Goal: to predict the rental prices in the SF rental market Click here for the data. # Import Data

rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2022/2022-07-05/rent.csv') 

skimr::skim(rent)
Data summary
Name rent
Number of rows 200796
Number of columns 17
_______________________
Column type frequency:
character 8
numeric 9
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
post_id 0 1.00 9 14 0 200796 0
nhood 0 1.00 4 43 0 167 0
city 0 1.00 5 19 0 104 0
county 1394 0.99 4 13 0 10 0
address 196888 0.02 1 38 0 2869 0
title 2517 0.99 2 298 0 184961 0
descr 197542 0.02 13 16975 0 3025 0
details 192780 0.04 4 595 0 7667 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
date 0 1.00 20095718.38 44694.07 20000902.00 20050227.00 20110924.00 20120805.0 20180717.00 ▁▇▁▆▃
year 0 1.00 2009.51 4.48 2000.00 2005.00 2011.00 2012.0 2018.00 ▁▇▁▆▃
price 0 1.00 2135.36 1427.75 220.00 1295.00 1800.00 2505.0 40000.00 ▇▁▁▁▁
beds 6608 0.97 1.89 1.08 0.00 1.00 2.00 3.0 12.00 ▇▂▁▁▁
baths 158121 0.21 1.68 0.69 1.00 1.00 2.00 2.0 8.00 ▇▁▁▁▁
sqft 136117 0.32 1201.83 5000.22 80.00 750.00 1000.00 1360.0 900000.00 ▇▁▁▁▁
room_in_apt 0 1.00 0.00 0.04 0.00 0.00 0.00 0.0 1.00 ▇▁▁▁▁
lat 193145 0.04 37.67 0.35 33.57 37.40 37.76 37.8 40.43 ▁▁▅▇▁
lon 196484 0.02 -122.21 0.78 -123.20 -122.42 -122.26 -122.0 -74.20 ▇▁▁▁▁
data <- rent %>% 
    
    # Treat missing values
    select(-address, -descr, -details, -lat, -lon, -date, -year, -room_in_apt) %>% 
    na.omit() %>% 
    
    # log transform variables with pos-skewed distribution
    mutate(price = log(price))

Explore Data

Identify good predictors

data %>% 
    ggplot(aes(price, sqft)) + 
    scale_y_log10() +
    geom_point()

beds

data %>% 
    ggplot(aes(price, as.factor(beds))) + 
    geom_boxplot()

title

data %>% 
    
    # tokenize title
    unnest_tokens(output = word, input = title) %>% 
    
    # calculate avg rent per word 
    group_by(word) %>%
    summarise(price = mean(price),
              n     = n()) %>% 
    ungroup() %>% 
    
    filter(n > 10, !str_detect(word, "\\d")) %>% 
    slice_max(order_by = price, n = 20) %>% 
    
    # Plot 
    ggplot(aes(price, fct_reorder(word, price))) + 
    geom_point() +
    
    labs(y = "Words in Title")

EDA Shortcut

# Step 1: Prepare data
data_binarized_tbl <- data %>% 
    select(-post_id, -title) %>%
    binarize()

data_binarized_tbl %>% glimpse()
## Rows: 14,394
## Columns: 85
## $ nhood__campbell                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__concord_/_pleasant_hill_/_martinez` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__cupertino                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__daly_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__danville_/_san_ramon`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__dublin_/_pleasanton`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__fairfield_/_vacaville`              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__foster_city                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__hayward_/_castro_valley`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__milpitas                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__mountain_view                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__napa_county                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__palo_alto                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__petaluma                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__pittsburg_/_antioch`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__rohnert_pk_/_cotati`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_francisco                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_central                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_east                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_north                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_south                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_west                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_mateo                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_rafael                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_clara                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_cruz                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_rosa                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__SOMA_/_south_beach`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__sunnyvale                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__union_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__vallejo_/_benicia`                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__willow_glen_/_cambrian`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__-OTHER`                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ city__cambrian                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__campbell                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__concord                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__cupertino                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__daly_city                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__dublin                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__fairfield                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__foster_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__hayward                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__milpitas                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__mountain_view                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__napa_county                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__oakland                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__palo_alto                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__petaluma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__pittsburg                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__rohnert_park                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_francisco                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_jose                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_mateo                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_rafael                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_ramon                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_clara                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_cruz                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_rosa                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__sunnyvale                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__union_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__vallejo                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `city__-OTHER`                              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__alameda                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__contra_costa                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__marin                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__napa                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_francisco                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_mateo                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_clara                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_cruz                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__solano                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__sonoma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `price__-Inf_7.52294091807237`              <dbl> 0, 1, 0, 1, 0, 1, 1, 0, 0,…
## $ price__7.52294091807237_7.80384330353877    <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 1,…
## $ price__7.80384330353877_8.07868822922987    <dbl> 1, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ price__8.07868822922987_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `beds__-Inf_2`                              <dbl> 0, 1, 0, 1, 1, 1, 0, 0, 1,…
## $ beds__2_3                                   <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0,…
## $ beds__3_Inf                                 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `baths__-Inf_2`                             <dbl> 0, 1, 1, 1, 1, 1, 0, 0, 1,…
## $ baths__2_Inf                                <dbl> 1, 0, 0, 0, 0, 0, 1, 1, 0,…
## $ `sqft__-Inf_887`                            <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1,…
## $ sqft__887_1100                              <dbl> 0, 0, 0, 1, 0, 0, 0, 1, 0,…
## $ sqft__1100_1500                             <dbl> 0, 0, 1, 0, 1, 1, 0, 0, 0,…
## $ sqft__1500_Inf                              <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0,…
# Step 2: Correlate 
data_corr_tbl <- data_binarized_tbl %>% 
    correlate(price__8.07868822922987_Inf)

data_corr_tbl 
## # A tibble: 85 × 3
##    feature bin                               correlation
##    <fct>   <chr>                                   <dbl>
##  1 price   8.07868822922987_Inf                    1    
##  2 city    san_francisco                           0.389
##  3 county  san_francisco                           0.389
##  4 price   -Inf_7.52294091807237                  -0.342
##  5 price   7.80384330353877_8.07868822922987      -0.330
##  6 price   7.52294091807237_7.80384330353877      -0.328
##  7 sqft    1500_Inf                                0.324
##  8 beds    -Inf_2                                 -0.254
##  9 beds    3_Inf                                   0.241
## 10 sqft    -Inf_887                               -0.240
## # ℹ 75 more rows
# Step 3: Plot 
data_corr_tbl %>% 
    plot_correlation_funnel()
## Warning: ggrepel: 69 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Build Models

Split data

data <- sample_n(data, 100)

# Split into train and test dataset
set.seed(1234)
data_split <- rsample::initial_split(data) 
data_train <- training(data_split)
data_test  <- testing(data_split)

# Further split training dataset for cross-validation
set.seed(2345)
data_cv <- rsample::vfold_cv(data_train)
data_cv
## #  10-fold cross-validation 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [67/8]> Fold01
##  2 <split [67/8]> Fold02
##  3 <split [67/8]> Fold03
##  4 <split [67/8]> Fold04
##  5 <split [67/8]> Fold05
##  6 <split [68/7]> Fold06
##  7 <split [68/7]> Fold07
##  8 <split [68/7]> Fold08
##  9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10
library(usemodels)
usemodels::use_xgboost(price ~ ., data = data_train)
## xgboost_recipe <- 
##   recipe(formula = price ~ ., data = data_train) %>% 
##   step_zv(all_predictors()) 
## 
## xgboost_spec <- 
##   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
##     loss_reduction = tune(), sample_size = tune()) %>% 
##   set_mode("classification") %>% 
##   set_engine("xgboost") 
## 
## xgboost_workflow <- 
##   workflow() %>% 
##   add_recipe(xgboost_recipe) %>% 
##   add_model(xgboost_spec) 
## 
## set.seed(6804)
## xgboost_tune <-
##   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
# Specify recipe
xgboost_recipe <- 
  recipe(formula = price ~ ., data = data_train) %>%
  recipes::update_role(post_id, new_role = "id variable") %>%
  step_tokenize(title) %>%
  step_tokenfilter(title, max_tokens = 100) %>% 
  step_tfidf(title) %>% 
  step_other(nhood) %>% 
  step_dummy(nhood, city, county, one_hot = TRUE) %>% 
  step_log(sqft, beds, baths)

xgboost_recipe %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 153
## $ post_id                    <fct> pre2013_43061, 4667030154, 5369925235, 4807…
## $ beds                       <dbl> 1.0986123, 0.0000000, 0.0000000, 0.6931472,…
## $ baths                      <dbl> 0.9162907, 0.0000000, 0.0000000, 0.0000000,…
## $ sqft                       <dbl> 7.438384, 6.856462, 6.752270, 7.022868, 6.8…
## $ price                      <dbl> 7.244228, 7.393263, 7.600902, 7.783224, 8.4…
## $ tfidf_title_1              <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ tfidf_title_1.5            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_10             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_1000ft         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_1200ft         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_1200ft2        <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_title_13             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_1ba            <dbl> 0.0000000, 0.0000000, 0.8675632, 0.0000000,…
## $ tfidf_title_1bath          <dbl> 0.0000000, 0.4072621, 0.0000000, 0.0000000,…
## $ tfidf_title_1br            <dbl> 0.0000000, 0.0000000, 0.6603338, 0.0000000,…
## $ tfidf_title_2              <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ tfidf_title_2.5            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_2350           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_2400           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2500           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_2650           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_2850           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_29             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2900           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2ba            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2bath          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2bd            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_2br            <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ tfidf_title_3              <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_3bd            <dbl> 0.5215226, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_3br            <dbl> 0.2559656, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_4              <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_4br            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_5              <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_650ft2         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_7              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_8              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_9              <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_a              <dbl> 0.4654424, 0.4072621, 0.0000000, 0.0000000,…
## $ tfidf_title_alto           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_amazing        <dbl> 0.0000000, 0.4563323, 0.0000000, 0.0000000,…
## $ tfidf_title_amenities      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_amp            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_and            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_apartment      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_apt            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_at             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_available      <dbl> 0.0000000, 0.3728942, 0.0000000, 0.9943845,…
## $ tfidf_title_ba             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_bath           <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000…
## $ tfidf_title_bathroom       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_bd             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_beautiful      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_bed            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_bedroom        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_br             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_brand          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_car            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_city           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_condo          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_den            <dbl> 0.0000000, 0.4072621, 0.0000000, 0.0000000,…
## $ tfidf_title_family         <dbl> 0.4261648, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_flat           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_for            <dbl> 0.0000000, 0.2924249, 0.0000000, 0.0000000,…
## $ tfidf_title_fremont        <dbl> 0.0000000, 0.0000000, 0.9943845, 0.0000000,…
## $ tfidf_title_ft             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_full           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_garage         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_great          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_har            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_heights        <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.0…
## $ tfidf_title_hide           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_hill           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_home           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_house          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_in             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_jose           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_living         <dbl> 0.4654424, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_luxury         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_new            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.7797997,…
## $ tfidf_title_newly          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_nis            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_now            <dbl> 0.0000000, 0.3728942, 0.0000000, 0.9943845,…
## $ tfidf_title_one            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_posting        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_remodeled      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_rent           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_resim          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_restore        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_room           <dbl> 0.4654424, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_san            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_single         <dbl> 0.4261648, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_spacious       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_sq             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_the            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_this           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_to             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ tfidf_title_townhouse      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_two            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_views          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_w              <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_with           <dbl> 0.0000000, 0.2311974, 0.0000000, 0.0000000,…
## $ tfidf_title_게시물         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_월             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ tfidf_title_이             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000,…
## $ nhood_belmont...san.carlos <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ nhood_san.jose.south       <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ nhood_union.city           <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ nhood_other                <dbl> 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1…
## $ city_belmont               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_berkeley              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_burlingame            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_campbell              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_cupertino             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_daly.city             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_dublin                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0…
## $ city_el.cerrito            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_foster.city           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ city_los.altos             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_los.gatos             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_menlo.park            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_mill.valley           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_milpitas              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1…
## $ city_morgan.hill           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_mountain.view         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_novato                <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_oakland               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_pacifica              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_palo.alto             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_petaluma              <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_pittsburg             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_redwood.city          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_redwood.shores        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_san.francisco         <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_san.jose              <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0…
## $ city_san.leandro           <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_san.rafael            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0…
## $ city_santa.clara           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_santa.rosa            <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
## $ city_sunnyvale             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_union.city            <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
## $ city_vallejo               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ city_walnut.creek          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ city_watsonville           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ county_alameda             <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0…
## $ county_contra.costa        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
## $ county_marin               <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0…
## $ county_san.francisco       <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ county_san.mateo           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0…
## $ county_santa.clara         <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1…
## $ county_santa.cruz          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ county_solano              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
## $ county_sonoma              <dbl> 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
# Specify model
xgboost_spec <- 
  boost_tree(trees = tune(), min_n = tune(), mtry = tune(), learn_rate = tune()) %>% 
  set_mode("regression") %>% 
  set_engine("xgboost") 

# Combine recipe and model using workflow
xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_recipe) %>% 
  add_model(xgboost_spec) 

# Tune hyperparameters
set.seed(344)
xgboost_tune <-
  tune_grid(xgboost_workflow, 
            resamples = data_cv, 
            grid = 5)

Evaluate Models

Make Predictions