1. load libraries

2. Perform DE analysis using Malignant_CD4Tcells_vs_Normal_CD4Tcells genes


Malignant_CD4Tcells_vs_Normal_CD4Tcells <- read.csv("../../2-DE_on_Harmony_Integration/Filtered_DE_Results_L4_with_MeanExpr.csv", header = T)

3. Create the EnhancedVolcano plot


EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells,
                lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
                x = "avg_log2FC",
                y = "p_val_adj",
                title = "MAST with Batch Correction (All Genes)",
                pCutoff = 0.05,
                FCcutoff = 1.0)
Avis : One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(Malignant_CD4Tcells_vs_Normal_CD4Tcells, 
                lab = Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene,
                x = "avg_log2FC", 
                y = "p_val_adj",
                selectLab = c('EPCAM', 'BCAT1', 'KIR3DL2', 'FOXM1', 'TWIST1', 'TNFSF9', 
                              'CD80',  'IL1B', 'RPS4Y1', 
                              'IL7R', 'TCF7',  'MKI67', 'CD70', 
                              'IL2RA','TRBV6-2', 'TRBV10-3', 'TRBV4-2', 'TRBV9', 'TRBV7-9', 
                              'TRAV12-1', 'CD8B', 'FCGR3A', 'GNLY', 'FOXP3', 'SELL', 
                              'GIMAP1', 'RIPOR2', 'LEF1', 'HOXC9', 'SP5',
                              'CCL17', 'ETV4', 'THY1', 'FOXA2', 'ITGAD', 'S100P', 'TBX4', 
                              'ID1', 'XCL1', 'SOX2', 'CD27', 'CD28','PLS3','CD70','RAB25' , 'TRBV27', 'TRBV2'),
                title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
                xlab = bquote(~Log[2]~ 'fold change'),
                pCutoff = 0.05,
                FCcutoff = 1.5, 
                pointSize = 3.0,
                labSize = 5.0,
                boxedLabels = TRUE,
                colAlpha = 0.5,
                legendPosition = 'right',
                legendLabSize = 10,
                legendIconSize = 4.0,
                drawConnectors = TRUE,
                widthConnectors = 0.5,
                colConnectors = 'grey50',
                arrowheads = FALSE,
                max.overlaps = 30)
Avis : One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

library(dplyr)
library(EnhancedVolcano)

# Assuming you have a data frame named Malignant_CD4Tcells_vs_Normal_CD4Tcells
# Filter genes based on lowest p-values but include all genes
filtered_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells %>%
  arrange(p_val_adj, desc(abs(avg_log2FC)))

# Create the EnhancedVolcano plot with the filtered data
EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_log2FC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells(cell lines) vs normal CD4 T cells",
  pCutoff = 0.05,
  FCcutoff = 1.0,
  legendPosition = 'right', 
  labCol = 'black',
  labFace = 'bold',
  boxedLabels = FALSE,  # Set to FALSE to remove boxed labels
  pointSize = 3.0,
  labSize = 5.0,
  col = c('grey70', 'black', 'blue', 'red'),  # Customize point colors
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]  # Only label significant genes
)
Avis : One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

EnhancedVolcano(
  filtered_genes, 
  lab = ifelse(filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0, filtered_genes$gene, NA),
  x = "avg_log2FC", 
  y = "p_val_adj",
  title = "Malignant CD4 T cells (cell lines) vs Normal CD4 T cells",
  subtitle = "Highlighting differentially expressed genes",
  pCutoff = 0.05,
  FCcutoff = 1.0,
  legendPosition = 'right',
  colAlpha = 0.8,  # Slight transparency for non-significant points
  col = c('grey70', 'black', 'blue', 'red'),  # Custom color scheme
  gridlines.major = TRUE,
  gridlines.minor = FALSE,
  selectLab = filtered_genes$gene[filtered_genes$p_val_adj <= 0.05 & abs(filtered_genes$avg_log2FC) >= 1.0]
) 
Avis : One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...

4. Enrichment Analysis-1


# Step-by-Step Guide for Gene Set Enrichment Analysis (GSEA) or Over-Representation Analysis (ORA)

# Load the necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(ReactomePA)

# Get upregulated genes based on log2FC and p-value thresholds
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Get downregulated genes based on log2FC and p-value thresholds
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Gene Ontology (GO) Enrichment Analysis
# GO enrichment for upregulated genes
go_up <- enrichGO(gene = upregulated_genes$gene, 
                  OrgDb = org.Hs.eg.db, 
                  keyType = "SYMBOL", 
                  ont = "BP",   # Biological Process (BP), Molecular Function (MF), Cellular Component (CC)
                  pAdjustMethod = "BH", 
                  pvalueCutoff = 0.05)

# GO enrichment for downregulated genes
go_down <- enrichGO(gene = downregulated_genes$gene, 
                    OrgDb = org.Hs.eg.db, 
                    keyType = "SYMBOL", 
                    ont = "BP", 
                    pAdjustMethod = "BH", 
                    pvalueCutoff = 0.05)

# Visualize the top enriched GO terms
dotplot(go_up, showCategory = 10, title = "GO Enrichment for Upregulated Genes")

dotplot(go_down, showCategory = 10, title = "GO Enrichment for Downregulated Genes")


# KEGG Pathway Enrichment
# Convert gene symbols to Entrez IDs for KEGG analysis
upregulated_entrez <- bitr(upregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:many mapping between keys and columns
Avis : 2.77% of input gene IDs are fail to map...
downregulated_entrez <- bitr(downregulated_genes$gene, fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)$ENTREZID
'select()' returned 1:1 mapping between keys and columns
Avis : 3.03% of input gene IDs are fail to map...
# KEGG pathway enrichment for upregulated genes
kegg_up <- enrichKEGG(gene = upregulated_entrez, 
                      organism = "hsa", 
                      pvalueCutoff = 0.05)

# KEGG pathway enrichment for downregulated genes
kegg_down <- enrichKEGG(gene = downregulated_entrez, 
                        organism = "hsa", 
                        pvalueCutoff = 0.05)

# Visualize KEGG pathway results
dotplot(kegg_up, showCategory = 10, title = "KEGG Pathway Enrichment for Upregulated Genes")

dotplot(kegg_down, showCategory = 6, title = "KEGG Pathway Enrichment for Downregulated Genes")


# Reactome Pathway Enrichment
# Reactome pathway enrichment for upregulated genes
reactome_up <- enrichPathway(gene = upregulated_entrez, 
                             organism = "human", 
                             pvalueCutoff = 0.05)

# Reactome pathway enrichment for downregulated genes
reactome_down <- enrichPathway(gene = downregulated_entrez, 
                               organism = "human", 
                               pvalueCutoff = 0.05)

# Visualize Reactome pathways
dotplot(reactome_up, showCategory = 10, title = "Reactome Pathway Enrichment for Upregulated Genes")

dotplot(reactome_down, showCategory = 10, title = "Reactome Pathway Enrichment for Downregulated Genes")


# Gene Set Enrichment Analysis (GSEA)
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene  # Use the $gene column for gene symbols
gene_list <- sort(gene_list, decreasing = TRUE)

# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list), fromType = "SYMBOL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Avis : 2.78% of input gene IDs are fail to map...
# Ensure the gene list matches the Entrez IDs
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]

# Replace gene symbols with Entrez IDs
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]

# Run GSEA using KEGG pathways
gsea_kegg <- gseKEGG(geneList = gene_list, 
                     organism = "hsa", 
                     pvalueCutoff = 0.05)
preparing geneSet collections...
GSEA analysis...
Avis : There are ties in the preranked stats (0.07% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.Avis : There were 4 pathways for which P-values were not calculated properly due to unbalanced (positive and negative) gene-level statistic values. For such pathways pval, padj, NES, log2err are set to NA. You can try to increase the value of the argument nPermSimple (for example set it nPermSimple = 10000)Avis : For some pathways, in reality P-values are less than 1e-10. You can set the `eps` argument to zero for better estimation.leading edge analysis...
done...
# Plot the GSEA results
gseaplot(gsea_kegg, geneSetID = 1, title = "Top KEGG Pathway")


# Extract the name of the top KEGG pathway
top_pathway <- gsea_kegg@result[1, "Description"]

# Plot GSEA with the top pathway's name as the title
gseaplot(gsea_kegg, geneSetID = 1, title = top_pathway)

NA
NA

4.2. Enrichment Analysis-2


# Load necessary libraries
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)

# Load Hallmark gene sets from msigdbr
hallmark_sets <- msigdbr(species = "Homo sapiens", category = "H")  # "H" is for Hallmark gene sets

# Get upregulated and downregulated genes based on log2 fold change and adjusted p-value
upregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]
downregulated_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05, ]

# Convert gene symbols to uppercase for consistency
upregulated_genes$gene <- toupper(upregulated_genes$gene)
downregulated_genes$gene <- toupper(downregulated_genes$gene)

# Check for overlap between your upregulated/downregulated genes and Hallmark gene sets
upregulated_in_hallmark <- intersect(upregulated_genes$gene, hallmark_sets$gene_symbol)
downregulated_in_hallmark <- intersect(downregulated_genes$gene, hallmark_sets$gene_symbol)

# Print the number of overlapping genes for both upregulated and downregulated genes
cat("Number of upregulated genes in Hallmark gene sets:", length(upregulated_in_hallmark), "\n")
Number of upregulated genes in Hallmark gene sets: 1768 
cat("Number of downregulated genes in Hallmark gene sets:", length(downregulated_in_hallmark), "\n")
Number of downregulated genes in Hallmark gene sets: 58 
# If there are genes to analyze, proceed with enrichment analysis
if (length(upregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for upregulated genes using Hallmark gene sets
  hallmark_up <- enricher(gene = upregulated_in_hallmark, 
                          TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                          pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_up) && nrow(hallmark_up) > 0) {
    # Visualize results if available
    dotplot(hallmark_up, showCategory = 20, title = "Hallmark Pathway Enrichment for Upregulated Genes")
  } else {
    cat("No significant enrichment found for upregulated genes.\n")
  }
} else {
  cat("No upregulated genes overlap with Hallmark gene sets.\n")
}


if (length(downregulated_in_hallmark) > 0) {
  # Perform enrichment analysis for downregulated genes using Hallmark gene sets
  hallmark_down <- enricher(gene = downregulated_in_hallmark, 
                            TERM2GENE = hallmark_sets[, c("gs_name", "gene_symbol")],  # Ensure TERM2GENE uses correct columns
                            pvalueCutoff = 0.05)
  # Check if results exist
  if (!is.null(hallmark_down) && nrow(hallmark_down) > 0) {
    # Visualize results if available
    dotplot(hallmark_down, showCategory = 20, title = "Hallmark Pathway Enrichment for Downregulated Genes")
  } else {
    cat("No significant enrichment found for downregulated genes.\n")
  }
} else {
  cat("No downregulated genes overlap with Hallmark gene sets.\n")
}

NA
NA
NA
NA
NA

4.3. Hallmark-GSEA

# Gene Set Enrichment Analysis (GSEA) for Hallmark Pathways
# Create a ranked list of genes (log2FC as ranking metric)
gene_list <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC
names(gene_list) <- Malignant_CD4Tcells_vs_Normal_CD4Tcells$gene
gene_list <- sort(gene_list, decreasing = TRUE)

# Convert gene symbols to Entrez IDs for GSEA
gene_df <- bitr(names(gene_list), 
                fromType = "SYMBOL", 
                toType = "ENTREZID", 
                OrgDb = org.Hs.eg.db)
'select()' returned 1:many mapping between keys and columns
Avis : 2.78% of input gene IDs are fail to map...
# Filter out genes without Entrez ID mappings
gene_list <- gene_list[names(gene_list) %in% gene_df$SYMBOL]

# Replace gene symbols with Entrez IDs in the gene list
names(gene_list) <- gene_df$ENTREZID[match(names(gene_list), gene_df$SYMBOL)]

# Run GSEA using Hallmark pathways
gsea_hallmark <- GSEA(geneList = gene_list, 
                      TERM2GENE = hallmark_sets[, c("gs_name", "entrez_gene")], 
                      pvalueCutoff = 0.05)
preparing geneSet collections...
GSEA analysis...
Avis : There are ties in the preranked stats (0.07% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.Avis : For some pathways, in reality P-values are less than 1e-10. You can set the `eps` argument to zero for better estimation.leading edge analysis...
done...
# Check and visualize GSEA results
if (!is.null(gsea_hallmark) && nrow(gsea_hallmark) > 0) {
  # Visualize top GSEA results for Hallmark pathways
  dotplot(gsea_hallmark, showCategory = 20, title = "GSEA for Hallmark Pathways")
  
  # Plot enrichment score for the top pathway
  gseaplot(gsea_hallmark, geneSetID = 1, title = "Top Hallmark Pathway")
  
  # Extract the name of the top Hallmark pathway
  top_hallmark <- gsea_hallmark@result[1, "Description"]
  
  # Plot GSEA with the top pathway's name as the title
  gseaplot(gsea_hallmark, geneSetID = 1, title = top_hallmark)
} else {
  cat("No significant GSEA results for Hallmark pathways.\n")
}

NA
NA
NA

5. ggplot2 for Volcano

library(ggplot2)
library(ggrepel)

# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.05 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, ]

# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, "Upregulated genes",
                                                   ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, "Downregulated genes", "Nonsignificant"))

# Create a volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
  geom_point(aes(color = color), alpha = 0.7, size = 2) +
  
  # Add labels for top and bottom genes
  geom_text_repel(data = top_genes, aes(label = gene), color = "black", vjust = 1, fontface = "bold") +
  geom_text_repel(data = bottom_genes, aes(label = gene), color = "black", vjust = -1, fontface = "bold") +
  
  # Customize labels and title
  labs(title = "Volcano Plot",
       x = "log2 Fold Change",
       y = "-log10(p-value)") +
  
  # # Add significance threshold lines
   geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
   geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
  
  # Set colors for top and bottom genes
  scale_color_manual(values = c("Upregulated genes" = "red", "Downregulated genes" = "blue", "Nonsignificant" = "darkgrey")) +
  
  # Customize theme if needed
  theme_minimal()

NA
NA
NA
NA
NA

5. ggplot3 for Volcano

# Load necessary libraries
library(ggplot2)
library(ggrepel)

# Identify top and bottom genes
top_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 4, ]
bottom_genes <- Malignant_CD4Tcells_vs_Normal_CD4Tcells[Malignant_CD4Tcells_vs_Normal_CD4Tcells$p_val_adj < 0.00001 & Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -4, ]

# Create a new column for color based on significance
Malignant_CD4Tcells_vs_Normal_CD4Tcells$color <- ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC > 0.5, 
                                                        "Upregulated genes",
                                                        ifelse(Malignant_CD4Tcells_vs_Normal_CD4Tcells$avg_log2FC < -0.5, 
                                                               "Downregulated genes", 
                                                               "Nonsignificant"))

# Create the volcano plot
ggplot(Malignant_CD4Tcells_vs_Normal_CD4Tcells, aes(x = avg_log2FC, y = -log10(p_val_adj))) +
  geom_point(aes(color = color), alpha = 0.7, size = 2) +
  
  # Add labels next to the dots without repel lines
  geom_text(data = top_genes, aes(label = gene), hjust = -0.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
  geom_text(data = bottom_genes, aes(label = gene), hjust = 1.2, vjust = 0, size = 3, color = "black", fontface = "bold") +
  
  # Customize labels and title
  labs(title = "Volcano Plot",
       x = "log2 Fold Change",
       y = "-log10(p-value)") +
  
  # Add significance threshold lines
  geom_hline(yintercept = -log10(0.00001), linetype = "dashed", color = "black") +
  geom_vline(xintercept = c(-0.5, 0.5), linetype = "dashed", color = "black") +
  
  # Set colors for top and bottom genes
  scale_color_manual(values = c("Upregulated genes" = "red", 
                                "Downregulated genes" = "blue", 
                                "Nonsignificant" = "darkgrey")) +
  
  # Customize theme
  theme_minimal()

NA
NA
LS0tCnRpdGxlOiAiRGlmZmVyZW50aWFsIEV4cHJlc3Npb24gQW5hbHlzaXMgb2YgTDQgdnMgQ29udHJvbChOb3JtYWwgQ0Q0IFRjZWxscyktR1NFQSIKYXV0aG9yOiBOYXNpciBNYWhtb29kIEFiYmFzaQpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKICAjcm1kZm9ybWF0czo6cmVhZHRoZWRvd24KICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKLS0tCgojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQoKbGlicmFyeShTZXVyYXQpCmxpYnJhcnkoU2V1cmF0T2JqZWN0KQpsaWJyYXJ5KFNldXJhdERhdGEpCmxpYnJhcnkocGF0Y2h3b3JrKQpsaWJyYXJ5KGhhcm1vbnkpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShjb3dwbG90KQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQpsaWJyYXJ5KGdyaWRFeHRyYSkKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCiAgCgpgYGAKCiMgMi4gUGVyZm9ybSBERSBhbmFseXNpcyB1c2luZyBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgZ2VuZXMKYGBge3IgZGF0YTEsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEyfQoKTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzIDwtIHJlYWQuY3N2KCIuLi8uLi8yLURFX29uX0hhcm1vbnlfSW50ZWdyYXRpb24vRmlsdGVyZWRfREVfUmVzdWx0c19MNF93aXRoX01lYW5FeHByLmNzdiIsIGhlYWRlciA9IFQpCmBgYAoKIyAzLiBDcmVhdGUgdGhlIEVuaGFuY2VkVm9sY2FubyBwbG90CmBgYHtyIGVuaGFuY2VkViwgZmlnLmhlaWdodD0xMiwgZmlnLndpZHRoPTE2fQoKRW5oYW5jZWRWb2xjYW5vKE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywKICAgICAgICAgICAgICAgIGxhYiA9IE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRnZW5lLAogICAgICAgICAgICAgICAgeCA9ICJhdmdfbG9nMkZDIiwKICAgICAgICAgICAgICAgIHkgPSAicF92YWxfYWRqIiwKICAgICAgICAgICAgICAgIHRpdGxlID0gIk1BU1Qgd2l0aCBCYXRjaCBDb3JyZWN0aW9uIChBbGwgR2VuZXMpIiwKICAgICAgICAgICAgICAgIHBDdXRvZmYgPSAwLjA1LAogICAgICAgICAgICAgICAgRkNjdXRvZmYgPSAxLjApCgoKRW5oYW5jZWRWb2xjYW5vKE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywgCiAgICAgICAgICAgICAgICBsYWIgPSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSwKICAgICAgICAgICAgICAgIHggPSAiYXZnX2xvZzJGQyIsIAogICAgICAgICAgICAgICAgeSA9ICJwX3ZhbF9hZGoiLAogICAgICAgICAgICAgICAgc2VsZWN0TGFiID0gYygnRVBDQU0nLCAnQkNBVDEnLCAnS0lSM0RMMicsICdGT1hNMScsICdUV0lTVDEnLCAnVE5GU0Y5JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdDRDgwJywgICdJTDFCJywgJ1JQUzRZMScsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnSUw3UicsICdUQ0Y3JywgICdNS0k2NycsICdDRDcwJywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdJTDJSQScsJ1RSQlY2LTInLCAnVFJCVjEwLTMnLCAnVFJCVjQtMicsICdUUkJWOScsICdUUkJWNy05JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICdUUkFWMTItMScsICdDRDhCJywgJ0ZDR1IzQScsICdHTkxZJywgJ0ZPWFAzJywgJ1NFTEwnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0dJTUFQMScsICdSSVBPUjInLCAnTEVGMScsICdIT1hDOScsICdTUDUnLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnQ0NMMTcnLCAnRVRWNCcsICdUSFkxJywgJ0ZPWEEyJywgJ0lUR0FEJywgJ1MxMDBQJywgJ1RCWDQnLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ0lEMScsICdYQ0wxJywgJ1NPWDInLCAnQ0QyNycsICdDRDI4JywnUExTMycsJ0NENzAnLCdSQUIyNScgLCAnVFJCVjI3JywgJ1RSQlYyJyksCiAgICAgICAgICAgICAgICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICAgICAgICAgICAgICAgIHhsYWIgPSBicXVvdGUofkxvZ1syXX4gJ2ZvbGQgY2hhbmdlJyksCiAgICAgICAgICAgICAgICBwQ3V0b2ZmID0gMC4wNSwKICAgICAgICAgICAgICAgIEZDY3V0b2ZmID0gMS41LCAKICAgICAgICAgICAgICAgIHBvaW50U2l6ZSA9IDMuMCwKICAgICAgICAgICAgICAgIGxhYlNpemUgPSA1LjAsCiAgICAgICAgICAgICAgICBib3hlZExhYmVscyA9IFRSVUUsCiAgICAgICAgICAgICAgICBjb2xBbHBoYSA9IDAuNSwKICAgICAgICAgICAgICAgIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICAgICAgICAgICAgICAgIGxlZ2VuZExhYlNpemUgPSAxMCwKICAgICAgICAgICAgICAgIGxlZ2VuZEljb25TaXplID0gNC4wLAogICAgICAgICAgICAgICAgZHJhd0Nvbm5lY3RvcnMgPSBUUlVFLAogICAgICAgICAgICAgICAgd2lkdGhDb25uZWN0b3JzID0gMC41LAogICAgICAgICAgICAgICAgY29sQ29ubmVjdG9ycyA9ICdncmV5NTAnLAogICAgICAgICAgICAgICAgYXJyb3doZWFkcyA9IEZBTFNFLAogICAgICAgICAgICAgICAgbWF4Lm92ZXJsYXBzID0gMzApCgoKbGlicmFyeShkcGx5cikKbGlicmFyeShFbmhhbmNlZFZvbGNhbm8pCgojIEFzc3VtaW5nIHlvdSBoYXZlIGEgZGF0YSBmcmFtZSBuYW1lZCBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMKIyBGaWx0ZXIgZ2VuZXMgYmFzZWQgb24gbG93ZXN0IHAtdmFsdWVzIGJ1dCBpbmNsdWRlIGFsbCBnZW5lcwpmaWx0ZXJlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMgJT4lCiAgYXJyYW5nZShwX3ZhbF9hZGosIGRlc2MoYWJzKGF2Z19sb2cyRkMpKSkKCiMgQ3JlYXRlIHRoZSBFbmhhbmNlZFZvbGNhbm8gcGxvdCB3aXRoIHRoZSBmaWx0ZXJlZCBkYXRhCkVuaGFuY2VkVm9sY2FubygKICBmaWx0ZXJlZF9nZW5lcywgCiAgbGFiID0gaWZlbHNlKGZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMCwgZmlsdGVyZWRfZ2VuZXMkZ2VuZSwgTkEpLAogIHggPSAiYXZnX2xvZzJGQyIsIAogIHkgPSAicF92YWxfYWRqIiwKICB0aXRsZSA9ICJNYWxpZ25hbnQgQ0Q0IFQgY2VsbHMoY2VsbCBsaW5lcykgdnMgbm9ybWFsIENENCBUIGNlbGxzIiwKICBwQ3V0b2ZmID0gMC4wNSwKICBGQ2N1dG9mZiA9IDEuMCwKICBsZWdlbmRQb3NpdGlvbiA9ICdyaWdodCcsIAogIGxhYkNvbCA9ICdibGFjaycsCiAgbGFiRmFjZSA9ICdib2xkJywKICBib3hlZExhYmVscyA9IEZBTFNFLCAgIyBTZXQgdG8gRkFMU0UgdG8gcmVtb3ZlIGJveGVkIGxhYmVscwogIHBvaW50U2l6ZSA9IDMuMCwKICBsYWJTaXplID0gNS4wLAogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b21pemUgcG9pbnQgY29sb3JzCiAgc2VsZWN0TGFiID0gZmlsdGVyZWRfZ2VuZXMkZ2VuZVtmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjBdICAjIE9ubHkgbGFiZWwgc2lnbmlmaWNhbnQgZ2VuZXMKKQoKCgpFbmhhbmNlZFZvbGNhbm8oCiAgZmlsdGVyZWRfZ2VuZXMsIAogIGxhYiA9IGlmZWxzZShmaWx0ZXJlZF9nZW5lcyRwX3ZhbF9hZGogPD0gMC4wNSAmIGFicyhmaWx0ZXJlZF9nZW5lcyRhdmdfbG9nMkZDKSA+PSAxLjAsIGZpbHRlcmVkX2dlbmVzJGdlbmUsIE5BKSwKICB4ID0gImF2Z19sb2cyRkMiLCAKICB5ID0gInBfdmFsX2FkaiIsCiAgdGl0bGUgPSAiTWFsaWduYW50IENENCBUIGNlbGxzIChjZWxsIGxpbmVzKSB2cyBOb3JtYWwgQ0Q0IFQgY2VsbHMiLAogIHN1YnRpdGxlID0gIkhpZ2hsaWdodGluZyBkaWZmZXJlbnRpYWxseSBleHByZXNzZWQgZ2VuZXMiLAogIHBDdXRvZmYgPSAwLjA1LAogIEZDY3V0b2ZmID0gMS4wLAogIGxlZ2VuZFBvc2l0aW9uID0gJ3JpZ2h0JywKICBjb2xBbHBoYSA9IDAuOCwgICMgU2xpZ2h0IHRyYW5zcGFyZW5jeSBmb3Igbm9uLXNpZ25pZmljYW50IHBvaW50cwogIGNvbCA9IGMoJ2dyZXk3MCcsICdibGFjaycsICdibHVlJywgJ3JlZCcpLCAgIyBDdXN0b20gY29sb3Igc2NoZW1lCiAgZ3JpZGxpbmVzLm1ham9yID0gVFJVRSwKICBncmlkbGluZXMubWlub3IgPSBGQUxTRSwKICBzZWxlY3RMYWIgPSBmaWx0ZXJlZF9nZW5lcyRnZW5lW2ZpbHRlcmVkX2dlbmVzJHBfdmFsX2FkaiA8PSAwLjA1ICYgYWJzKGZpbHRlcmVkX2dlbmVzJGF2Z19sb2cyRkMpID49IDEuMF0KKSAKCgpgYGAKCgojIDQuIEVucmljaG1lbnQgQW5hbHlzaXMtMQpgYGB7ciAsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKIyBTdGVwLWJ5LVN0ZXAgR3VpZGUgZm9yIEdlbmUgU2V0IEVucmljaG1lbnQgQW5hbHlzaXMgKEdTRUEpIG9yIE92ZXItUmVwcmVzZW50YXRpb24gQW5hbHlzaXMgKE9SQSkKCiMgTG9hZCB0aGUgbmVjZXNzYXJ5IGxpYnJhcmllcwpsaWJyYXJ5KGNsdXN0ZXJQcm9maWxlcikKbGlicmFyeShvcmcuSHMuZWcuZGIpCmxpYnJhcnkoZW5yaWNocGxvdCkKbGlicmFyeShSZWFjdG9tZVBBKQoKIyBHZXQgdXByZWd1bGF0ZWQgZ2VuZXMgYmFzZWQgb24gbG9nMkZDIGFuZCBwLXZhbHVlIHRocmVzaG9sZHMKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMC41ICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUsIF0KCiMgR2V0IGRvd25yZWd1bGF0ZWQgZ2VuZXMgYmFzZWQgb24gbG9nMkZDIGFuZCBwLXZhbHVlIHRocmVzaG9sZHMKZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41ICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUsIF0KCiMgR2VuZSBPbnRvbG9neSAoR08pIEVucmljaG1lbnQgQW5hbHlzaXMKIyBHTyBlbnJpY2htZW50IGZvciB1cHJlZ3VsYXRlZCBnZW5lcwpnb191cCA8LSBlbnJpY2hHTyhnZW5lID0gdXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgCiAgICAgICAgICAgICAgICAgIE9yZ0RiID0gb3JnLkhzLmVnLmRiLCAKICAgICAgICAgICAgICAgICAga2V5VHlwZSA9ICJTWU1CT0wiLCAKICAgICAgICAgICAgICAgICAgb250ID0gIkJQIiwgICAjIEJpb2xvZ2ljYWwgUHJvY2VzcyAoQlApLCBNb2xlY3VsYXIgRnVuY3Rpb24gKE1GKSwgQ2VsbHVsYXIgQ29tcG9uZW50IChDQykKICAgICAgICAgICAgICAgICAgcEFkanVzdE1ldGhvZCA9ICJCSCIsIAogICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQoKIyBHTyBlbnJpY2htZW50IGZvciBkb3ducmVndWxhdGVkIGdlbmVzCmdvX2Rvd24gPC0gZW5yaWNoR08oZ2VuZSA9IGRvd25yZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgCiAgICAgICAgICAgICAgICAgICAgT3JnRGIgPSBvcmcuSHMuZWcuZGIsIAogICAgICAgICAgICAgICAgICAgIGtleVR5cGUgPSAiU1lNQk9MIiwgCiAgICAgICAgICAgICAgICAgICAgb250ID0gIkJQIiwgCiAgICAgICAgICAgICAgICAgICAgcEFkanVzdE1ldGhvZCA9ICJCSCIsIAogICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSB0aGUgdG9wIGVucmljaGVkIEdPIHRlcm1zCmRvdHBsb3QoZ29fdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJHTyBFbnJpY2htZW50IGZvciBVcHJlZ3VsYXRlZCBHZW5lcyIpCmRvdHBsb3QoZ29fZG93biwgc2hvd0NhdGVnb3J5ID0gMTAsIHRpdGxlID0gIkdPIEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQoKIyBLRUdHIFBhdGh3YXkgRW5yaWNobWVudAojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIEtFR0cgYW5hbHlzaXMKdXByZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIodXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSwgZnJvbVR5cGUgPSAiU1lNQk9MIiwgdG9UeXBlID0gIkVOVFJFWklEIiwgT3JnRGIgPSBvcmcuSHMuZWcuZGIpJEVOVFJFWklECmRvd25yZWd1bGF0ZWRfZW50cmV6IDwtIGJpdHIoZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBmcm9tVHlwZSA9ICJTWU1CT0wiLCB0b1R5cGUgPSAiRU5UUkVaSUQiLCBPcmdEYiA9IG9yZy5Icy5lZy5kYikkRU5UUkVaSUQKCiMgS0VHRyBwYXRod2F5IGVucmljaG1lbnQgZm9yIHVwcmVndWxhdGVkIGdlbmVzCmtlZ2dfdXAgPC0gZW5yaWNoS0VHRyhnZW5lID0gdXByZWd1bGF0ZWRfZW50cmV6LCAKICAgICAgICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gImhzYSIsIAogICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgS0VHRyBwYXRod2F5IGVucmljaG1lbnQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMKa2VnZ19kb3duIDwtIGVucmljaEtFR0coZ2VuZSA9IGRvd25yZWd1bGF0ZWRfZW50cmV6LCAKICAgICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHNhIiwgCiAgICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIFZpc3VhbGl6ZSBLRUdHIHBhdGh3YXkgcmVzdWx0cwpkb3RwbG90KGtlZ2dfdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJLRUdHIFBhdGh3YXkgRW5yaWNobWVudCBmb3IgVXByZWd1bGF0ZWQgR2VuZXMiKQpkb3RwbG90KGtlZ2dfZG93biwgc2hvd0NhdGVnb3J5ID0gNiwgdGl0bGUgPSAiS0VHRyBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQoKIyBSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQKIyBSZWFjdG9tZSBwYXRod2F5IGVucmljaG1lbnQgZm9yIHVwcmVndWxhdGVkIGdlbmVzCnJlYWN0b21lX3VwIDwtIGVucmljaFBhdGh3YXkoZ2VuZSA9IHVwcmVndWxhdGVkX2VudHJleiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgb3JnYW5pc20gPSAiaHVtYW4iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQoKIyBSZWFjdG9tZSBwYXRod2F5IGVucmljaG1lbnQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMKcmVhY3RvbWVfZG93biA8LSBlbnJpY2hQYXRod2F5KGdlbmUgPSBkb3ducmVndWxhdGVkX2VudHJleiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBvcmdhbmlzbSA9ICJodW1hbiIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKCiMgVmlzdWFsaXplIFJlYWN0b21lIHBhdGh3YXlzCmRvdHBsb3QocmVhY3RvbWVfdXAsIHNob3dDYXRlZ29yeSA9IDEwLCB0aXRsZSA9ICJSZWFjdG9tZSBQYXRod2F5IEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIikKZG90cGxvdChyZWFjdG9tZV9kb3duLCBzaG93Q2F0ZWdvcnkgPSAxMCwgdGl0bGUgPSAiUmVhY3RvbWUgUGF0aHdheSBFbnJpY2htZW50IGZvciBEb3ducmVndWxhdGVkIEdlbmVzIikKCiMgR2VuZSBTZXQgRW5yaWNobWVudCBBbmFseXNpcyAoR1NFQSkKIyBDcmVhdGUgYSByYW5rZWQgbGlzdCBvZiBnZW5lcyAobG9nMkZDIGFzIHJhbmtpbmcgbWV0cmljKQpnZW5lX2xpc3QgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMKbmFtZXMoZ2VuZV9saXN0KSA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZSAgIyBVc2UgdGhlICRnZW5lIGNvbHVtbiBmb3IgZ2VuZSBzeW1ib2xzCmdlbmVfbGlzdCA8LSBzb3J0KGdlbmVfbGlzdCwgZGVjcmVhc2luZyA9IFRSVUUpCgojIENvbnZlcnQgZ2VuZSBzeW1ib2xzIHRvIEVudHJleiBJRHMgZm9yIEdTRUEKZ2VuZV9kZiA8LSBiaXRyKG5hbWVzKGdlbmVfbGlzdCksIGZyb21UeXBlID0gIlNZTUJPTCIsIHRvVHlwZSA9ICJFTlRSRVpJRCIsIE9yZ0RiID0gb3JnLkhzLmVnLmRiKQoKIyBFbnN1cmUgdGhlIGdlbmUgbGlzdCBtYXRjaGVzIHRoZSBFbnRyZXogSURzCmdlbmVfbGlzdCA8LSBnZW5lX2xpc3RbbmFtZXMoZ2VuZV9saXN0KSAlaW4lIGdlbmVfZGYkU1lNQk9MXQoKIyBSZXBsYWNlIGdlbmUgc3ltYm9scyB3aXRoIEVudHJleiBJRHMKbmFtZXMoZ2VuZV9saXN0KSA8LSBnZW5lX2RmJEVOVFJFWklEW21hdGNoKG5hbWVzKGdlbmVfbGlzdCksIGdlbmVfZGYkU1lNQk9MKV0KCiMgUnVuIEdTRUEgdXNpbmcgS0VHRyBwYXRod2F5cwpnc2VhX2tlZ2cgPC0gZ3NlS0VHRyhnZW5lTGlzdCA9IGdlbmVfbGlzdCwgCiAgICAgICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gImhzYSIsIAogICAgICAgICAgICAgICAgICAgICBwdmFsdWVDdXRvZmYgPSAwLjA1KQoKIyBQbG90IHRoZSBHU0VBIHJlc3VsdHMKZ3NlYXBsb3QoZ3NlYV9rZWdnLCBnZW5lU2V0SUQgPSAxLCB0aXRsZSA9ICJUb3AgS0VHRyBQYXRod2F5IikKCiMgRXh0cmFjdCB0aGUgbmFtZSBvZiB0aGUgdG9wIEtFR0cgcGF0aHdheQp0b3BfcGF0aHdheSA8LSBnc2VhX2tlZ2dAcmVzdWx0WzEsICJEZXNjcmlwdGlvbiJdCgojIFBsb3QgR1NFQSB3aXRoIHRoZSB0b3AgcGF0aHdheSdzIG5hbWUgYXMgdGhlIHRpdGxlCmdzZWFwbG90KGdzZWFfa2VnZywgZ2VuZVNldElEID0gMSwgdGl0bGUgPSB0b3BfcGF0aHdheSkKCgpgYGAKCgoKCiMgNC4yLiBFbnJpY2htZW50IEFuYWx5c2lzLTIKYGBge3IgLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCiMgTG9hZCBuZWNlc3NhcnkgbGlicmFyaWVzCmxpYnJhcnkoY2x1c3RlclByb2ZpbGVyKQpsaWJyYXJ5KG9yZy5Icy5lZy5kYikKbGlicmFyeShtc2lnZGJyKQpsaWJyYXJ5KGVucmljaHBsb3QpCgojIExvYWQgSGFsbG1hcmsgZ2VuZSBzZXRzIGZyb20gbXNpZ2RicgpoYWxsbWFya19zZXRzIDwtIG1zaWdkYnIoc3BlY2llcyA9ICJIb21vIHNhcGllbnMiLCBjYXRlZ29yeSA9ICJIIikgICMgIkgiIGlzIGZvciBIYWxsbWFyayBnZW5lIHNldHMKCiMgR2V0IHVwcmVndWxhdGVkIGFuZCBkb3ducmVndWxhdGVkIGdlbmVzIGJhc2VkIG9uIGxvZzIgZm9sZCBjaGFuZ2UgYW5kIGFkanVzdGVkIHAtdmFsdWUKdXByZWd1bGF0ZWRfZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMC41ICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUsIF0KZG93bnJlZ3VsYXRlZF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41ICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUsIF0KCiMgQ29udmVydCBnZW5lIHN5bWJvbHMgdG8gdXBwZXJjYXNlIGZvciBjb25zaXN0ZW5jeQp1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIodXByZWd1bGF0ZWRfZ2VuZXMkZ2VuZSkKZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lIDwtIHRvdXBwZXIoZG93bnJlZ3VsYXRlZF9nZW5lcyRnZW5lKQoKIyBDaGVjayBmb3Igb3ZlcmxhcCBiZXR3ZWVuIHlvdXIgdXByZWd1bGF0ZWQvZG93bnJlZ3VsYXRlZCBnZW5lcyBhbmQgSGFsbG1hcmsgZ2VuZSBzZXRzCnVwcmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdCh1cHJlZ3VsYXRlZF9nZW5lcyRnZW5lLCBoYWxsbWFya19zZXRzJGdlbmVfc3ltYm9sKQpkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrIDwtIGludGVyc2VjdChkb3ducmVndWxhdGVkX2dlbmVzJGdlbmUsIGhhbGxtYXJrX3NldHMkZ2VuZV9zeW1ib2wpCgojIFByaW50IHRoZSBudW1iZXIgb2Ygb3ZlcmxhcHBpbmcgZ2VuZXMgZm9yIGJvdGggdXByZWd1bGF0ZWQgYW5kIGRvd25yZWd1bGF0ZWQgZ2VuZXMKY2F0KCJOdW1iZXIgb2YgdXByZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aCh1cHJlZ3VsYXRlZF9pbl9oYWxsbWFyayksICJcbiIpCmNhdCgiTnVtYmVyIG9mIGRvd25yZWd1bGF0ZWQgZ2VuZXMgaW4gSGFsbG1hcmsgZ2VuZSBzZXRzOiIsIGxlbmd0aChkb3ducmVndWxhdGVkX2luX2hhbGxtYXJrKSwgIlxuIikKCiMgSWYgdGhlcmUgYXJlIGdlbmVzIHRvIGFuYWx5emUsIHByb2NlZWQgd2l0aCBlbnJpY2htZW50IGFuYWx5c2lzCmlmIChsZW5ndGgodXByZWd1bGF0ZWRfaW5faGFsbG1hcmspID4gMCkgewogICMgUGVyZm9ybSBlbnJpY2htZW50IGFuYWx5c2lzIGZvciB1cHJlZ3VsYXRlZCBnZW5lcyB1c2luZyBIYWxsbWFyayBnZW5lIHNldHMKICBoYWxsbWFya191cCA8LSBlbnJpY2hlcihnZW5lID0gdXByZWd1bGF0ZWRfaW5faGFsbG1hcmssIAogICAgICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImdlbmVfc3ltYm9sIildLCAgIyBFbnN1cmUgVEVSTTJHRU5FIHVzZXMgY29ycmVjdCBjb2x1bW5zCiAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfdXApICYmIG5yb3coaGFsbG1hcmtfdXApID4gMCkgewogICAgIyBWaXN1YWxpemUgcmVzdWx0cyBpZiBhdmFpbGFibGUKICAgIGRvdHBsb3QoaGFsbG1hcmtfdXAsIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIFVwcmVndWxhdGVkIEdlbmVzIikKICB9IGVsc2UgewogICAgY2F0KCJObyBzaWduaWZpY2FudCBlbnJpY2htZW50IGZvdW5kIGZvciB1cHJlZ3VsYXRlZCBnZW5lcy5cbiIpCiAgfQp9IGVsc2UgewogIGNhdCgiTm8gdXByZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCmlmIChsZW5ndGgoZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaykgPiAwKSB7CiAgIyBQZXJmb3JtIGVucmljaG1lbnQgYW5hbHlzaXMgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMgdXNpbmcgSGFsbG1hcmsgZ2VuZSBzZXRzCiAgaGFsbG1hcmtfZG93biA8LSBlbnJpY2hlcihnZW5lID0gZG93bnJlZ3VsYXRlZF9pbl9oYWxsbWFyaywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBURVJNMkdFTkUgPSBoYWxsbWFya19zZXRzWywgYygiZ3NfbmFtZSIsICJnZW5lX3N5bWJvbCIpXSwgICMgRW5zdXJlIFRFUk0yR0VORSB1c2VzIGNvcnJlY3QgY29sdW1ucwogICAgICAgICAgICAgICAgICAgICAgICAgICAgcHZhbHVlQ3V0b2ZmID0gMC4wNSkKICAjIENoZWNrIGlmIHJlc3VsdHMgZXhpc3QKICBpZiAoIWlzLm51bGwoaGFsbG1hcmtfZG93bikgJiYgbnJvdyhoYWxsbWFya19kb3duKSA+IDApIHsKICAgICMgVmlzdWFsaXplIHJlc3VsdHMgaWYgYXZhaWxhYmxlCiAgICBkb3RwbG90KGhhbGxtYXJrX2Rvd24sIHNob3dDYXRlZ29yeSA9IDIwLCB0aXRsZSA9ICJIYWxsbWFyayBQYXRod2F5IEVucmljaG1lbnQgZm9yIERvd25yZWd1bGF0ZWQgR2VuZXMiKQogIH0gZWxzZSB7CiAgICBjYXQoIk5vIHNpZ25pZmljYW50IGVucmljaG1lbnQgZm91bmQgZm9yIGRvd25yZWd1bGF0ZWQgZ2VuZXMuXG4iKQogIH0KfSBlbHNlIHsKICBjYXQoIk5vIGRvd25yZWd1bGF0ZWQgZ2VuZXMgb3ZlcmxhcCB3aXRoIEhhbGxtYXJrIGdlbmUgc2V0cy5cbiIpCn0KCgoKCgpgYGAKIyA0LjMuIEhhbGxtYXJrLUdTRUEKYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KIyBHZW5lIFNldCBFbnJpY2htZW50IEFuYWx5c2lzIChHU0VBKSBmb3IgSGFsbG1hcmsgUGF0aHdheXMKIyBDcmVhdGUgYSByYW5rZWQgbGlzdCBvZiBnZW5lcyAobG9nMkZDIGFzIHJhbmtpbmcgbWV0cmljKQpnZW5lX2xpc3QgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMKbmFtZXMoZ2VuZV9saXN0KSA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkZ2VuZQpnZW5lX2xpc3QgPC0gc29ydChnZW5lX2xpc3QsIGRlY3JlYXNpbmcgPSBUUlVFKQoKIyBDb252ZXJ0IGdlbmUgc3ltYm9scyB0byBFbnRyZXogSURzIGZvciBHU0VBCmdlbmVfZGYgPC0gYml0cihuYW1lcyhnZW5lX2xpc3QpLCAKICAgICAgICAgICAgICAgIGZyb21UeXBlID0gIlNZTUJPTCIsIAogICAgICAgICAgICAgICAgdG9UeXBlID0gIkVOVFJFWklEIiwgCiAgICAgICAgICAgICAgICBPcmdEYiA9IG9yZy5Icy5lZy5kYikKCiMgRmlsdGVyIG91dCBnZW5lcyB3aXRob3V0IEVudHJleiBJRCBtYXBwaW5ncwpnZW5lX2xpc3QgPC0gZ2VuZV9saXN0W25hbWVzKGdlbmVfbGlzdCkgJWluJSBnZW5lX2RmJFNZTUJPTF0KCiMgUmVwbGFjZSBnZW5lIHN5bWJvbHMgd2l0aCBFbnRyZXogSURzIGluIHRoZSBnZW5lIGxpc3QKbmFtZXMoZ2VuZV9saXN0KSA8LSBnZW5lX2RmJEVOVFJFWklEW21hdGNoKG5hbWVzKGdlbmVfbGlzdCksIGdlbmVfZGYkU1lNQk9MKV0KCiMgUnVuIEdTRUEgdXNpbmcgSGFsbG1hcmsgcGF0aHdheXMKZ3NlYV9oYWxsbWFyayA8LSBHU0VBKGdlbmVMaXN0ID0gZ2VuZV9saXN0LCAKICAgICAgICAgICAgICAgICAgICAgIFRFUk0yR0VORSA9IGhhbGxtYXJrX3NldHNbLCBjKCJnc19uYW1lIiwgImVudHJlel9nZW5lIildLCAKICAgICAgICAgICAgICAgICAgICAgIHB2YWx1ZUN1dG9mZiA9IDAuMDUpCgojIENoZWNrIGFuZCB2aXN1YWxpemUgR1NFQSByZXN1bHRzCmlmICghaXMubnVsbChnc2VhX2hhbGxtYXJrKSAmJiBucm93KGdzZWFfaGFsbG1hcmspID4gMCkgewogICMgVmlzdWFsaXplIHRvcCBHU0VBIHJlc3VsdHMgZm9yIEhhbGxtYXJrIHBhdGh3YXlzCiAgZG90cGxvdChnc2VhX2hhbGxtYXJrLCBzaG93Q2F0ZWdvcnkgPSAyMCwgdGl0bGUgPSAiR1NFQSBmb3IgSGFsbG1hcmsgUGF0aHdheXMiKQogIAogICMgUGxvdCBlbnJpY2htZW50IHNjb3JlIGZvciB0aGUgdG9wIHBhdGh3YXkKICBnc2VhcGxvdChnc2VhX2hhbGxtYXJrLCBnZW5lU2V0SUQgPSAxLCB0aXRsZSA9ICJUb3AgSGFsbG1hcmsgUGF0aHdheSIpCiAgCiAgIyBFeHRyYWN0IHRoZSBuYW1lIG9mIHRoZSB0b3AgSGFsbG1hcmsgcGF0aHdheQogIHRvcF9oYWxsbWFyayA8LSBnc2VhX2hhbGxtYXJrQHJlc3VsdFsxLCAiRGVzY3JpcHRpb24iXQogIAogICMgUGxvdCBHU0VBIHdpdGggdGhlIHRvcCBwYXRod2F5J3MgbmFtZSBhcyB0aGUgdGl0bGUKICBnc2VhcGxvdChnc2VhX2hhbGxtYXJrLCBnZW5lU2V0SUQgPSAxLCB0aXRsZSA9IHRvcF9oYWxsbWFyaykKfSBlbHNlIHsKICBjYXQoIk5vIHNpZ25pZmljYW50IEdTRUEgcmVzdWx0cyBmb3IgSGFsbG1hcmsgcGF0aHdheXMuXG4iKQp9CgoKCmBgYAoKCgojIDUuIGdncGxvdDIgZm9yIFZvbGNhbm8KYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGdncmVwZWwpCgojIElkZW50aWZ5IHRvcCBhbmQgYm90dG9tIGdlbmVzCnRvcF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDUgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IDAuNSwgXQpib3R0b21fZ2VuZXMgPC0gTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzW01hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRwX3ZhbF9hZGogPCAwLjA1ICYgTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41LCBdCgojIENyZWF0ZSBhIG5ldyBjb2x1bW4gZm9yIGNvbG9yIGJhc2VkIG9uIHNpZ25pZmljYW5jZQpNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkY29sb3IgPC0gaWZlbHNlKE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDID4gMC41LCAiVXByZWd1bGF0ZWQgZ2VuZXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPCAtMC41LCAiRG93bnJlZ3VsYXRlZCBnZW5lcyIsICJOb25zaWduaWZpY2FudCIpKQoKIyBDcmVhdGUgYSB2b2xjYW5vIHBsb3QKZ2dwbG90KE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscywgYWVzKHggPSBhdmdfbG9nMkZDLCB5ID0gLWxvZzEwKHBfdmFsX2FkaikpKSArCiAgZ2VvbV9wb2ludChhZXMoY29sb3IgPSBjb2xvciksIGFscGhhID0gMC43LCBzaXplID0gMikgKwogIAogICMgQWRkIGxhYmVscyBmb3IgdG9wIGFuZCBib3R0b20gZ2VuZXMKICBnZW9tX3RleHRfcmVwZWwoZGF0YSA9IHRvcF9nZW5lcywgYWVzKGxhYmVsID0gZ2VuZSksIGNvbG9yID0gImJsYWNrIiwgdmp1c3QgPSAxLCBmb250ZmFjZSA9ICJib2xkIikgKwogIGdlb21fdGV4dF9yZXBlbChkYXRhID0gYm90dG9tX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgY29sb3IgPSAiYmxhY2siLCB2anVzdCA9IC0xLCBmb250ZmFjZSA9ICJib2xkIikgKwogIAogICMgQ3VzdG9taXplIGxhYmVscyBhbmQgdGl0bGUKICBsYWJzKHRpdGxlID0gIlZvbGNhbm8gUGxvdCIsCiAgICAgICB4ID0gImxvZzIgRm9sZCBDaGFuZ2UiLAogICAgICAgeSA9ICItbG9nMTAocC12YWx1ZSkiKSArCiAgCiAgIyAjIEFkZCBzaWduaWZpY2FuY2UgdGhyZXNob2xkIGxpbmVzCiAgIGdlb21faGxpbmUoeWludGVyY2VwdCA9IC1sb2cxMCgwLjAwMDAxKSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArCiAgIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IGMoLTAuNSwgMC41KSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArCiAgCiAgIyBTZXQgY29sb3JzIGZvciB0b3AgYW5kIGJvdHRvbSBnZW5lcwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXMgPSBjKCJVcHJlZ3VsYXRlZCBnZW5lcyIgPSAicmVkIiwgIkRvd25yZWd1bGF0ZWQgZ2VuZXMiID0gImJsdWUiLCAiTm9uc2lnbmlmaWNhbnQiID0gImRhcmtncmV5IikpICsKICAKICAjIEN1c3RvbWl6ZSB0aGVtZSBpZiBuZWVkZWQKICB0aGVtZV9taW5pbWFsKCkKCgoKCgpgYGAKCgojIDUuIGdncGxvdDMgZm9yIFZvbGNhbm8KYGBge3IgLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD0xMn0KIyBMb2FkIG5lY2Vzc2FyeSBsaWJyYXJpZXMKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGdncmVwZWwpCgojIElkZW50aWZ5IHRvcCBhbmQgYm90dG9tIGdlbmVzCnRvcF9nZW5lcyA8LSBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHNbTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJHBfdmFsX2FkaiA8IDAuMDAwMDEgJiBNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkYXZnX2xvZzJGQyA+IDQsIF0KYm90dG9tX2dlbmVzIDwtIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxsc1tNYWxpZ25hbnRfQ0Q0VGNlbGxzX3ZzX05vcm1hbF9DRDRUY2VsbHMkcF92YWxfYWRqIDwgMC4wMDAwMSAmIE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDIDwgLTQsIF0KCiMgQ3JlYXRlIGEgbmV3IGNvbHVtbiBmb3IgY29sb3IgYmFzZWQgb24gc2lnbmlmaWNhbmNlCk1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRjb2xvciA8LSBpZmVsc2UoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzJGF2Z19sb2cyRkMgPiAwLjUsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJVcHJlZ3VsYXRlZCBnZW5lcyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKE1hbGlnbmFudF9DRDRUY2VsbHNfdnNfTm9ybWFsX0NENFRjZWxscyRhdmdfbG9nMkZDIDwgLTAuNSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJEb3ducmVndWxhdGVkIGdlbmVzIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJOb25zaWduaWZpY2FudCIpKQoKIyBDcmVhdGUgdGhlIHZvbGNhbm8gcGxvdApnZ3Bsb3QoTWFsaWduYW50X0NENFRjZWxsc192c19Ob3JtYWxfQ0Q0VGNlbGxzLCBhZXMoeCA9IGF2Z19sb2cyRkMsIHkgPSAtbG9nMTAocF92YWxfYWRqKSkpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IGNvbG9yKSwgYWxwaGEgPSAwLjcsIHNpemUgPSAyKSArCiAgCiAgIyBBZGQgbGFiZWxzIG5leHQgdG8gdGhlIGRvdHMgd2l0aG91dCByZXBlbCBsaW5lcwogIGdlb21fdGV4dChkYXRhID0gdG9wX2dlbmVzLCBhZXMobGFiZWwgPSBnZW5lKSwgaGp1c3QgPSAtMC4yLCB2anVzdCA9IDAsIHNpemUgPSAzLCBjb2xvciA9ICJibGFjayIsIGZvbnRmYWNlID0gImJvbGQiKSArCiAgZ2VvbV90ZXh0KGRhdGEgPSBib3R0b21fZ2VuZXMsIGFlcyhsYWJlbCA9IGdlbmUpLCBoanVzdCA9IDEuMiwgdmp1c3QgPSAwLCBzaXplID0gMywgY29sb3IgPSAiYmxhY2siLCBmb250ZmFjZSA9ICJib2xkIikgKwogIAogICMgQ3VzdG9taXplIGxhYmVscyBhbmQgdGl0bGUKICBsYWJzKHRpdGxlID0gIlZvbGNhbm8gUGxvdCIsCiAgICAgICB4ID0gImxvZzIgRm9sZCBDaGFuZ2UiLAogICAgICAgeSA9ICItbG9nMTAocC12YWx1ZSkiKSArCiAgCiAgIyBBZGQgc2lnbmlmaWNhbmNlIHRocmVzaG9sZCBsaW5lcwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IC1sb2cxMCgwLjAwMDAxKSwgbGluZXR5cGUgPSAiZGFzaGVkIiwgY29sb3IgPSAiYmxhY2siKSArCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygtMC41LCAwLjUpLCBsaW5ldHlwZSA9ICJkYXNoZWQiLCBjb2xvciA9ICJibGFjayIpICsKICAKICAjIFNldCBjb2xvcnMgZm9yIHRvcCBhbmQgYm90dG9tIGdlbmVzCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcyA9IGMoIlVwcmVndWxhdGVkIGdlbmVzIiA9ICJyZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRG93bnJlZ3VsYXRlZCBnZW5lcyIgPSAiYmx1ZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJOb25zaWduaWZpY2FudCIgPSAiZGFya2dyZXkiKSkgKwogIAogICMgQ3VzdG9taXplIHRoZW1lCiAgdGhlbWVfbWluaW1hbCgpCgoKYGBgCgo=