Questions
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
district.xls<-read_xls("district.xls")
District2ndlook<-district.xls%>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(District2ndlook$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
summary(District2ndlook$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
As can be seen here from the summary computes, the variable DPFPASPEP shows 5 NA’s.
District2ndlook_cleaned<-District2ndlook %>% filter(DPFPASPEP>0)
summary(District2ndlook_cleaned$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.200 5.800 8.900 9.719 12.500 49.000
ggplot(District2ndlook_cleaned,aes(DPETSPEP,DPFPASPEP))+geom_point()
The plot graph shows the two variables overlayed. They seem to primarily
occupy the same space and therefore be correlated.
a<-ggplot(District2ndlook_cleaned,aes(DPETSPEP,DPFPASPEP))+geom_point()
(cor(District2ndlook_cleaned$DPETSPEP,District2ndlook_cleaned$DPFPASPEP))
## [1] 0.371033
The value of 0.37 shows a weak correlation as the value is not close to 1. More research can be done to see the interaction of these two variables.