library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
district<-read_excel("district.xls")
DISTNAME<-district$DISTNAME
DPETSPEP<-district$DPETSPEP
DPFPASPEP<-district$DPFPASPEP
data<-district %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(data)
## DISTNAME DPETSPEP DPFPASPEP
## Length:1207 Min. : 0.00 Min. : 0.000
## Class :character 1st Qu.: 9.90 1st Qu.: 5.800
## Mode :character Median :12.10 Median : 8.900
## Mean :12.27 Mean : 9.711
## 3rd Qu.:14.20 3rd Qu.:12.500
## Max. :51.70 Max. :49.000
## NA's :5
This variable with missing vales is DPFPASPEP.
DPFPASPEP_Cleaned<-data$DPFPASPEP %>% na.omit(.)
length(DPFPASPEP_Cleaned)
## [1] 1202
cor(compare_two_clean$DPFPASPEP,compare_two_clean$DPETSPEP)
## [1] 0.3700234
To me, there does seem to be some correlation between the two variables. It doesn’t seem to be very strong, but it does appear that as the percent of special education increases so does the money spent on special education.