 On the origin of species by the means of natural selection - 1228 The expression of emotions in man and animals - 1227 The descent of man, and selection in relation to sex - 2300
We can access these words using the gutenberg_download() and the Project Gutenberg IDnumbers
library(gutenbergr)
darwin <- gutenbergr::gutenberg_download(c(944, 1227, 1228, 2300), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
Let’s break into these tokens
tidy_darwin <- darwin %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
## Joining with `by = join_by(word)`
Let’s check out what the most common darwin words are.
tidy_darwin %>%
count(word, sort = TRUE)
## # A tibble: 23,630 × 2
## word n
## <chr> <int>
## 1 species 2998
## 2 male 1672
## 3 males 1337
## 4 animals 1310
## 5 birds 1292
## 6 female 1197
## 7 sexes 1095
## 8 females 1038
## 9 selection 1038
## 10 sexual 801
## # ℹ 23,620 more rows
Now,let’s get some work from Thomas Hunt Morgan, who is credited with discovering chromosomes.
Regeneration - 57198 The genetic and operative evidence relating to secondary sexual characteristics - 57460 Evolution and Adaptation - 63540
morgan <- gutenberg_download(c(57198, 57460, 63540), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
Let’s tokenize them
tidy_morgan <- morgan %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
## Joining with `by = join_by(word)`
What are the most common words?
tidy_morgan %>%
count(word, sort = TRUE)
## # A tibble: 13,855 × 2
## word n
## <chr> <int>
## 1 species 869
## 2 regeneration 814
## 3 piece 702
## 4 cut 669
## 5 male 668
## 6 forms 631
## 7 selection 604
## 8 cells 576
## 9 found 552
## 10 development 546
## # ℹ 13,845 more rows
Lastly, let’s look at Thomas Henry Huxley
Evidence as to mans place in nature- 2931 On the reception of the Origin of Species- 2089 Evolution and Ethics, and other essays- 2940 Science and Culture, and other essays- 52344
huxley <- gutenberg_download(c(2931, 2089, 2940, 52344), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
tidy_huxley <- huxley %>%
unnest_tokens(word, text) %>%
anti_join(stop_words)
## Joining with `by = join_by(word)`
tidy_huxley %>%
count(word, sort = TRUE)
## # A tibble: 16,090 × 2
## word n
## <chr> <int>
## 1 species 339
## 2 nature 331
## 3 time 287
## 4 life 286
## 5 existence 255
## 6 knowledge 238
## 7 animals 227
## 8 natural 223
## 9 animal 216
## 10 science 207
## # ℹ 16,080 more rows
Now, let’s calculate the frequency for each word for the works of Darwin, Morgan, and Huxley by binding the frames together
library(tidyr)
frequency <- bind_rows(mutate(tidy_morgan, author = "Thomas Hunt Morgan"),
mutate(tidy_darwin, author = "Charles Darwin"),
mutate(tidy_huxley, author = "Thomas Henry Huxley")) %>%
mutate(word = str_extract(word, "[a-z']+")) %>%
count(author, word) %>%
group_by(author) %>%
mutate(proportion = n/ sum(n)) %>%
select(-n) %>%
pivot_wider(names_from = author, values_from = proportion) %>%
pivot_longer('Thomas Hunt Morgan': 'Charles Darwin', names_to = "author", values_to = "proportion")
frequency
## # A tibble: 95,895 × 3
## word author proportion
## <chr> <chr> <dbl>
## 1 a Thomas Hunt Morgan 0.00206
## 2 a Thomas Henry Huxley 0.0000856
## 3 a Charles Darwin 0.000141
## 4 ab Thomas Hunt Morgan 0.000165
## 5 ab Thomas Henry Huxley 0.0000978
## 6 ab Charles Darwin 0.00000642
## 7 abaiss Thomas Hunt Morgan NA
## 8 abaiss Thomas Henry Huxley NA
## 9 abaiss Charles Darwin 0.00000642
## 10 abandon Thomas Hunt Morgan 0.00000752
## # ℹ 95,885 more rows
Now we need to change the table so that each author has its own row
frequency2 <- pivot_wider(frequency, names_from = author, values_from = proportion)
frequency2
## # A tibble: 31,965 × 4
## word `Thomas Hunt Morgan` `Thomas Henry Huxley` `Charles Darwin`
## <chr> <dbl> <dbl> <dbl>
## 1 a 0.00206 0.0000856 0.000141
## 2 ab 0.000165 0.0000978 0.00000642
## 3 abaiss NA NA 0.00000642
## 4 abandon 0.00000752 0.0000122 0.00000321
## 5 abandoned 0.0000150 0.0000245 0.00000321
## 6 abashed NA NA 0.00000321
## 7 abatement NA 0.0000245 0.00000321
## 8 abbot NA 0.0000245 0.00000321
## 9 abbott NA NA 0.00000642
## 10 abbreviated NA NA 0.0000128
## # ℹ 31,955 more rows
Now let’s plot
library(scales)
ggplot(frequency2, aes(x = `Charles Darwin`, y = `Thomas Hunt Morgan`), color = abs(- 'Charles Darwin' -'Thomas Hunt Morgan')) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4", high = "gray75") +
theme(legend.position = "none") +
labs(y = "Thomas Hunt Morgan", x = "Charles Darwin")
## Warning: Removed 24513 rows containing missing values (`geom_point()`).
## Warning: Removed 24514 rows containing missing values (`geom_text()`).
ggplot(frequency2, aes(x = `Charles Darwin`, y = `Thomas Henry Huxley`), color = abs(- 'Charles Darwin' -'Thomas Henry Huxley')) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4", high = "gray75") +
theme(legend.position = "none") +
labs(y = "Thomas Henry Huxley", x = "Charles Darwin")
## Warning: Removed 23389 rows containing missing values (`geom_point()`).
## Warning: Removed 23390 rows containing missing values (`geom_text()`).
ggplot(frequency2, aes(x = `Thomas Hunt Morgan`, y = `Thomas Henry Huxley`), color = abs(- 'Charles Darwin' -'Thomas Hunt Morgan')) +
geom_abline(color = "gray40", lty = 2) +
geom_jitter(alpha = 0.1, size = 2.5, width = 0.3, height = 0.3) +
geom_text(aes(label = word), check_overlap = TRUE, vjust = 1.5) +
scale_x_log10(labels = percent_format()) +
scale_y_log10(labels = percent_format()) +
scale_color_gradient(limits = c(0, 0.001),
low = "darkslategray4", high = "gray75") +
theme(legend.position = "none") +
labs(y = "Thomas Hunt Morgan", x = "Charles Darwin")
## Warning: Removed 26068 rows containing missing values (`geom_point()`).
## Warning: Removed 26069 rows containing missing values (`geom_text()`).
The Sentiments Datasets
There are a variety of methods and dictionaries that exist for evaluating the opinion or emotion of the text
AFFIN bing nrc
bing categorizes words in a binary fashion into positive or negative nrc categorizes into positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. AFFIN assigns a score between -5 and 5, with negative indicating negative sentiment, and 5 positive
The function get_sentiments() allows us to get the specific sentiments lexicon with the measures for each one
library(tidytext)
install.packages("textdata")
## Installing package into '/home/student/R/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
library(textdata)
Let’s look at afinn and bing
afinn <- read.csv("afinn.csv")
head(afinn)
## X word value
## 1 1 abandon -2
## 2 2 abandoned -2
## 3 3 abandons -2
## 4 4 abducted -2
## 5 5 abduction -2
## 6 6 abductions -2
bing <- read.csv("bing.csv")
head(bing)
## X word sentiment
## 1 1 2-faces negative
## 2 2 abnormal negative
## 3 3 abolish negative
## 4 4 abominable negative
## 5 5 abominably negative
## 6 6 abominate negative
And lastly nrc
nrc <- read.csv("nrc.csv")
head(nrc)
## X word sentiment
## 1 1 abacus trust
## 2 2 abandon fear
## 3 3 abandon negative
## 4 4 abandon sadness
## 5 5 abandoned anger
## 6 6 abandoned fear
These librarie were created either using crowdourcing or cloud computing/ai like Amazon Mechanical Turk, or by labor of one of the authors, and then validated with crowdsourcing
Let’s look at the words with a joy scor from NRC
library(gutenbergr)
library(dplyr)
library(stringr)
darwin <- gutenberg_download(c(944, 1227, 1228,2300), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
tidy_books <- darwin %>%
group_by(gutenberg_id) %>%
mutate(linenumber = row_number(), chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]", ignore_case = TRUE)))) %>%
ungroup () %>%
unnest_tokens(word, text)
tidy_books
## # A tibble: 786,575 × 4
## gutenberg_id linenumber chapter word
## <int> <int> <int> <chr>
## 1 944 1 0 the
## 2 944 1 0 voyage
## 3 944 1 0 of
## 4 944 1 0 the
## 5 944 1 0 beagle
## 6 944 1 0 by
## 7 944 2 0 charles
## 8 944 2 0 darwin
## 9 944 8 0 about
## 10 944 8 0 the
## # ℹ 786,565 more rows
Let’s add the book name instead of GID
colnames(tidy_books)[1] <- "book"
tidy_books$book[tidy_books$book == 944] <- "The Voyage of the Beagle"
tidy_books$book[tidy_books$book == 1227] <- "The Expression of the Emotions in Man and Animals"
tidy_books$book[tidy_books$book == 1228] <- "On the Origin of Species By Means of Natural Selection"
tidy_books$book[tidy_books$book == 2300] <- "The Descent of Man, and Selection in Relation to Sex"
tidy_books
## # A tibble: 786,575 × 4
## book linenumber chapter word
## <chr> <int> <int> <chr>
## 1 The Voyage of the Beagle 1 0 the
## 2 The Voyage of the Beagle 1 0 voyage
## 3 The Voyage of the Beagle 1 0 of
## 4 The Voyage of the Beagle 1 0 the
## 5 The Voyage of the Beagle 1 0 beagle
## 6 The Voyage of the Beagle 1 0 by
## 7 The Voyage of the Beagle 2 0 charles
## 8 The Voyage of the Beagle 2 0 darwin
## 9 The Voyage of the Beagle 8 0 about
## 10 The Voyage of the Beagle 8 0 the
## # ℹ 786,565 more rows
Now that we have a tidy format with one word per row, we are ready for sentiment analysis. First, let’s NRC.
nrc_joy <- nrc %>%
filter(sentiment == "joy")
tidy_books %>%
filter(book == "The Voyage of the Beagle") %>%
inner_join(nrc_joy) %>%
count(word, sort = TRUE)
## Joining with `by = join_by(word)`
## # A tibble: 277 × 2
## word n
## <chr> <int>
## 1 found 301
## 2 good 161
## 3 remarkable 114
## 4 green 95
## 5 kind 92
## 6 tree 86
## 7 present 85
## 8 food 78
## 9 beautiful 61
## 10 elevation 60
## # ℹ 267 more rows
We can also examine how sentiment changes throughout a work
library(tidyr)
Charles_Darwin_sentiment <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
Now, let’s plot
library(ggplot2)
ggplot(Charles_Darwin_sentiment, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free_x")
Let’s compare the three sentiment dictions
There are several options for the sentiment lexicons, you might want some more info on which is appropriate for your purposes. Here we will use all three of our dictionaries and examine how the sentiment changes across the arc of TVOTB.
library(tidyr)
voyage <- tidy_books %>%
filter(book == "The Voyage of the Beagle")
voyage
## # A tibble: 208,118 × 4
## book linenumber chapter word
## <chr> <int> <int> <chr>
## 1 The Voyage of the Beagle 1 0 the
## 2 The Voyage of the Beagle 1 0 voyage
## 3 The Voyage of the Beagle 1 0 of
## 4 The Voyage of the Beagle 1 0 the
## 5 The Voyage of the Beagle 1 0 beagle
## 6 The Voyage of the Beagle 1 0 by
## 7 The Voyage of the Beagle 2 0 charles
## 8 The Voyage of the Beagle 2 0 darwin
## 9 The Voyage of the Beagle 8 0 about
## 10 The Voyage of the Beagle 8 0 the
## # ℹ 208,108 more rows
Let’s again use integer division (‘%/%’) to define larger sections of the text that span multiple lines, and we can use the same pattern with ‘count()’, ‘pivot_wider()’, and ‘mutate()’, to find the net sentiment in each of these sections of text.
afinn <- voyage %>%
inner_join(afinn) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum(value)) %>%
mutate(method = "AFINN")
## Joining with `by = join_by(word)`
bing_and_nrc <- bind_rows(
voyage %>%
inner_join(bing) %>%
mutate(method = "Bing et al."),
voyage %>%
inner_join(nrc) %>%
filter(sentiment %in% c("positive", "negative"))
) %>%
mutate(method = "NRC") %>%
count(method, index = linenumber %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment,
values_from = n,
values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
## Joining with `by = join_by(word)`
## Warning in inner_join(., nrc): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 79 of `x` matches multiple rows in `y`.
## ℹ Row 10386 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
We can now estimate the net sentiment (positive-negative) in each chunk of the novel text for each lexicon (dictionary). Let’s bind them all together and visualize with ggplot.
bind_rows(afinn, bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = "free_y")
Let’s look at the counts based on each dictionary
nrc %>%
filter(sentiment %in% c("positive", "negative")) %>%
count(sentiment)
## sentiment n
## 1 negative 3316
## 2 positive 2308
get_sentiments("bing") %>%
count(sentiment)
## # A tibble: 2 × 2
## sentiment n
## <chr> <int>
## 1 negative 4781
## 2 positive 2005
bing_word_counts <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
## Joining with `by = join_by(word)`
bing_word_counts
## # A tibble: 2,492 × 3
## word sentiment n
## <chr> <chr> <int>
## 1 great positive 1226
## 2 well positive 855
## 3 like positive 813
## 4 good positive 487
## 5 doubt negative 414
## 6 wild negative 317
## 7 respect positive 310
## 8 remarkable positive 295
## 9 important positive 281
## 10 bright positive 258
## # ℹ 2,482 more rows
This can be shown visually, and we can pipe straight into ggplot2.
bing_word_counts %>%
group_by(sentiment) %>%
slice_max(n, n = 10) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scale = "free_y") +
labs(x = "Contribute to Sentiment", y = NULL)
Let’s spot an anomoly in the dataset.
custom_stop_words <- bind_rows(tibble(word = c("wild", "dark", "great", "like"), lexicon = c("custom")), stop_words)
custom_stop_words
## # A tibble: 1,153 × 2
## word lexicon
## <chr> <chr>
## 1 wild custom
## 2 dark custom
## 3 great custom
## 4 like custom
## 5 a SMART
## 6 a's SMART
## 7 able SMART
## 8 about SMART
## 9 above SMART
## 10 according SMART
## # ℹ 1,143 more rows
Word Clouds!
We can see that tidy text mining and sentiment analysis work well with ggplot2, but having our data in tidy format leads to other nice graphing techniques.
Let’s use the wordcloud package!!
library(wordcloud)
##
## Attaching package: 'wordcloud'
## The following object is masked from 'package:gplots':
##
## textplot
tidy_books %>%
anti_join(stop_words) %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100))
## Joining with `by = join_by(word)`
Let’s look at the comparison.cloud(), which may require turning the
dataframe into a matrix.
We can change to matrix using the acast() function.
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tigerstats':
##
## tips
## The following object is masked from 'package:tidyr':
##
## smiths
tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("gray20", "gray80"), max.words = 100)
## Joining with `by = join_by(word)`
Looking at units beyond words
Lots of useful work can be done by tokenizing at the word level, but sometimes, it is nice to look at different units of text. For example, we can look beyonf just unigrams.
Ex. I am not having a good day.
bingnegative <- get_sentiments("bing") %>%
filter(sentiment == "negative")
wordcounts <- tidy_books %>%
group_by(book, chapter) %>%
summarize(words = n())
## `summarise()` has grouped output by 'book'. You can override using the
## `.groups` argument.
tidy_books %>%
semi_join(bingnegative) %>%
group_by(book, chapter) %>%
summarize(negativewords = n()) %>%
left_join(wordcounts, by = c("book", "chapter")) %>%
mutate(ratio = negativewords/words) %>%
filter(chapter !=0) %>%
slice_max(ratio, n = 1) %>%
ungroup()
## Joining with `by = join_by(word)`
## `summarise()` has grouped output by 'book'. You can override using the
## `.groups` argument.
## # A tibble: 4 × 5
## book chapter negativewords words ratio
## <chr> <int> <int> <int> <dbl>
## 1 On the Origin of Species By Means of Natur… 3 5 86 0.0581
## 2 The Descent of Man, and Selection in Relat… 20 4 87 0.0460
## 3 The Expression of the Emotions in Man and … 10 249 4220 0.0590
## 4 The Voyage of the Beagle 10 375 11202 0.0335
So far we’ve only looked at single words, but many interesting (more accurate) analyses are based on the relationship between words.
Let’s look at some methods of tidytext for calculating and visualizing word relationships.
library(dplyr)
library(tidytext)
darwin_books <- gutenbergr::gutenberg_download(c(944, 1227, 1228, 2300), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
colnames(darwin_books)[1] <- "book"
darwin_books$book[darwin_books$book == 944] <- "The Voyage of the Beagle"
darwin_books$book[darwin_books$book == 1227] <- "The Expression of the Emotions in Man and Animals"
darwin_books$book[darwin_books$book == 1228] <- "On the Origin of Species By Means of Natural Selection"
darwin_books$book[darwin_books$book == 2300] <- "The Descent of Man, and Selection in Relation to Sex"
darwin_bigrams <- darwin_books %>%
unnest_tokens(bigram, text, token = "ngrams", n= 2)
darwin_bigrams
## # A tibble: 724,531 × 2
## book bigram
## <chr> <chr>
## 1 The Voyage of the Beagle the voyage
## 2 The Voyage of the Beagle voyage of
## 3 The Voyage of the Beagle of the
## 4 The Voyage of the Beagle the beagle
## 5 The Voyage of the Beagle beagle by
## 6 The Voyage of the Beagle charles darwin
## 7 The Voyage of the Beagle <NA>
## 8 The Voyage of the Beagle <NA>
## 9 The Voyage of the Beagle <NA>
## 10 The Voyage of the Beagle <NA>
## # ℹ 724,521 more rows
The data is still in tidytext format, and it is structured as one-token-per-row. Each token is bigram.
Counting and filtering n-gram
darwin_bigrams %>%
count(bigram, sort= TRUE)
## # A tibble: 238,516 × 2
## bigram n
## <chr> <int>
## 1 of the 11297
## 2 <NA> 8947
## 3 in the 5257
## 4 on the 4093
## 5 to the 2849
## 6 the same 2048
## 7 that the 1947
## 8 it is 1830
## 9 of a 1610
## 10 and the 1590
## # ℹ 238,506 more rows
Most of the common bigrams are stop-words. This can be a good tume to use tidyr’s separate command which splits a column into multiple based on a delimiter. This will let us make a column for word one and word two.
library(tidyr)
bigrams_separated <- darwin_bigrams %>%
separate(bigram, c("word1", "word2"), sep = " ")
bigrams_filtered <- bigrams_separated %>%
filter(!word1 %in% stop_words$word) %>%
filter(!word2 %in% stop_words$word)
bigrams_filtered
## # A tibble: 94,896 × 3
## book word1 word2
## <chr> <chr> <chr>
## 1 The Voyage of the Beagle charles darwin
## 2 The Voyage of the Beagle <NA> <NA>
## 3 The Voyage of the Beagle <NA> <NA>
## 4 The Voyage of the Beagle <NA> <NA>
## 5 The Voyage of the Beagle <NA> <NA>
## 6 The Voyage of the Beagle <NA> <NA>
## 7 The Voyage of the Beagle online edition
## 8 The Voyage of the Beagle <NA> <NA>
## 9 The Voyage of the Beagle degree symbol
## 10 The Voyage of the Beagle degs italics
## # ℹ 94,886 more rows
New bigram counts
bigram_counts <- bigrams_filtered %>%
unite(bigram, word1, word2, sep = " ")
bigram_counts
## # A tibble: 94,896 × 2
## book bigram
## <chr> <chr>
## 1 The Voyage of the Beagle charles darwin
## 2 The Voyage of the Beagle NA NA
## 3 The Voyage of the Beagle NA NA
## 4 The Voyage of the Beagle NA NA
## 5 The Voyage of the Beagle NA NA
## 6 The Voyage of the Beagle NA NA
## 7 The Voyage of the Beagle online edition
## 8 The Voyage of the Beagle NA NA
## 9 The Voyage of the Beagle degree symbol
## 10 The Voyage of the Beagle degs italics
## # ℹ 94,886 more rows
We may also be interested in trigrams, which are three word combos
trigrams <- darwin_books %>%
unnest_tokens(trigram, text, token = "ngrams", n = 3) %>%
separate(trigram, c("word1", "word2", "word3"), sep = " ") %>%
filter(!word1 %in% stop_words$word,
!word2 %in% stop_words$word,
!word3 %in% stop_words$word,) %>%
count(word1, word2, word3, sort = TRUE)
trigrams
## # A tibble: 19,971 × 4
## word1 word2 word3 n
## <chr> <chr> <chr> <int>
## 1 <NA> <NA> <NA> 9884
## 2 tierra del fuego 92
## 3 secondary sexual characters 91
## 4 captain fitz roy 45
## 5 closely allied species 30
## 6 de la physionomie 30
## 7 domestication vol ii 26
## 8 vol ii pp 22
## 9 vertebrates vol iii 21
## 10 proc zoolog soc 18
## # ℹ 19,961 more rows
Let’s analyze some bigrams
bigrams_filtered %>%
filter(word2 == "selection") %>%
count(book, word1, sort = TRUE)
## # A tibble: 39 × 3
## book word1 n
## <chr> <chr> <int>
## 1 The Descent of Man, and Selection in Relation to Sex sexual 254
## 2 On the Origin of Species By Means of Natural Selection natural 250
## 3 The Descent of Man, and Selection in Relation to Sex natural 156
## 4 On the Origin of Species By Means of Natural Selection sexual 18
## 5 On the Origin of Species By Means of Natural Selection continued 6
## 6 The Descent of Man, and Selection in Relation to Sex unconscious 6
## 7 On the Origin of Species By Means of Natural Selection methodical 5
## 8 The Descent of Man, and Selection in Relation to Sex continued 5
## 9 On the Origin of Species By Means of Natural Selection unconscious 4
## 10 The Expression of the Emotions in Man and Animals natural 4
## # ℹ 29 more rows
Let’s again look at tf-idf across bigrams across Darwins works.
bigram_tf_idf <- bigram_counts %>%
count(book, bigram) %>%
bind_tf_idf(bigram, book, n) %>%
arrange(desc(tf_idf))
bigram_tf_idf
## # A tibble: 60,595 × 6
## book bigram n tf idf tf_idf
## <chr> <chr> <int> <dbl> <dbl> <dbl>
## 1 The Expression of the Emotions in Man and… nerve… 47 0.00350 1.39 0.00485
## 2 On the Origin of Species By Means of Natu… natur… 250 0.0160 0.288 0.00460
## 3 The Expression of the Emotions in Man and… la ph… 35 0.00260 1.39 0.00361
## 4 The Voyage of the Beagle bueno… 54 0.00245 1.39 0.00339
## 5 The Voyage of the Beagle capta… 53 0.00240 1.39 0.00333
## 6 On the Origin of Species By Means of Natu… glaci… 36 0.00230 1.39 0.00319
## 7 The Voyage of the Beagle fitz … 50 0.00227 1.39 0.00314
## 8 The Expression of the Emotions in Man and… muscl… 30 0.00223 1.39 0.00310
## 9 The Expression of the Emotions in Man and… orbic… 29 0.00216 1.39 0.00299
## 10 The Expression of the Emotions in Man and… dr du… 26 0.00194 1.39 0.00268
## # ℹ 60,585 more rows
library(ggplot2)
bigram_tf_idf %>%
arrange(desc(tf_idf)) %>%
group_by(book) %>%
slice_max(tf_idf, n =10) %>%
ungroup() %>%
mutate(bigram = reorder(bigram, tf_idf)) %>%
ggplot(aes(tf_idf, bigram, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free") +
labs(x = "tf-idf of bigrams", y = NULL)
Using bigrams to provide context in sentiment analysis
bigrams_separated %>%
filter(word1=="not") %>%
count(word1, word2, sort = TRUE)
## # A tibble: 867 × 3
## word1 word2 n
## <chr> <chr> <int>
## 1 not be 128
## 2 not have 104
## 3 not only 103
## 4 not a 100
## 5 not to 98
## 6 not been 89
## 7 not the 82
## 8 not at 70
## 9 not know 60
## 10 not so 58
## # ℹ 857 more rows
By doing sentiment analysis on bigrams, we can examine how often sentiment-associated words are preceded by a modifier like “not” or other negating words.
install.packages("textdata")
## Installing package into '/home/student/R/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
AFINN <- read.csv("afinn.csv")
head(AFINN)
## X word value
## 1 1 abandon -2
## 2 2 abandoned -2
## 3 3 abandons -2
## 4 4 abducted -2
## 5 5 abduction -2
## 6 6 abductions -2
We can examine the most frequent words that are preceded by “not”, and associate with sentiment.
not_words <- bigrams_separated %>%
filter(word1 == "not") %>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word2, value, sort = TRUE)
not_words
## # A tibble: 114 × 3
## word2 value n
## <chr> <int> <int>
## 1 doubt -1 25
## 2 like 2 11
## 3 pretend -1 9
## 4 wish 1 8
## 5 admit -1 7
## 6 difficult -1 5
## 7 easy 1 5
## 8 reach 1 5
## 9 extend 1 4
## 10 forget -1 4
## # ℹ 104 more rows
Let’s visualize
library(ggplot2)
not_words %>%
mutate(contribution = n * value) %>%
arrange(desc(abs(contribution))) %>%
head(20) %>%
mutate(word2 = reorder(word2, contribution)) %>%
ggplot(aes(n * value, word2, fill = n * value > 0 )) +
geom_col(show.legend = FALSE) +
labs(x = "Sentiment value * number of occurences", y = "Words preceded by \"not\"")
negation_words <- c("not", "no", "never", "non", "without")
negated_words <- bigrams_separated %>%
filter(word1 %in% negation_words) %>%
inner_join(AFINN, by = c(word2 = "word")) %>%
count(word1, word2, value, sort = TRUE)
negated_words
## # A tibble: 208 × 4
## word1 word2 value n
## <chr> <chr> <int> <int>
## 1 no doubt -1 210
## 2 not doubt -1 25
## 3 no great 3 19
## 4 not like 2 11
## 5 not pretend -1 9
## 6 not wish 1 8
## 7 without doubt -1 8
## 8 not admit -1 7
## 9 no greater 3 6
## 10 not difficult -1 5
## # ℹ 198 more rows
Let’s visualize the negation words
negated_words %>%
mutate(contribution = n * value,
word2 = reorder(paste(word2, word1, sep = "_"), contribution)) %>%
group_by(word1) %>%
slice_max(abs(contribution), n = 12, with_ties = FALSE) %>%
ggplot(aes(word2, contribution, fill = n * value > 0)) +
geom_col(show.legend = FALSE) +
facet_wrap(~ word1, scales = "free") +
scale_x_discrete(labels = function(x) gsub("_.+$", "", x)) +
xlab("Words preceded by negation words") +
ylab("Sentiment value * # of occurences") +
coord_flip()
Visualize a network of bigrams with ggraph
library(igraph)
##
## Attaching package: 'igraph'
## The following object is masked from 'package:mosaic':
##
## compare
## The following objects are masked from 'package:lubridate':
##
## %--%, union
## The following object is masked from 'package:plotly':
##
## groups
## The following object is masked from 'package:tidyr':
##
## crossing
## The following objects are masked from 'package:dplyr':
##
## as_data_frame, groups, union
## The following objects are masked from 'package:stats':
##
## decompose, spectrum
## The following object is masked from 'package:base':
##
## union
bigram_counts <- bigrams_filtered %>%
count(word1, word2, sort = TRUE)
bigram_graph <- bigram_counts %>%
filter(n > 20) %>%
graph_from_data_frame()
## Warning in graph_from_data_frame(.): In `d' `NA' elements were replaced with
## string "NA"
bigram_graph
## IGRAPH f5dbef1 DN-- 203 140 --
## + attr: name (v/c), n (e/n)
## + edges from f5dbef1 (vertex names):
## [1] NA ->NA natural ->selection sexual ->selection
## [4] vol ->ii lower ->animals sexual ->differences
## [7] south ->america distinct ->species secondary ->sexual
## [10] breeding ->season closely ->allied sexual ->characters
## [13] tierra ->del del ->fuego vol ->iii
## [16] de ->la natural ->history fresh ->water
## [19] north ->america bright ->colours sexual ->difference
## [22] allied ->species tail ->feathers strongly ->marked
## + ... omitted several edges
library(ggraph)
set.seed(1234)
ggraph(bigram_graph, layout = "fr") +
geom_edge_link() +
geom_node_point() +
geom_node_text(aes(label = name), vjust = 1, hjust = 1)
## Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` in the `default_aes` field and elsewhere instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
We can also add directionality to this network
set.seed(1234)
a <- grid::arrow(type = "closed", length = unit(.15, "inches"))
ggraph(bigram_graph, layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
arrow = a, end_cap = circle(.07, 'inches')) +
geom_node_point(color = "lightblue", size = 3) +
geom_node_text(aes(label = name), vjust =1, hjust =1) +
theme_void()
A central question in text mining is how to quantify what a document is about. We can do this but looking at words that make up the document, and measuring term frequency.
There are a lot of words that may not be important, these are the stop words.
One way to remedy this is to look at inverse document frequency words, which decreases the weight for commonly used words and increases the weight for words that are not used very much.
Term frequency in Darwins works
library(dplyr)
library(tidytext)
book_words <- gutenbergr::gutenberg_download(c(944, 1227, 1228, 2300), mirror = "http://mirror.csclub.uwaterloo.ca/gutenberg/")
colnames(book_words)[1] <- "book"
book_words$book[book_words$book == 944] <- "The Voyage of the Beagle"
book_words$book[book_words$book == 1227] <- "The Expression of the Emotions in Man and Animals"
book_words$book[book_words$book == 1228] <- "On the Origin of Species By Means of Natural Selection"
book_words$book[book_words$book == 2300] <- "The Descent of Man, and Selection in Relation to Sex"
Now, let’s disect
book_words <- book_words %>%
unnest_tokens(word, text) %>%
count(book, word, sort = TRUE)
book_words
## # A tibble: 43,024 × 3
## book word n
## <chr> <chr> <int>
## 1 The Descent of Man, and Selection in Relation to Sex the 25490
## 2 The Voyage of the Beagle the 16930
## 3 The Descent of Man, and Selection in Relation to Sex of 16762
## 4 On the Origin of Species By Means of Natural Selection the 10301
## 5 The Voyage of the Beagle of 9438
## 6 The Descent of Man, and Selection in Relation to Sex in 8882
## 7 The Expression of the Emotions in Man and Animals the 8045
## 8 On the Origin of Species By Means of Natural Selection of 7864
## 9 The Descent of Man, and Selection in Relation to Sex and 7854
## 10 The Descent of Man, and Selection in Relation to Sex to 5901
## # ℹ 43,014 more rows
book_words$n <- as.numeric(book_words$n)
total_words <- book_words %>%
group_by(book) %>%
summarize(total = sum(n))
book_words
## # A tibble: 43,024 × 3
## book word n
## <chr> <chr> <dbl>
## 1 The Descent of Man, and Selection in Relation to Sex the 25490
## 2 The Voyage of the Beagle the 16930
## 3 The Descent of Man, and Selection in Relation to Sex of 16762
## 4 On the Origin of Species By Means of Natural Selection the 10301
## 5 The Voyage of the Beagle of 9438
## 6 The Descent of Man, and Selection in Relation to Sex in 8882
## 7 The Expression of the Emotions in Man and Animals the 8045
## 8 On the Origin of Species By Means of Natural Selection of 7864
## 9 The Descent of Man, and Selection in Relation to Sex and 7854
## 10 The Descent of Man, and Selection in Relation to Sex to 5901
## # ℹ 43,014 more rows
book_words <- left_join(book_words, total_words)
## Joining with `by = join_by(book)`
book_words
## # A tibble: 43,024 × 4
## book word n total
## <chr> <chr> <dbl> <dbl>
## 1 The Descent of Man, and Selection in Relation to Sex the 25490 311041
## 2 The Voyage of the Beagle the 16930 208118
## 3 The Descent of Man, and Selection in Relation to Sex of 16762 311041
## 4 On the Origin of Species By Means of Natural Selection the 10301 157002
## 5 The Voyage of the Beagle of 9438 208118
## 6 The Descent of Man, and Selection in Relation to Sex in 8882 311041
## 7 The Expression of the Emotions in Man and Animals the 8045 110414
## 8 On the Origin of Species By Means of Natural Selection of 7864 157002
## 9 The Descent of Man, and Selection in Relation to Sex and 7854 311041
## 10 The Descent of Man, and Selection in Relation to Sex to 5901 311041
## # ℹ 43,014 more rows
You can see that the usual suspects are the most common words, but don’t tell anything about what the books topic is.
library(ggplot2)
ggplot(book_words, aes(n/total, fill = book)) +
geom_histogram(show.legend = FALSE) +
xlim(NA, 0.0009) +
facet_wrap(~book, ncol = 2, scales = "free_y")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 515 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 4 rows containing missing values (`geom_bar()`).
Zipf’s Law
The frequency that a word appears is inversely proportional to its rank when predicting a topic.
Let’s apply Zipf’s Law to Darwin’s work.
freq_by_rank <- book_words %>%
group_by(book) %>%
mutate(rank = row_number(),
`term frequency` = n/total) %>%
ungroup()
freq_by_rank
## # A tibble: 43,024 × 6
## book word n total rank `term frequency`
## <chr> <chr> <dbl> <dbl> <int> <dbl>
## 1 The Descent of Man, and Selection … the 25490 311041 1 0.0820
## 2 The Voyage of the Beagle the 16930 208118 1 0.0813
## 3 The Descent of Man, and Selection … of 16762 311041 2 0.0539
## 4 On the Origin of Species By Means … the 10301 157002 1 0.0656
## 5 The Voyage of the Beagle of 9438 208118 2 0.0453
## 6 The Descent of Man, and Selection … in 8882 311041 3 0.0286
## 7 The Expression of the Emotions in … the 8045 110414 1 0.0729
## 8 On the Origin of Species By Means … of 7864 157002 2 0.0501
## 9 The Descent of Man, and Selection … and 7854 311041 4 0.0253
## 10 The Descent of Man, and Selection … to 5901 311041 5 0.0190
## # ℹ 43,014 more rows
freq_by_rank %>%
ggplot(aes(rank, `term frequency`, color = book)) +
geom_line(size = 1.1, alpha = 0.8, show.legend = FALSE) +
scale_x_log10() +
scale_y_log10()
Let’s use TF- IDF to find words for each document by decreasing the weight for commonly used words and increasing the weight for words that are not used very much in a collection of documents.
book_tf_idf <- book_words %>%
bind_tf_idf(word, book, n)
book_tf_idf
## # A tibble: 43,024 × 7
## book word n total tf idf tf_idf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 The Descent of Man, and Selection in … the 25490 311041 0.0820 0 0
## 2 The Voyage of the Beagle the 16930 208118 0.0813 0 0
## 3 The Descent of Man, and Selection in … of 16762 311041 0.0539 0 0
## 4 On the Origin of Species By Means of … the 10301 157002 0.0656 0 0
## 5 The Voyage of the Beagle of 9438 208118 0.0453 0 0
## 6 The Descent of Man, and Selection in … in 8882 311041 0.0286 0 0
## 7 The Expression of the Emotions in Man… the 8045 110414 0.0729 0 0
## 8 On the Origin of Species By Means of … of 7864 157002 0.0501 0 0
## 9 The Descent of Man, and Selection in … and 7854 311041 0.0253 0 0
## 10 The Descent of Man, and Selection in … to 5901 311041 0.0190 0 0
## # ℹ 43,014 more rows
Let’s look at terms with high tf-idf in Darwin’s works
book_tf_idf %>%
select(-total) %>%
arrange(desc(tf_idf))
## # A tibble: 43,024 × 6
## book word n tf idf tf_idf
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 The Expression of the Emotions in Man and … tears 126 1.14e-3 1.39 1.58e-3
## 2 The Expression of the Emotions in Man and … blush 114 1.03e-3 1.39 1.43e-3
## 3 The Expression of the Emotions in Man and … eyeb… 149 1.35e-3 0.693 9.35e-4
## 4 The Voyage of the Beagle degs 117 5.62e-4 1.39 7.79e-4
## 5 On the Origin of Species By Means of Natur… sele… 412 2.62e-3 0.288 7.55e-4
## 6 The Descent of Man, and Selection in Relat… sexu… 745 2.40e-3 0.288 6.89e-4
## 7 The Descent of Man, and Selection in Relat… shewn 143 4.60e-4 1.39 6.37e-4
## 8 On the Origin of Species By Means of Natur… hybr… 133 8.47e-4 0.693 5.87e-4
## 9 The Expression of the Emotions in Man and … frown 46 4.17e-4 1.39 5.78e-4
## 10 The Descent of Man, and Selection in Relat… sele… 621 2.00e-3 0.288 5.74e-4
## # ℹ 43,014 more rows
Let’s look at a visualization for these high tf-idf words
book_tf_idf %>%
group_by(book) %>%
slice_max(tf_idf, n = 15) %>%
ungroup() %>%
ggplot(aes(tf_idf, reorder(word, tf_idf), fill = book)) +
geom_col(show.legend = FALSE) + facet_wrap(~book, ncol = 2, scales = "free") +
labs(x = "tf-idf", y = NULL)