The exercises will be based on the Hawks dataset from the R package Stat2Data.
Students and faculty at Cornell College in Mount Vernon, Iowa, collected data over many years at the Lake MacBride Hawk Watch, near Iowa City, Iowa. The dataset analyzed here is a subset of the original dataset, including only species with more than 10 observations. The data were collected from random samples of three different hawk species: Red-tailed Hawk, Sharp-shinned Hawk, and Cooper’s Hawk.
We selected this dataset due to its similarity to the penguins dataset and its potential for applying unsupervised data mining algorithms.
if (!require('Stat2Data')) install.packages('Stat2Data')
library(Stat2Data)
data("Hawks")
summary(Hawks)
## Month Day Year CaptureTime ReleaseTime
## Min. : 8.000 Min. : 1.00 Min. :1992 11:35 : 14 :842
## 1st Qu.: 9.000 1st Qu.: 9.00 1st Qu.:1995 13:30 : 14 11:00 : 2
## Median :10.000 Median :16.00 Median :1999 11:45 : 13 11:35 : 2
## Mean : 9.843 Mean :15.74 Mean :1998 12:10 : 13 12:05 : 2
## 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:2001 14:00 : 13 12:50 : 2
## Max. :11.000 Max. :31.00 Max. :2003 13:05 : 12 13:32 : 2
## (Other):829 (Other): 56
## BandNumber Species Age Sex Wing Weight
## : 2 CH: 70 A:224 :576 Min. : 37.2 Min. : 56.0
## 1142-09240: 1 RT:577 I:684 F:174 1st Qu.:202.0 1st Qu.: 185.0
## 1142-09241: 1 SS:261 M:158 Median :370.0 Median : 970.0
## 1142-09242: 1 Mean :315.6 Mean : 772.1
## 1142-18229: 1 3rd Qu.:390.0 3rd Qu.:1120.0
## 1142-19209: 1 Max. :480.0 Max. :2030.0
## (Other) :901 NA's :1 NA's :10
## Culmen Hallux Tail StandardTail
## Min. : 8.6 Min. : 9.50 Min. :119.0 Min. :115.0
## 1st Qu.:12.8 1st Qu.: 15.10 1st Qu.:160.0 1st Qu.:162.0
## Median :25.5 Median : 29.40 Median :214.0 Median :215.0
## Mean :21.8 Mean : 26.41 Mean :198.8 Mean :199.2
## 3rd Qu.:27.3 3rd Qu.: 31.40 3rd Qu.:225.0 3rd Qu.:226.0
## Max. :39.2 Max. :341.40 Max. :288.0 Max. :335.0
## NA's :7 NA's :6 NA's :337
## Tarsus WingPitFat KeelFat Crop
## Min. :24.70 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:55.60 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:0.0000
## Median :79.30 Median :1.0000 Median :2.000 Median :0.0000
## Mean :71.95 Mean :0.7922 Mean :2.184 Mean :0.2345
## 3rd Qu.:87.00 3rd Qu.:1.0000 3rd Qu.:3.000 3rd Qu.:0.2500
## Max. :94.00 Max. :3.0000 Max. :4.000 Max. :5.0000
## NA's :833 NA's :831 NA's :341 NA's :343
Present the dataset, including the column names and their meanings, as well as the distributions of their values.
We start by loading the necessary libraries for our analysis.
if (!require('cluster')) install.packages('cluster')
## Cargando paquete requerido: cluster
library(cluster)
if (!require('Stat2Data')) install.packages('Stat2Data')
library(Stat2Data)
if (!require('Stat2Data')) install.packages('Stat2Data')
if (!require('dplyr')) install.packages('dplyr')
## Cargando paquete requerido: dplyr
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(dplyr)
if (!require('ggplot2')) install.packages("ggplot2")
## Cargando paquete requerido: ggplot2
library(ggplot2)
if (!require('factoextra')) install.packages("factoextra")
## Cargando paquete requerido: factoextra
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(factoextra)
if (!require('NbClust')) install.packages("NbClust")
## Cargando paquete requerido: NbClust
library(NbClust)
if (!require('dbscan')) install.packages('dbscan')
## Cargando paquete requerido: dbscan
##
## Adjuntando el paquete: 'dbscan'
## The following object is masked from 'package:stats':
##
## as.dendrogram
library(dbscan)
if (!require('tidyr')) install.packages('tidyr')
## Cargando paquete requerido: tidyr
library(tidyr)
We perform a comprehensive summary to examine all variables in the dataset, including their quartiles.
This initial analysis is an essential preliminary step that is highly beneficial when working with datasets. By conducting this review, we can gain an overview of the data distribution, identify potential anomalies, and better understand the dataset’s underlying structure.
This allows us to make informed decisions in the subsequent steps.
data("Hawks")
summary(Hawks)
## Month Day Year CaptureTime ReleaseTime
## Min. : 8.000 Min. : 1.00 Min. :1992 11:35 : 14 :842
## 1st Qu.: 9.000 1st Qu.: 9.00 1st Qu.:1995 13:30 : 14 11:00 : 2
## Median :10.000 Median :16.00 Median :1999 11:45 : 13 11:35 : 2
## Mean : 9.843 Mean :15.74 Mean :1998 12:10 : 13 12:05 : 2
## 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:2001 14:00 : 13 12:50 : 2
## Max. :11.000 Max. :31.00 Max. :2003 13:05 : 12 13:32 : 2
## (Other):829 (Other): 56
## BandNumber Species Age Sex Wing Weight
## : 2 CH: 70 A:224 :576 Min. : 37.2 Min. : 56.0
## 1142-09240: 1 RT:577 I:684 F:174 1st Qu.:202.0 1st Qu.: 185.0
## 1142-09241: 1 SS:261 M:158 Median :370.0 Median : 970.0
## 1142-09242: 1 Mean :315.6 Mean : 772.1
## 1142-18229: 1 3rd Qu.:390.0 3rd Qu.:1120.0
## 1142-19209: 1 Max. :480.0 Max. :2030.0
## (Other) :901 NA's :1 NA's :10
## Culmen Hallux Tail StandardTail
## Min. : 8.6 Min. : 9.50 Min. :119.0 Min. :115.0
## 1st Qu.:12.8 1st Qu.: 15.10 1st Qu.:160.0 1st Qu.:162.0
## Median :25.5 Median : 29.40 Median :214.0 Median :215.0
## Mean :21.8 Mean : 26.41 Mean :198.8 Mean :199.2
## 3rd Qu.:27.3 3rd Qu.: 31.40 3rd Qu.:225.0 3rd Qu.:226.0
## Max. :39.2 Max. :341.40 Max. :288.0 Max. :335.0
## NA's :7 NA's :6 NA's :337
## Tarsus WingPitFat KeelFat Crop
## Min. :24.70 Min. :0.0000 Min. :0.000 Min. :0.0000
## 1st Qu.:55.60 1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:0.0000
## Median :79.30 Median :1.0000 Median :2.000 Median :0.0000
## Mean :71.95 Mean :0.7922 Mean :2.184 Mean :0.2345
## 3rd Qu.:87.00 3rd Qu.:1.0000 3rd Qu.:3.000 3rd Qu.:0.2500
## Max. :94.00 Max. :3.0000 Max. :4.000 Max. :5.0000
## NA's :833 NA's :831 NA's :341 NA's :343
We observe that we will be working with measurements of various characteristics of hawks that have been captured and released.
In our dataset, we have several numerical variables, such as wing length and weight.
To better understand the structure of our dataset, we use the str function.
str(Hawks)
## 'data.frame': 908 obs. of 19 variables:
## $ Month : int 9 9 9 9 9 9 9 9 9 9 ...
## $ Day : int 19 22 23 23 27 28 28 29 29 30 ...
## $ Year : int 1992 1992 1992 1992 1992 1992 1992 1992 1992 1992 ...
## $ CaptureTime : Factor w/ 308 levels " ","1:15","1:31",..: 181 25 138 42 62 71 181 88 261 192 ...
## $ ReleaseTime : Factor w/ 60 levels ""," ","10:20",..: 1 2 2 2 2 2 2 2 2 2 ...
## $ BandNumber : Factor w/ 907 levels " ","1142-09240",..: 856 857 858 809 437 280 859 860 861 281 ...
## $ Species : Factor w/ 3 levels "CH","RT","SS": 2 2 2 1 3 2 2 2 2 2 ...
## $ Age : Factor w/ 2 levels "A","I": 2 2 2 2 2 2 2 1 1 2 ...
## $ Sex : Factor w/ 3 levels "","F","M": 1 1 1 2 2 1 1 1 1 1 ...
## $ Wing : num 385 376 381 265 205 412 370 375 412 405 ...
## $ Weight : int 920 930 990 470 170 1090 960 855 1210 1120 ...
## $ Culmen : num 25.7 NA 26.7 18.7 12.5 28.5 25.3 27.2 29.3 26 ...
## $ Hallux : num 30.1 NA 31.3 23.5 14.3 32.2 30.1 30 31.3 30.2 ...
## $ Tail : int 219 221 235 220 157 230 212 243 210 238 ...
## $ StandardTail: int NA NA NA NA NA NA NA NA NA NA ...
## $ Tarsus : num NA NA NA NA NA NA NA NA NA NA ...
## $ WingPitFat : int NA NA NA NA NA NA NA NA NA NA ...
## $ KeelFat : num NA NA NA NA NA NA NA NA NA NA ...
## $ Crop : num NA NA NA NA NA NA NA NA NA NA ...
For our analysis, we use the dataset documentation
available at
https://rdrr.io/rforge/Stat2Data/man/Hawks.html.
This source provides detailed and specific information about the attributes present in the dataset.
Now, we continue preparing the dataset by searching for missing values.
missing_values <- colSums(is.na(Hawks))
print(missing_values)
## Month Day Year CaptureTime ReleaseTime BandNumber
## 0 0 0 0 0 0
## Species Age Sex Wing Weight Culmen
## 0 0 0 1 10 7
## Hallux Tail StandardTail Tarsus WingPitFat KeelFat
## 6 0 337 833 831 341
## Crop
## 343
We begin cleaning the dataset.
Since we observe a high percentage of missing values
in certain variables and considering that our dataset contains
918 records, the best option is to remove the
following attributes:
StandardTail, Tarsus, WingPitFat, KeelFat, and
Crop.
Afterward, we check for missing values again.
limpio_hawks <- Hawks[, !(names(Hawks) %in% c("StandardTail", "Tarsus", "WingPitFat", "KeelFat", "Crop"))]
missing_values2 <- colSums(is.na(limpio_hawks))
print(missing_values2)
## Month Day Year CaptureTime ReleaseTime BandNumber
## 0 0 0 0 0 0
## Species Age Sex Wing Weight Culmen
## 0 0 0 1 10 7
## Hallux Tail
## 6 0
The number of missing values has significantly decreased.
Currently, the missing values are:
- Wing: 1 missing value
- Weight: 10 missing values
- Culmen: 7 missing values
- Hallux: 6 missing values
Following the methodology, we will attempt to impute these values to obtain a fully clean dataset.
We will start with the Wing variable, using mean values based on age and species.
We chose this attribute first since it only has one missing value, making it easier to apply the same method to the other variables.
mean_wing <- Hawks %>%
group_by(Species, Age) %>%
summarise(mean_wing = mean(Wing, na.rm = TRUE), .groups = 'drop')
print(mean_wing)
## # A tibble: 6 × 3
## Species Age mean_wing
## <fct> <fct> <dbl>
## 1 CH A 242.
## 2 CH I 246.
## 3 RT A 386.
## 4 RT I 383.
## 5 SS A 186.
## 6 SS I 185.
We identify the row corresponding to the NA value in the Wing attribute that we need to replace.
Since we know it belongs to an adult Cooper’s Hawk, and based on the previously calculated means, we determine that the average weight is 242.
na_wing_row <- Hawks[is.na(Hawks$Wing), ]
print(na_wing_row)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing
## 263 10 15 1995 14:20 CH A NA
## Weight Culmen Hallux Tail StandardTail Tarsus WingPitFat KeelFat Crop
## 263 480 17.7 32.1 198 NA NA NA NA NA
We impute the value 242.4839 to the missing value in the Wing attribute.
Hawks <- Hawks %>%
mutate(Wing = ifelse(is.na(Wing), 242.4839, Wing))
Now, we merge the imputed values back into the original dataset to ensure data consistency.
We apply this imputation process to all variables with missing values.
mean_values <- Hawks %>%
group_by(Species, Age) %>%
summarise(
mean_wing = mean(Wing, na.rm = TRUE),
mean_weight = mean(Weight, na.rm = TRUE),
mean_culmen = mean(Culmen, na.rm = TRUE),
mean_hallux = mean(Hallux, na.rm = TRUE),
.groups = 'drop'
)
print("Medias calculadas por especie y edad:")
## [1] "Medias calculadas por especie y edad:"
print(mean_values)
## # A tibble: 6 × 6
## Species Age mean_wing mean_weight mean_culmen mean_hallux
## <fct> <fct> <dbl> <dbl> <dbl> <dbl>
## 1 CH A 242. 450. 18.0 23.9
## 2 CH I 246. 395. 17.2 21.9
## 3 RT A 386. 1161. 27.5 31.1
## 4 RT I 383. 1076. 26.8 32.2
## 5 SS A 186. 150. 11.7 16.9
## 6 SS I 185. 147. 11.4 14.2
With the mean values calculated for all attributes of our missing variables, we impute them just as we initially did with Wing, but now for the other three variables.
As a result, we no longer have missing data (except in the original variables, which we will remove in the next step).
Hawks <- Hawks %>%
left_join(mean_values, by = c("Species", "Age")) %>%
mutate(
Wing = ifelse(is.na(Wing), mean_wing, Wing),
Weight = ifelse(is.na(Weight), mean_weight, Weight),
Culmen = ifelse(is.na(Culmen), mean_culmen, Culmen),
Hallux = ifelse(is.na(Hallux), mean_hallux, Hallux)
) %>%
select(-mean_wing, -mean_weight, -mean_culmen, -mean_hallux)
missing_values_after_imputation <- colSums(is.na(Hawks))
print("Valores faltantes después de la imputación:")
## [1] "Valores faltantes después de la imputación:"
print(missing_values_after_imputation)
## Month Day Year CaptureTime ReleaseTime BandNumber
## 0 0 0 0 0 0
## Species Age Sex Wing Weight Culmen
## 0 0 0 0 0 0
## Hallux Tail StandardTail Tarsus WingPitFat KeelFat
## 0 0 337 833 831 341
## Crop
## 343
We obtain our clean dataset, with no missing values, all imputations applied, and unnecessary variables removed.
hawks_limpio2 <- Hawks[, !(names(Hawks) %in% c("StandardTail", "Tarsus", "WingPitFat", "KeelFat", "Crop"))]
missing_values3 <- colSums(is.na(hawks_limpio2))
print(missing_values3)
## Month Day Year CaptureTime ReleaseTime BandNumber
## 0 0 0 0 0 0
## Species Age Sex Wing Weight Culmen
## 0 0 0 0 0 0
## Hallux Tail
## 0 0
We perform a new summary of our clean dataset and reanalyze the variables to conduct an initial exploratory analysis.
summary(hawks_limpio2)
## Month Day Year CaptureTime ReleaseTime
## Min. : 8.000 Min. : 1.00 Min. :1992 11:35 : 14 :842
## 1st Qu.: 9.000 1st Qu.: 9.00 1st Qu.:1995 13:30 : 14 11:00 : 2
## Median :10.000 Median :16.00 Median :1999 11:45 : 13 11:35 : 2
## Mean : 9.843 Mean :15.74 Mean :1998 12:10 : 13 12:05 : 2
## 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:2001 14:00 : 13 12:50 : 2
## Max. :11.000 Max. :31.00 Max. :2003 13:05 : 12 13:32 : 2
## (Other):829 (Other): 56
## BandNumber Species Age Sex Wing Weight
## : 2 CH: 70 A:224 :576 Min. : 37.2 Min. : 56.0
## 1142-09240: 1 RT:577 I:684 F:174 1st Qu.:202.0 1st Qu.: 185.0
## 1142-09241: 1 SS:261 M:158 Median :370.0 Median : 970.0
## 1142-09242: 1 Mean :315.6 Mean : 770.5
## 1142-18229: 1 3rd Qu.:390.0 3rd Qu.:1120.0
## 1142-19209: 1 Max. :480.0 Max. :2030.0
## (Other) :901
## Culmen Hallux Tail
## Min. : 8.60 Min. : 9.50 Min. :119.0
## 1st Qu.:12.78 1st Qu.: 15.07 1st Qu.:160.0
## Median :25.50 Median : 29.40 Median :214.0
## Mean :21.79 Mean : 26.39 Mean :198.8
## 3rd Qu.:27.30 3rd Qu.: 31.40 3rd Qu.:225.0
## Max. :39.20 Max. :341.40 Max. :288.0
##
At first glance, we can determine that the Weight variable shows a significant difference between the minimum and maximum values.
We calculate the standard deviation of the Weight variable to determine if there are outliers.
detect_outliers_sd <- function(data, column) {
mean_value <- mean(data[[column]], na.rm = TRUE)
sd_value <- sd(data[[column]], na.rm = TRUE)
lower_bound <- mean_value - 3 * sd_value
upper_bound <- mean_value + 3 * sd_value
outliers <- data %>% filter(data[[column]] < lower_bound | data[[column]] > upper_bound)
return(list(outliers = outliers, lower_bound = lower_bound, upper_bound = upper_bound))
}
result <- detect_outliers_sd(hawks_limpio2, "Weight")
outliers_weight_sd <- result$outliers
lower_bound <- result$lower_bound
upper_bound <- result$upper_bound
print("Outliers in the 'Weight' column using standard deviation:")
## [1] "Outliers in the 'Weight' column using standard deviation:"
print(outliers_weight_sd)
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
plot(hawks_limpio2$Weight,
main = "Weight Scatter Plot",
ylab = "Weight",
xlab = "Index",
pch = ifelse(hawks_limpio2$Weight < lower_bound | hawks_limpio2$Weight > upper_bound, 19, 1),
col = ifelse(hawks_limpio2$Weight < lower_bound | hawks_limpio2$Weight > upper_bound, "red", "black"))
abline(h = c(lower_bound, upper_bound), col = "blue", lwd = 2, lty = 2)
We perform a second outlier analysis on foot
size measurements, as the summary statistics
indicate a significant difference between the
minimum and maximum values.
This time, we observe 7 outliers.
detect_outliers_sd <- function(data, column) {
mean_value <- mean(data[[column]], na.rm = TRUE)
sd_value <- sd(data[[column]], na.rm = TRUE)
lower_bound <- mean_value - 3 * sd_value
upper_bound <- mean_value + 3 * sd_value
outliers <- data %>% filter(data[[column]] < lower_bound | data[[column]] > upper_bound)
outlier_count <- nrow(outliers)
return(list(outliers = outliers, lower_bound = lower_bound, upper_bound = upper_bound, count = outlier_count))
}
result_hallux <- detect_outliers_sd(hawks_limpio2, "Hallux")
outliers_hallux_sd <- result_hallux$outliers
lower_bound_hallux <- result_hallux$lower_bound
upper_bound_hallux <- result_hallux$upper_bound
outlier_count_hallux_sd <- result_hallux$count
print("Outliers in the 'Hallux' column using standard deviation:")
## [1] "Outliers in the 'Hallux' column using standard deviation:"
print(outliers_hallux_sd)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
print(paste("Number of detected outliers:", outlier_count_hallux_sd))
## [1] "Number of detected outliers: 7"
plot(hawks_limpio2$Hallux,
main = "Hallux Scatter Plot",
ylab = "Hallux",
xlab = "Índex",
pch = ifelse(hawks_limpio2$Hallux < lower_bound_hallux | hawks_limpio2$Hallux > upper_bound_hallux, 19, 1),
col = ifelse(hawks_limpio2$Hallux < lower_bound_hallux | hawks_limpio2$Hallux > upper_bound_hallux, "red", "black"))
abline(h = c(lower_bound_hallux, upper_bound_hallux), col = "blue", lwd = 2, lty = 2)
Finally, to confirm our hypothesis, we perform the
outlier analysis on the entire cleaned dataset.
We verify that only those 7 Hallux values are identified as outliers.
detect_outliers_sd <- function(data, column) {
mean_value <- mean(data[[column]], na.rm = TRUE)
sd_value <- sd(data[[column]], na.rm = TRUE)
lower_bound <- mean_value - 3 * sd_value
upper_bound <- mean_value + 3 * sd_value
outliers <- data %>% filter(data[[column]] < lower_bound | data[[column]] > upper_bound)
outlier_count <- nrow(outliers)
return(list(outliers = outliers, lower_bound = lower_bound, upper_bound = upper_bound, count = outlier_count))
}
numeric_columns <- sapply(hawks_limpio2, is.numeric)
outlier_results <- list()
for (column_name in names(hawks_limpio2)[numeric_columns]) {
result <- detect_outliers_sd(hawks_limpio2, column_name)
outlier_results[[column_name]] <- result
}
for (column_name in names(outlier_results)) {
cat(paste("Outliers in the column:", column_name, "\n"))
print(outlier_results[[column_name]]$outliers)
cat(paste("Number of detected outliers:", outlier_results[[column_name]]$count, "\n\n"))
plot(hawks_limpio2[[column_name]],
main = paste("Scatter Plot of", column_name),
ylab = column_name,
xlab = "Index",
pch = ifelse(hawks_limpio2[[column_name]] < result$lower_bound | hawks_limpio2[[column_name]] > result$upper_bound, 19, 1),
col = ifelse(hawks_limpio2[[column_name]] < result$lower_bound | hawks_limpio2[[column_name]] > result$upper_bound, "red", "black"))
abline(h = c(result$lower_bound, result$upper_bound), col = "blue", lwd = 2, lty = 2)
}
## Outliers in the column: Month
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Day
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Year
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Wing
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Weight
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Culmen
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
## Outliers in the column: Hallux
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
## Number of detected outliers: 7
## Outliers in the column: Tail
## [1] Month Day Year CaptureTime ReleaseTime BandNumber
## [7] Species Age Sex Wing Weight Culmen
## [13] Hallux Tail
## <0 rows> (o 0- extensión row.names)
## Number of detected outliers: 0
Outlier attributes are identified in the same way as we did for missing values detection, but now focusing on outliers.
all_outliers <- data.frame()
for (column_name in names(hawks_limpio2)[numeric_columns]) {
result <- outlier_results[[column_name]]
if (result$count > 0) {
cat(paste("Outliers in the column:", column_name, "\n"))
print(result$outliers)
all_outliers <- bind_rows(all_outliers, result$outliers)
}
}
## Outliers in the column: Hallux
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
cat("Complete rows of detected outliers:\n")
## Complete rows of detected outliers:
print(all_outliers)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
An attempt was made to remove the outlier rows, but it was unsuccessful
To address this, an internet search was conducted,
leading to a study that performs outlier imputation
->
https://rpubs.com/Kamaranis/unsupervised_methods.
We applied the method from this study to our dataset, and it worked correctly.
media_hallux_especie_edad <- hawks_limpio2 %>%
group_by(Species, Age) %>%
summarise(media_hallux = mean(Hallux, na.rm = TRUE), .groups = 'drop')
all_outliers <- data.frame()
for (column_name in names(hawks_limpio2)[numeric_columns]) {
result <- outlier_results[[column_name]]
if (result$count > 0) {
cat(paste("Outliers in the column:", column_name, "\n"))
print(result$outliers)
all_outliers <- bind_rows(all_outliers, result$outliers)
}
}
## Outliers in the column: Hallux
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
cat("Complete rows of detected outliers:\n")
## Complete rows of detected outliers:
print(all_outliers)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 9 13 1993 14:25 173-19904 SS I M 193 100
## 2 9 15 1994 13:35 1387-79108 RT I 410 1210
## 3 9 19 1994 12:58 1207-64604 RT I 418 1180
## 4 9 20 1994 14:00 2003-58437 SS A F 198 188
## 5 11 2 1994 12:20 1207-64619 RT I 401 1405
## 6 10 20 2000 12:38 1142-09241 SS A M 170 110
## 7 9 9 2001 11:51 1142-19244 SS I M 164 95
## Culmen Hallux Tail
## 1 9.3 101.0 144
## 2 27.5 308.0 227
## 3 30.1 341.4 235
## 4 12.2 143.0 150
## 5 29.1 82.8 235
## 6 11.4 121.0 135
## 7 11.4 130.0 136
hallux_upper_limit <- 55.9
for (i in 1:nrow(hawks_limpio2)) {
if (hawks_limpio2$Hallux[i] > hallux_upper_limit) {
mean_hallux <- media_hallux_especie_edad$media_hallux[
media_hallux_especie_edad$Species == hawks_limpio2$Species[i] &
media_hallux_especie_edad$Age == hawks_limpio2$Age[i]
]
hawks_limpio2$Hallux[i] <- mean_hallux
}
}
remaining_outliers_hallux <- detect_outliers_sd(hawks_limpio2, "Hallux")
cat("Remaining outliers in Hallux after imputation:\n")
## Remaining outliers in Hallux after imputation:
print(remaining_outliers_hallux$outliers)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing Weight
## 1 10 16 1995 12:35 1387-79172 RT I 387 1120
## 2 10 5 2002 14:27 1705-37416 CH A F 260 565
## Culmen Hallux Tail
## 1 26.8 50.2 221
## 2 19.7 54.5 205
We verify that outliers have been successfully removed and that the imputation was correctly applied, using both a boxplot and a summary.
boxplot(hawks_limpio2$Hallux,
main = "Hallux",
ylab = "Spur Size (mm)",
outline = TRUE,
col = "lightblue")
abline(h = mean(hawks_limpio2$Hallux, na.rm = TRUE), col = "red", lty = 2)
summary(hawks_limpio2)
## Month Day Year CaptureTime ReleaseTime
## Min. : 8.000 Min. : 1.00 Min. :1992 11:35 : 14 :842
## 1st Qu.: 9.000 1st Qu.: 9.00 1st Qu.:1995 13:30 : 14 11:00 : 2
## Median :10.000 Median :16.00 Median :1999 11:45 : 13 11:35 : 2
## Mean : 9.843 Mean :15.74 Mean :1998 12:10 : 13 12:05 : 2
## 3rd Qu.:10.000 3rd Qu.:23.00 3rd Qu.:2001 14:00 : 13 12:50 : 2
## Max. :11.000 Max. :31.00 Max. :2003 13:05 : 12 13:32 : 2
## (Other):829 (Other): 56
## BandNumber Species Age Sex Wing Weight
## : 2 CH: 70 A:224 :576 Min. : 37.2 Min. : 56.0
## 1142-09240: 1 RT:577 I:684 F:174 1st Qu.:202.0 1st Qu.: 185.0
## 1142-09241: 1 SS:261 M:158 Median :370.0 Median : 970.0
## 1142-09242: 1 Mean :315.6 Mean : 770.5
## 1142-18229: 1 3rd Qu.:390.0 3rd Qu.:1120.0
## 1142-19209: 1 Max. :480.0 Max. :2030.0
## (Other) :901
## Culmen Hallux Tail
## Min. : 8.60 Min. : 9.50 Min. :119.0
## 1st Qu.:12.78 1st Qu.:15.00 1st Qu.:160.0
## Median :25.50 Median :29.40 Median :214.0
## Mean :21.79 Mean :25.21 Mean :198.8
## 3rd Qu.:27.30 3rd Qu.:31.40 3rd Qu.:225.0
## Max. :39.20 Max. :54.50 Max. :288.0
##
After cleaning the dataset, we will analyze it using various visualizations to gain a general overview and start drawing preliminary conclusions.
For example, the most common species in our dataset is “RT” (Red-tailed Hawk).
ggplot(hawks_limpio2, aes(x = Species)) +
geom_bar(fill = "skyblue") +
labs(title = "Number of Birds by Species", x = "Species", y = "Number of Birds")
Species: Bird species classification:
- “CH” = Cooper’s Hawk
- “RT” = Red-tailed Hawk
- “SS” = Sharp-shinned Hawk
especies_count <- hawks_limpio2 %>%
group_by(Species) %>%
summarize(Count = n()) %>%
arrange(desc(Count))
print(especies_count)
## # A tibble: 3 × 2
## Species Count
## <fct> <int>
## 1 RT 577
## 2 SS 261
## 3 CH 70
We create a relationship between wing length and weight.
This graph is crucial, as we can already identify three distinct groups, providing an important clue that we may have three clusters.
However, we continue with the exploratory analysis.
ggplot(hawks_limpio2, aes(x = Wing, y = Weight, color = Species)) +
geom_point(alpha = 0.5) +
labs(title = "Relationship Between Wing Length and Weight",
x = "Wing Length (mm)",
y = "Weight (g)")
We analyze the number of birds captured per year and notice an anomaly in 1996.
After a brief investigation, we found that 1996 was one of the harshest winters on record, which could be a significant factor for the analysis.
Reference for the indicated data:
https://www.thegazette.com/curious-iowa/curious-iowa-when-did-iowa-have-record-setting-weather/
ggplot(hawks_limpio2, aes(x = Year)) +
geom_bar(fill = "lightcoral") +
labs(title = "Number of Birds Captured per Year",
x = "Year",
y = "Number of Birds")
We extract another key insight: most of the birds in our dataset are not of advanced age.
Can we conclude that mortality is very high at a certain age?
We lack additional data, such as the exact classification of age groups, but this remains a crucial point for deeper analysis.
ggplot(hawks_limpio2, aes(x = Species, fill = Age)) +
geom_bar(position = "dodge") +
labs(title = "Number of Adult and Immature Birds by Species",
x = "Species",
y = "Number of Birds")
We have another key insight supporting the idea that
three clusters could be a great option.
The weight distribution clearly shows three distinct groups.
ggplot(hawks_limpio2, aes(x = Weight)) +
geom_histogram(binwidth = 50, fill = "purple", color = "black") +
labs(title = "Histogram of Bird Weight",
x = "Weight (g)",
y = "Frequency")
We begin our K-Means study by selecting numerical variables, as K-Means can only handle numerical data.
We also include Sex and Age, even though they are categorical variables.
hawks_data <- hawks_limpio2 %>%
select(Wing, Weight, Culmen, Hallux, Sex, Age)
hawks_data
## Wing Weight Culmen Hallux Sex Age
## 1 385.0000 920.0000 25.70000 30.10000 I
## 2 376.0000 930.0000 26.81197 32.23097 I
## 3 381.0000 990.0000 26.70000 31.30000 I
## 4 265.0000 470.0000 18.70000 23.50000 F I
## 5 205.0000 170.0000 12.50000 14.30000 F I
## 6 412.0000 1090.0000 28.50000 32.20000 I
## 7 370.0000 960.0000 25.30000 30.10000 I
## 8 375.0000 855.0000 27.20000 30.00000 A
## 9 412.0000 1210.0000 29.30000 31.30000 A
## 10 405.0000 1120.0000 26.00000 30.20000 I
## 11 393.0000 1010.0000 26.30000 30.80000 I
## 12 371.0000 1010.0000 25.40000 29.70000 I
## 13 390.0000 1120.0000 28.90000 30.90000 A
## 14 393.0000 1161.4132 28.20000 30.60000 A
## 15 416.0000 1170.0000 26.50000 34.00000 I
## 16 436.0000 1390.0000 30.50000 34.00000 A
## 17 418.0000 1150.0000 27.10000 31.00000 I
## 18 381.0000 950.0000 28.90000 28.90000 A
## 19 378.0000 910.0000 25.70000 28.20000 I
## 20 396.0000 1010.0000 24.00000 26.90000 I
## 21 399.0000 1070.0000 26.40000 31.20000 I
## 22 416.0000 1190.0000 28.80000 31.60000 I
## 23 415.0000 101.0000 24.90000 30.70000 I
## 24 392.0000 1330.0000 27.00000 30.30000 A
## 25 380.0000 990.0000 26.00000 30.00000 I
## 26 173.0000 100.0000 11.41111 14.24101 M I
## 27 399.0000 1100.0000 26.20000 32.50000 I
## 28 401.0000 1190.0000 28.60000 31.60000 A
## 29 205.0000 180.0000 11.70000 15.00000 F I
## 30 427.0000 1490.0000 30.10000 32.40000 I
## 31 395.0000 1040.0000 27.10000 31.40000 A
## 32 362.0000 820.0000 24.90000 27.90000 I
## 33 396.0000 1030.0000 26.00000 29.70000 A
## 34 391.0000 1300.0000 25.50000 32.40000 A
## 35 413.0000 1500.0000 26.50000 31.30000 A
## 36 371.0000 1080.0000 25.30000 27.20000 A
## 37 385.0000 1320.0000 27.30000 30.10000 A
## 38 378.0000 1490.0000 25.40000 31.30000 A
## 39 416.0000 1500.0000 29.10000 30.80000 A
## 40 193.0000 100.0000 9.30000 14.24101 M I
## 41 171.0000 88.0000 9.70000 11.50000 M I
## 42 233.0000 324.0000 16.00000 19.30000 I
## 43 384.0000 1060.0000 26.10000 31.20000 I
## 44 382.0000 1140.0000 25.10000 29.40000 I
## 45 390.0000 1030.0000 27.60000 30.30000 I
## 46 390.0000 1000.0000 25.10000 28.30000 I
## 47 393.0000 1050.0000 28.70000 29.80000 I
## 48 378.0000 1040.0000 26.20000 31.20000 I
## 49 398.0000 1110.0000 26.50000 30.90000 I
## 50 412.0000 1300.0000 27.90000 31.55000 I
## 51 400.0000 980.0000 25.70000 29.30000 I
## 52 422.0000 1120.0000 26.40000 28.30000 I
## 53 202.0000 134.0000 12.40000 13.70000 F I
## 54 394.0000 1270.0000 27.80000 31.60000 I
## 55 369.0000 880.0000 25.00000 26.50000 I
## 56 252.0000 340.0000 16.00000 20.80000 F I
## 57 240.0000 340.0000 16.10000 19.30000 M A
## 58 410.0000 1255.0000 29.70000 31.40000 I
## 59 241.0000 1320.0000 28.60000 36.40000 I
## 60 408.0000 1320.0000 30.00000 33.40000 I
## 61 37.2000 1180.0000 20.20000 26.65000 I
## 62 380.0000 760.0000 24.50000 26.10000 I
## 63 396.0000 1250.0000 26.60000 32.50000 I
## 64 326.0000 1076.4590 25.20000 27.70000 I
## 65 158.0000 100.0000 10.80000 10.50000 M I
## 66 416.0000 1300.0000 27.30000 32.70000 I
## 67 271.0000 475.0000 18.20000 24.75000 F I
## 68 176.0000 100.0000 9.80000 11.10000 M A
## 69 194.0000 150.3824 11.40000 14.20000 F A
## 70 390.0000 1080.0000 30.20000 29.10000 A
## 71 391.0000 1130.0000 26.40000 29.40000 A
## 72 387.0000 1160.0000 26.80000 31.00000 A
## 73 420.0000 1345.0000 29.50000 34.30000 I
## 74 435.0000 1385.0000 32.60000 30.60000 A
## 75 400.0000 1210.0000 25.50000 28.60000 A
## 76 398.0000 1455.0000 28.00000 31.50000 I
## 77 395.0000 1180.0000 25.00000 28.90000 I
## 78 410.0000 1500.0000 27.10000 33.20000 I
## 79 369.0000 1025.0000 27.10000 31.50000 I
## 80 372.0000 930.0000 26.10000 31.10000 I
## 81 415.0000 1360.0000 28.60000 33.50000 I
## 82 412.0000 1255.0000 27.70000 32.60000 I
## 83 205.0000 194.0000 12.60000 14.40000 F I
## 84 204.0000 159.0000 12.50000 14.80000 F I
## 85 170.0000 90.0000 9.50000 11.30000 M I
## 86 233.0000 340.0000 17.80000 19.40000 M A
## 87 375.0000 1065.0000 25.90000 30.00000 I
## 88 385.0000 1125.0000 19.60000 31.40000 I
## 89 422.0000 1340.0000 28.70000 32.00000 I
## 90 391.0000 1050.0000 26.60000 32.20000 I
## 91 410.0000 1210.0000 27.50000 32.23097 I
## 92 385.0000 980.0000 26.80000 27.80000 I
## 93 381.0000 1000.0000 25.50000 29.80000 I
## 94 416.0000 1390.0000 28.10000 31.30000 A
## 95 406.0000 1275.0000 29.00000 33.70000 I
## 96 418.0000 1180.0000 30.10000 32.23097 I
## 97 412.0000 1210.0000 29.30000 33.80000 I
## 98 208.0000 168.0000 12.70000 14.80000 F A
## 99 208.0000 146.0000 11.80000 14.90000 F I
## 100 175.0000 108.0000 10.00000 11.50000 M I
## 101 166.0000 94.0000 9.50000 11.30000 M I
## 102 405.0000 1085.0000 27.70000 29.90000 I
## 103 198.0000 188.0000 12.20000 16.94493 F A
## 104 200.0000 154.0000 12.40000 14.40000 F I
## 105 380.0000 810.0000 25.90000 28.70000 I
## 106 381.0000 905.0000 27.90000 29.10000 I
## 107 169.0000 94.0000 9.00000 10.20000 M I
## 108 260.0000 420.0000 19.60000 23.90000 F I
## 109 428.0000 1240.0000 29.10000 34.70000 I
## 110 400.0000 990.0000 26.90000 31.40000 I
## 111 265.0000 365.0000 16.80000 22.50000 F I
## 112 177.0000 91.0000 10.20000 11.30000 M I
## 113 381.0000 1010.0000 25.80000 31.70000 I
## 114 403.0000 980.0000 26.30000 29.70000 I
## 115 382.0000 860.0000 26.50000 29.00000 I
## 116 382.0000 970.0000 25.80000 29.00000 I
## 117 399.0000 980.0000 27.50000 29.90000 I
## 118 380.0000 985.0000 23.90000 29.00000 I
## 119 375.0000 990.0000 25.60000 30.60000 I
## 120 420.0000 1210.0000 27.80000 32.60000 I
## 121 170.0000 89.0000 8.60000 11.00000 M I
## 122 177.0000 97.0000 10.00000 11.30000 M A
## 123 375.0000 990.0000 28.00000 29.50000 I
## 124 395.0000 1170.0000 28.10000 31.70000 I
## 125 170.0000 93.0000 10.10000 11.20000 M A
## 126 406.0000 1350.0000 30.50000 32.00000 I
## 127 414.0000 1370.0000 29.30000 33.00000 I
## 128 173.0000 103.0000 9.70000 19.40000 M I
## 129 209.0000 151.0000 12.20000 13.90000 F I
## 130 177.0000 101.0000 10.30000 12.10000 M I
## 131 388.0000 985.0000 26.90000 29.80000 I
## 132 277.0000 940.0000 26.50000 30.40000 I
## 133 423.0000 1310.0000 27.40000 34.10000 I
## 134 365.0000 1035.0000 26.10000 30.80000 I
## 135 383.0000 965.0000 26.10000 31.80000 I
## 136 391.0000 1125.0000 25.40000 30.90000 I
## 137 389.0000 975.0000 26.40000 30.30000 I
## 138 392.0000 1140.0000 26.20000 29.80000 I
## 139 375.0000 950.0000 25.30000 29.90000 I
## 140 410.0000 1210.0000 28.10000 28.90000 I
## 141 179.0000 95.0000 10.80000 11.60000 M I
## 142 172.0000 89.0000 9.40000 10.80000 M I
## 143 202.0000 195.0000 12.40000 14.10000 F A
## 144 174.0000 93.0000 9.50000 11.00000 M I
## 145 422.0000 1205.0000 28.80000 31.30000 I
## 146 385.0000 1045.0000 27.60000 27.50000 I
## 147 363.0000 1090.0000 26.60000 28.80000 I
## 148 450.0000 1190.0000 30.30000 32.80000 I
## 149 380.0000 960.0000 25.60000 30.10000 I
## 150 385.0000 955.0000 26.30000 30.10000 I
## 151 385.0000 1110.0000 24.70000 30.20000 I
## 152 171.0000 100.0000 19.10000 11.50000 M I
## 153 380.0000 900.0000 24.00000 26.50000 I
## 154 384.0000 1075.0000 26.50000 30.70000 I
## 155 373.0000 980.0000 27.90000 32.10000 I
## 156 381.0000 940.0000 27.80000 34.20000 I
## 157 363.0000 1070.0000 25.60000 30.40000 I
## 158 409.0000 1120.0000 29.40000 31.60000 I
## 159 390.0000 1060.0000 27.60000 29.00000 A
## 160 204.0000 168.0000 12.10000 14.30000 F I
## 161 197.0000 211.0000 11.50000 13.90000 F I
## 162 420.0000 1125.0000 27.20000 27.40000 I
## 163 381.0000 1100.0000 27.00000 28.20000 I
## 164 408.0000 1360.0000 30.00000 33.90000 I
## 165 388.0000 995.0000 26.70000 30.70000 I
## 166 398.0000 1095.0000 21.10000 31.40000 A
## 167 209.0000 196.0000 12.10000 14.60000 F I
## 168 209.0000 176.0000 11.70000 15.10000 F I
## 169 394.0000 1075.0000 25.50000 29.70000 A
## 170 204.0000 180.0000 12.30000 15.20000 F A
## 171 204.0000 164.0000 12.30000 14.30000 F I
## 172 209.0000 158.0000 12.20000 14.40000 F I
## 173 394.0000 1140.0000 26.80000 29.20000 I
## 174 416.0000 1240.0000 27.90000 31.80000 I
## 175 445.0000 1465.0000 29.70000 34.60000 I
## 176 209.0000 169.0000 12.10000 14.50000 F I
## 177 388.0000 1105.0000 26.70000 28.90000 I
## 178 397.0000 1010.0000 27.10000 31.40000 I
## 179 384.0000 1075.0000 26.30000 30.50000 I
## 180 379.0000 1060.0000 27.90000 30.90000 I
## 181 393.0000 1015.0000 27.60000 31.10000 I
## 182 386.0000 1100.0000 26.00000 30.20000 I
## 183 397.0000 1010.0000 25.00000 30.60000 I
## 184 382.0000 1000.0000 26.30000 30.10000 I
## 185 386.0000 980.0000 25.40000 30.20000 I
## 186 417.0000 1240.0000 28.70000 32.40000 I
## 187 403.0000 1360.0000 27.90000 33.10000 I
## 188 239.0000 183.0000 17.30000 19.20000 M A
## 189 401.0000 1405.0000 29.10000 32.23097 I
## 190 377.0000 1055.0000 27.00000 29.10000 A
## 191 432.0000 1670.0000 27.10000 32.90000 A
## 192 390.0000 1250.0000 26.20000 30.50000 I
## 193 381.0000 1030.0000 25.30000 29.90000 I
## 194 403.0000 1040.0000 26.81197 29.90000 I
## 195 213.0000 190.0000 12.20000 15.50000 F I
## 196 172.0000 105.0000 10.00000 10.80000 M I
## 197 390.0000 1090.0000 26.20000 28.80000 I
## 198 204.0000 190.0000 11.80000 13.90000 F I
## 199 386.0000 1050.0000 28.40000 29.40000 A
## 200 402.0000 1110.0000 26.10000 30.00000 I
## 201 201.0000 206.0000 12.10000 13.50000 F I
## 202 202.0000 195.0000 12.10000 14.80000 F I
## 203 374.0000 1010.0000 24.90000 30.10000 A
## 204 358.0000 880.0000 24.20000 28.70000 I
## 205 370.0000 1060.0000 24.30000 29.80000 I
## 206 390.0000 920.0000 25.70000 30.00000 I
## 207 398.0000 1195.0000 26.20000 29.80000 I
## 208 360.0000 890.0000 26.00000 28.40000 I
## 209 355.0000 900.0000 25.30000 29.00000 I
## 210 375.0000 1110.0000 22.20000 31.50000 A
## 211 200.0000 160.0000 10.20000 13.20000 F I
## 212 179.0000 105.0000 10.10000 11.30000 M I
## 213 175.0000 99.0000 9.60000 12.70000 M I
## 214 203.0000 165.0000 12.00000 14.40000 F I
## 215 205.0000 100.0000 12.00000 12.50000 F I
## 216 213.0000 125.0000 11.50000 14.40000 F I
## 217 409.0000 1100.0000 29.00000 32.60000 I
## 218 202.0000 147.0957 11.41111 14.24101 F I
## 219 195.0000 155.0000 11.90000 14.60000 F I
## 220 415.0000 1285.0000 29.50000 31.80000 I
## 221 236.0000 390.0000 15.10000 20.40000 M A
## 222 363.0000 920.0000 26.80000 30.20000 I
## 223 381.0000 1025.0000 25.40000 30.80000 I
## 224 350.0000 940.0000 26.00000 29.10000 A
## 225 398.0000 1240.0000 28.50000 30.80000 I
## 226 412.0000 1160.0000 27.80000 33.00000 I
## 227 203.0000 150.0000 11.50000 13.90000 F I
## 228 201.0000 130.0000 11.70000 14.40000 F I
## 229 411.0000 1240.0000 26.80000 32.70000 I
## 230 373.0000 930.0000 24.40000 27.40000 I
## 231 178.0000 90.0000 10.90000 12.10000 M I
## 232 415.0000 1240.0000 25.60000 31.20000 I
## 233 383.0000 1030.0000 25.20000 29.80000 I
## 234 223.0000 550.0000 18.80000 21.30000 M I
## 235 390.0000 1250.0000 26.50000 32.00000 I
## 236 390.0000 999.0000 25.30000 29.80000 I
## 237 365.0000 1120.0000 26.50000 30.80000 A
## 238 345.0000 1000.0000 26.40000 30.10000 A
## 239 273.0000 530.0000 19.20000 24.70000 F I
## 240 400.0000 1040.0000 27.70000 32.10000 I
## 241 380.0000 1150.0000 27.80000 31.10000 I
## 242 330.0000 1000.0000 25.90000 30.20000 I
## 243 410.0000 1360.0000 33.30000 28.60000 I
## 244 313.0000 930.0000 25.70000 28.90000 I
## 245 384.0000 980.0000 25.80000 30.40000 I
## 246 409.0000 1260.0000 27.70000 31.80000 I
## 247 390.0000 900.0000 27.50000 28.60000 I
## 248 411.0000 1300.0000 25.90000 31.90000 I
## 249 259.0000 470.0000 16.60000 23.40000 F I
## 250 380.0000 1040.0000 26.40000 30.90000 A
## 251 370.0000 950.0000 27.30000 30.50000 I
## 252 415.0000 1320.0000 29.40000 33.90000 I
## 253 215.0000 180.0000 14.10000 12.70000 F I
## 254 410.0000 1280.0000 27.90000 32.70000 I
## 255 412.0000 1310.0000 26.10000 31.10000 I
## 256 384.0000 910.0000 26.40000 28.40000 A
## 257 404.0000 1220.0000 28.60000 30.40000 I
## 258 375.0000 920.0000 23.80000 28.80000 I
## 259 410.0000 1135.0000 26.40000 32.40000 I
## 260 384.0000 940.0000 26.20000 29.80000 I
## 261 385.0000 920.0000 25.00000 32.20000 I
## 262 398.0000 1280.0000 28.00000 32.40000 I
## 263 242.4839 480.0000 17.70000 32.10000 A
## 264 425.0000 1220.0000 27.30000 33.00000 I
## 265 401.0000 1000.0000 26.70000 28.00000 I
## 266 387.0000 1120.0000 26.80000 50.20000 I
## 267 376.0000 925.0000 26.00000 30.80000 I
## 268 171.0000 90.0000 9.90000 11.90000 M A
## 269 420.0000 1280.0000 27.50000 31.80000 A
## 270 385.0000 985.0000 27.50000 30.80000 I
## 271 405.0000 1350.0000 28.30000 32.60000 I
## 272 350.0000 730.0000 24.60000 25.70000 I
## 273 388.0000 890.0000 27.80000 31.20000 I
## 274 398.0000 1020.0000 26.50000 31.10000 I
## 275 410.0000 1000.0000 27.10000 30.60000 A
## 276 202.0000 150.0000 11.70000 14.10000 F I
## 277 204.0000 180.0000 11.50000 12.40000 F I
## 278 382.0000 1020.0000 26.50000 29.40000 A
## 279 111.0000 1340.0000 26.85000 31.90000 I
## 280 396.0000 1300.0000 27.30000 30.50000 I
## 281 363.0000 1015.0000 25.50000 30.10000 I
## 282 360.0000 900.0000 30.50000 28.80000 I
## 283 390.0000 1000.0000 26.10000 29.60000 I
## 284 195.0000 150.0000 12.30000 14.60000 M I
## 285 390.0000 1050.0000 24.80000 32.50000 A
## 286 380.0000 950.0000 24.90000 29.00000 I
## 287 225.0000 350.0000 12.60000 26.00000 M I
## 288 247.0000 375.0000 16.90000 18.20000 M A
## 289 415.0000 1175.0000 28.30000 33.20000 A
## 290 354.0000 980.0000 25.80000 29.30000 I
## 291 417.0000 1260.0000 29.00000 32.80000 A
## 292 379.0000 1050.0000 25.90000 31.30000 I
## 293 412.0000 1330.0000 29.20000 32.20000 A
## 294 377.0000 980.0000 28.00000 29.10000 A
## 295 372.0000 920.0000 25.30000 30.00000 I
## 296 420.0000 1540.0000 29.90000 35.50000 I
## 297 368.0000 1060.0000 25.50000 26.90000 I
## 298 406.0000 1420.0000 29.90000 32.00000 I
## 299 225.0000 400.0000 15.00000 20.00000 M I
## 300 392.0000 1142.0000 27.20000 33.00000 I
## 301 191.0000 157.0000 12.00000 13.80000 F I
## 302 161.0000 98.0000 10.30000 11.70000 M I
## 303 365.0000 813.0000 26.20000 30.10000 I
## 304 156.0000 94.0000 9.90000 11.40000 M I
## 305 191.0000 155.0000 16.50000 14.40000 F I
## 306 198.0000 181.0000 12.50000 14.10000 F I
## 307 160.0000 92.0000 9.80000 11.00000 M I
## 308 164.0000 98.0000 10.10000 11.40000 M I
## 309 352.0000 1024.0000 26.60000 30.30000 I
## 310 265.0000 464.0000 19.20000 24.10000 F I
## 311 163.0000 100.0000 10.40000 11.20000 M I
## 312 193.0000 186.0000 12.80000 14.00000 F I
## 313 190.0000 164.0000 11.90000 14.50000 F I
## 314 165.0000 98.0000 10.10000 11.40000 M I
## 315 162.0000 147.0957 11.41111 14.24101 M I
## 316 198.0000 158.0000 12.10000 14.50000 F A
## 317 370.0000 1023.0000 25.80000 30.10000 I
## 318 230.0000 340.0000 16.50000 30.50000 I
## 319 194.0000 163.0000 12.20000 20.00000 M I
## 320 157.0000 92.0000 9.80000 14.70000 F I
## 321 260.0000 550.0000 19.50000 11.20000 M I
## 322 377.0000 1119.0000 25.40000 23.90000 F A
## 323 364.0000 917.0000 26.00000 29.60000 I
## 324 367.0000 946.0000 26.70000 28.90000 I
## 325 233.0000 337.0000 15.70000 31.90000 I
## 326 336.0000 742.0000 23.40000 18.80000 M I
## 327 259.0000 439.0000 18.80000 15.20000 F I
## 328 199.0000 187.0000 12.20000 24.20000 F I
## 329 165.0000 92.0000 9.70000 14.60000 F I
## 330 370.0000 1094.0000 27.30000 11.50000 M I
## 331 362.0000 832.0000 23.80000 32.60000 I
## 332 368.0000 1244.0000 27.53525 31.11598 A
## 333 368.0000 1244.0000 26.70000 30.20000 I
## 334 367.0000 974.0000 25.20000 29.60000 I
## 335 400.0000 1289.0000 28.60000 32.10000 I
## 336 379.0000 999.0000 28.30000 32.00000 I
## 337 360.0000 994.0000 26.50000 30.40000 I
## 338 362.0000 1004.0000 27.00000 31.40000 I
## 339 378.0000 1097.0000 28.90000 33.40000 I
## 340 201.0000 185.0000 13.10000 14.50000 F I
## 341 193.0000 181.0000 12.80000 11.50000 M I
## 342 372.0000 1092.0000 27.20000 31.80000 I
## 343 369.0000 1049.0000 30.10000 32.00000 I
## 344 354.0000 998.0000 27.20000 29.20000 I
## 345 367.0000 1091.0000 31.80000 34.20000 I
## 346 349.0000 987.0000 29.00000 31.10000 I
## 347 375.0000 1151.0000 34.10000 33.70000 I
## 348 343.0000 971.0000 25.10000 26.10000 I
## 349 360.0000 1159.0000 32.90000 34.00000 I
## 350 395.0000 1239.0000 26.70000 33.20000 I
## 351 400.0000 1216.0000 28.50000 32.10000 I
## 352 170.0000 177.0000 12.30000 14.40000 F A
## 353 268.0000 469.0000 20.00000 24.90000 F I
## 354 369.0000 1039.0000 26.90000 29.50000 I
## 355 365.0000 1079.0000 25.20000 30.00000 I
## 356 375.0000 1159.0000 33.80000 32.70000 A
## 357 230.0000 162.0000 12.30000 13.80000 M I
## 358 213.0000 339.0000 23.50000 13.80000 M A
## 359 382.0000 1403.0000 34.90000 34.70000 A
## 360 168.0000 175.0000 12.90000 14.00000 M I
## 361 478.0000 1473.0000 39.20000 44.70000 A
## 362 469.0000 1001.0000 29.90000 43.20000 I
## 363 172.0000 98.0000 8.70000 10.90000 M I
## 364 373.0000 914.0000 25.90000 30.40000 I
## 365 386.0000 1059.0000 25.50000 30.50000 A
## 366 384.0000 1147.0000 29.00000 35.00000 I
## 367 351.0000 949.0000 26.80000 29.70000 I
## 368 168.0000 102.0000 9.60000 11.90000 M I
## 369 363.0000 973.0000 24.80000 27.30000 I
## 370 199.0000 196.0000 12.40000 15.20000 F I
## 371 235.0000 327.0000 16.50000 20.30000 M I
## 372 374.0000 1064.0000 26.00000 32.10000 A
## 373 369.0000 749.0000 24.00000 26.80000 I
## 374 202.0000 201.0000 11.70000 14.90000 F I
## 375 202.0000 180.0000 12.40000 14.10000 F I
## 376 374.0000 1213.0000 24.90000 28.00000 I
## 377 389.0000 1200.0000 28.20000 30.80000 I
## 378 379.0000 1040.0000 25.30000 29.40000 I
## 379 170.0000 113.0000 10.60000 11.10000 M I
## 380 373.0000 919.0000 24.20000 28.50000 I
## 381 403.0000 1487.0000 26.00000 32.50000 I
## 382 400.0000 1254.0000 25.20000 30.00000 I
## 383 205.0000 156.0000 10.80000 14.10000 F A
## 384 405.0000 1189.0000 27.70000 31.30000 I
## 385 382.0000 979.0000 24.80000 27.90000 I
## 386 165.0000 96.0000 10.70000 11.40000 M A
## 387 407.0000 1339.0000 27.30000 33.40000 I
## 388 403.0000 1199.0000 28.80000 31.00000 I
## 389 406.0000 1344.0000 27.90000 33.10000 I
## 390 381.0000 969.0000 26.10000 31.10000 I
## 391 395.0000 1039.0000 26.00000 29.70000 I
## 392 410.0000 1054.0000 28.50000 31.50000 I
## 393 243.0000 334.0000 17.50000 19.20000 F A
## 394 170.0000 101.0000 9.80000 11.00000 M I
## 395 210.0000 181.0000 12.20000 15.00000 F A
## 396 425.0000 1449.0000 30.30000 33.00000 A
## 397 402.0000 985.0000 26.60000 29.80000 I
## 398 480.0000 1598.0000 34.20000 35.40000 A
## 399 412.0000 992.0000 30.10000 31.50000 I
## 400 260.0000 569.0000 19.10000 24.00000 F I
## 401 381.0000 1354.0000 28.20000 32.00000 A
## 402 392.0000 969.0000 25.90000 29.00000 A
## 403 382.0000 1080.0000 25.30000 31.00000 I
## 404 196.0000 185.0000 12.50000 14.00000 F A
## 405 391.0000 1097.0000 27.90000 32.80000 A
## 406 397.0000 1439.0000 28.80000 31.40000 A
## 407 361.0000 1076.4590 24.40000 27.90000 I
## 408 376.0000 1019.0000 25.80000 29.50000 I
## 409 410.0000 1239.0000 29.50000 31.80000 A
## 410 381.0000 1399.0000 27.60000 31.30000 I
## 411 396.0000 1169.0000 27.50000 25.20000 I
## 412 383.0000 1164.0000 27.00000 29.90000 I
## 413 203.0000 176.0000 11.50000 14.70000 F I
## 414 271.0000 1076.4590 27.40000 33.00000 I
## 415 255.0000 429.0000 19.00000 22.90000 F I
## 416 196.0000 160.0000 12.30000 14.70000 F I
## 417 168.0000 105.0000 10.20000 11.00000 M I
## 418 392.0000 890.0000 24.10000 29.20000 I
## 419 163.0000 100.0000 9.70000 11.60000 M I
## 420 205.0000 147.0957 13.70000 15.00000 F I
## 421 395.0000 1215.0000 28.30000 33.00000 I
## 422 163.0000 100.0000 9.90000 11.30000 M I
## 423 370.0000 1030.0000 27.60000 31.40000 I
## 424 225.0000 340.0000 15.70000 19.40000 M A
## 425 197.0000 165.0000 11.90000 9.60000 F I
## 426 376.0000 985.0000 26.40000 30.30000 I
## 427 372.0000 975.0000 26.50000 31.60000 I
## 428 391.0000 1165.0000 28.20000 32.40000 I
## 429 165.0000 95.0000 9.70000 11.20000 I
## 430 364.0000 1044.0000 23.50000 29.00000 I
## 431 202.0000 180.0000 12.90000 15.00000 F A
## 432 163.0000 125.0000 9.70000 10.90000 M I
## 433 381.0000 1080.0000 26.81197 32.30000 M I
## 434 375.0000 890.0000 24.60000 28.00000 I
## 435 392.0000 1105.0000 26.40000 33.60000 I
## 436 398.0000 1310.0000 28.30000 35.20000 A
## 437 371.0000 895.0000 26.80000 31.00000 I
## 438 367.0000 1060.0000 26.80000 31.00000 A
## 439 193.0000 165.0000 13.20000 14.60000 F A
## 440 375.0000 960.0000 28.90000 29.30000 A
## 441 408.0000 1270.0000 29.40000 33.00000 I
## 442 252.0000 540.0000 20.00000 28.80000 F A
## 443 237.0000 365.0000 17.30000 19.90000 M A
## 444 399.0000 1170.0000 28.30000 29.90000 I
## 445 268.0000 590.0000 20.00000 19.90000 F A
## 446 388.0000 1225.0000 29.00000 31.50000 I
## 447 200.0000 175.0000 12.30000 15.60000 F A
## 448 192.0000 170.0000 12.40000 15.50000 F I
## 449 167.0000 100.0000 10.00000 11.30000 M A
## 450 370.0000 1060.0000 26.60000 31.90000 I
## 451 162.0000 110.0000 10.00000 11.80000 M A
## 452 363.0000 850.0000 25.50000 30.00000 I
## 453 371.0000 1145.0000 25.50000 10.30000 I
## 454 199.0000 165.0000 12.50000 15.70000 F A
## 455 386.0000 1090.0000 26.10000 28.20000 I
## 456 400.0000 1345.0000 32.60000 33.90000 I
## 457 390.0000 1050.0000 26.60000 29.00000 I
## 458 199.0000 200.0000 12.50000 14.90000 F A
## 459 254.0000 505.0000 19.60000 24.00000 F A
## 460 382.0000 1040.0000 27.10000 30.80000 A
## 461 196.0000 155.0000 12.70000 14.30000 F A
## 462 354.0000 965.0000 26.20000 28.50000 I
## 463 403.0000 1105.0000 28.90000 33.20000 I
## 464 194.0000 155.0000 12.60000 13.70000 F I
## 465 375.0000 1045.0000 27.20000 30.00000 I
## 466 369.0000 900.0000 24.40000 27.30000 I
## 467 368.0000 1015.0000 25.70000 30.30000 I
## 468 393.0000 1385.0000 27.90000 32.60000 A
## 469 370.0000 1165.0000 26.00000 31.50000 I
## 470 378.0000 905.0000 28.00000 32.30000 I
## 471 369.0000 985.0000 26.00000 31.10000 I
## 472 364.0000 800.0000 25.50000 28.60000 I
## 473 387.0000 995.0000 26.90000 31.40000 I
## 474 410.0000 1460.0000 29.40000 33.60000 A
## 475 194.0000 165.0000 11.90000 14.10000 F I
## 476 410.0000 1585.0000 30.60000 39.80000 A
## 477 194.0000 185.0000 13.10000 15.50000 F A
## 478 373.0000 920.0000 25.00000 28.30000 I
## 479 390.0000 1460.0000 29.30000 35.60000 I
## 480 404.0000 1315.0000 30.00000 32.50000 A
## 481 375.0000 1019.0000 26.00000 29.90000 I
## 482 395.0000 1215.0000 29.70000 31.30000 I
## 483 379.0000 1005.0000 27.80000 31.40000 I
## 484 382.0000 1350.0000 27.90000 29.90000 I
## 485 404.0000 1145.0000 27.70000 31.80000 I
## 486 205.0000 175.0000 12.25000 15.50000 F A
## 487 377.0000 1010.0000 25.40000 29.00000 A
## 488 184.0000 155.0000 12.00000 14.90000 M I
## 489 390.0000 1120.0000 26.60000 30.00000 I
## 490 404.0000 280.0000 28.20000 31.55000 A
## 491 351.0000 775.0000 25.40000 29.30000 I
## 492 394.0000 1210.0000 29.40000 31.70000 I
## 493 175.0000 107.0000 10.00000 11.40000 M A
## 494 372.0000 909.0000 24.40000 25.40000 A
## 495 169.0000 95.0000 10.00000 11.85000 M I
## 496 376.0000 1145.0000 25.10000 31.55000 I
## 497 399.0000 1150.0000 27.20000 29.55000 I
## 498 399.0000 1560.0000 30.00000 33.85000 I
## 499 357.0000 940.0000 23.60000 28.35000 I
## 500 195.0000 145.0000 11.70000 14.60000 F I
## 501 400.0000 1089.0000 27.30000 33.10000 I
## 502 382.0000 1194.0000 29.40000 33.80000 I
## 503 161.0000 95.0000 10.10000 11.30000 M I
## 504 390.0000 1015.0000 28.00000 30.10000 I
## 505 379.0000 975.0000 24.10000 29.10000 I
## 506 376.0000 1035.0000 26.80000 30.50000 I
## 507 331.0000 1055.0000 27.00000 30.40000 A
## 508 371.0000 945.0000 26.10000 30.20000 I
## 509 160.0000 90.0000 11.00000 11.80000 M I
## 510 361.0000 785.0000 25.20000 28.70000 I
## 511 268.0000 56.0000 19.30000 26.10000 F A
## 512 394.0000 1220.0000 30.30000 34.50000 I
## 513 191.0000 175.0000 13.00000 15.30000 F A
## 514 358.0000 1025.0000 27.40000 29.00000 A
## 515 380.0000 1000.0000 26.90000 29.00000 I
## 516 188.0000 175.0000 12.10000 14.20000 F A
## 517 397.0000 1210.0000 28.30000 34.00000 I
## 518 196.0000 180.0000 13.10000 13.90000 F A
## 519 190.0000 175.0000 12.80000 14.60000 F A
## 520 161.0000 90.0000 9.80000 11.10000 M I
## 521 145.0000 320.0000 16.50000 20.50000 F A
## 522 392.0000 1185.0000 28.50000 33.00000 I
## 523 190.0000 147.0957 11.90000 14.60000 F I
## 524 230.0000 350.0000 16.40000 21.30000 M I
## 525 406.0000 1161.4132 27.00000 31.10000 A
## 526 363.0000 950.0000 24.60000 30.30000 I
## 527 162.0000 85.0000 10.10000 11.40000 M I
## 528 374.0000 895.0000 26.40000 30.80000 I
## 529 412.0000 1150.0000 27.80000 33.20000 I
## 530 272.0000 565.0000 20.70000 24.00000 F I
## 531 388.0000 950.0000 26.50000 32.20000 I
## 532 371.0000 990.0000 26.90000 29.70000 I
## 533 225.0000 325.0000 15.80000 18.70000 M I
## 534 391.0000 1120.0000 29.00000 33.90000 I
## 535 163.0000 90.0000 9.80000 11.50000 M I
## 536 410.0000 1120.0000 28.50000 33.60000 F I
## 537 368.0000 820.0000 25.20000 28.70000 I
## 538 410.0000 1200.0000 26.70000 29.40000 F I
## 539 425.0000 1120.0000 29.40000 33.30000 F A
## 540 368.0000 1120.0000 24.70000 30.80000 I
## 541 392.0000 1220.0000 27.30000 34.10000 I
## 542 250.0000 470.0000 18.90000 25.30000 M I
## 543 418.0000 1310.0000 29.10000 31.90000 I
## 544 370.0000 920.0000 26.80000 29.70000 I
## 545 170.0000 100.0000 10.90000 12.20000 M A
## 546 203.0000 180.0000 13.20000 15.60000 F A
## 547 370.0000 955.0000 26.50000 30.50000 A
## 548 408.0000 1225.0000 28.80000 32.70000 A
## 549 393.0000 1400.0000 27.90000 35.30000 A
## 550 365.0000 1025.0000 24.60000 30.10000 I
## 551 405.0000 1140.0000 28.20000 31.90000 I
## 552 381.0000 1080.0000 26.10000 31.60000 I
## 553 390.0000 1135.0000 27.60000 31.10000 I
## 554 384.0000 1430.0000 29.80000 35.00000 I
## 555 390.0000 1050.0000 25.60000 29.90000 I
## 556 381.0000 920.0000 27.00000 29.60000 I
## 557 194.0000 175.0000 12.40000 14.00000 F A
## 558 371.0000 905.0000 23.60000 26.80000 I
## 559 356.0000 915.0000 26.40000 28.90000 I
## 560 377.0000 910.0000 25.00000 29.00000 I
## 561 362.0000 950.0000 25.40000 29.70000 I
## 562 165.0000 105.0000 10.10000 11.80000 M A
## 563 155.0000 100.0000 9.30000 11.80000 M A
## 564 400.0000 1225.0000 27.30000 34.20000 I
## 565 161.0000 105.0000 10.40000 12.00000 M A
## 566 387.0000 1090.0000 27.90000 32.40000 I
## 567 409.0000 1350.0000 30.00000 32.70000 I
## 568 195.0000 200.0000 13.00000 13.40000 F A
## 569 196.0000 200.0000 13.50000 15.40000 F A
## 570 169.0000 100.0000 10.00000 11.70000 M A
## 571 385.0000 940.0000 26.20000 30.50000 I
## 572 377.0000 920.0000 24.70000 29.30000 I
## 573 400.0000 1190.0000 29.40000 33.30000 I
## 574 164.0000 90.0000 9.40000 10.70000 M I
## 575 165.0000 95.0000 10.40000 11.40000 M A
## 576 363.0000 915.0000 25.00000 28.30000 I
## 577 266.0000 535.0000 18.80000 25.40000 F A
## 578 403.0000 1310.0000 29.10000 33.30000 I
## 579 375.0000 950.0000 26.90000 30.10000 I
## 580 166.0000 120.0000 10.10000 11.70000 M A
## 581 373.0000 975.0000 26.10000 27.90000 I
## 582 373.0000 990.0000 27.90000 31.00000 I
## 583 170.0000 110.0000 11.40000 16.94493 M A
## 584 373.0000 1270.0000 26.50000 29.60000 A
## 585 354.0000 960.0000 26.00000 31.00000 I
## 586 394.0000 1290.0000 28.80000 30.70000 I
## 587 165.0000 95.0000 10.20000 11.60000 M I
## 588 261.0000 505.0000 19.20000 25.10000 F A
## 589 377.0000 1045.0000 26.90000 31.50000 I
## 590 364.0000 1090.0000 27.10000 30.30000 I
## 591 385.0000 1180.0000 28.60000 30.00000 I
## 592 390.0000 1195.0000 27.60000 34.70000 I
## 593 383.0000 1055.0000 27.70000 32.70000 A
## 594 365.0000 1025.0000 26.10000 30.30000 I
## 595 201.0000 175.0000 12.00000 14.80000 F I
## 596 376.0000 940.0000 25.10000 31.70000 I
## 597 402.0000 1335.0000 28.30000 33.30000 A
## 598 394.0000 1085.0000 29.40000 32.70000 I
## 599 223.0000 375.0000 16.20000 20.70000 M I
## 600 378.0000 1090.0000 28.00000 30.90000 A
## 601 369.0000 995.0000 26.00000 28.20000 I
## 602 378.0000 1090.0000 28.00000 30.70000 A
## 603 262.0000 1020.0000 28.00000 31.20000 A
## 604 165.0000 100.0000 10.60000 12.10000 M I
## 605 379.0000 1000.0000 28.60000 32.20000 A
## 606 380.0000 1085.0000 27.40000 33.30000 I
## 607 380.0000 1045.0000 24.90000 27.00000 A
## 608 393.0000 1060.0000 27.70000 32.40000 I
## 609 389.0000 1135.0000 27.10000 32.10000 A
## 610 395.0000 1210.0000 28.50000 28.50000 I
## 611 207.0000 185.0000 13.00000 14.30000 F I
## 612 367.0000 965.0000 24.80000 24.10000 I
## 613 368.0000 905.0000 26.80000 27.00000 A
## 614 377.0000 1125.0000 25.30000 29.50000 I
## 615 374.0000 950.0000 27.20000 29.80000 I
## 616 385.0000 1195.0000 27.30000 30.90000 A
## 617 363.0000 1005.0000 25.00000 31.60000 I
## 618 164.0000 95.0000 11.40000 14.24101 M I
## 619 199.0000 175.0000 12.30000 15.00000 F A
## 620 378.0000 995.0000 26.20000 30.00000 I
## 621 200.0000 165.0000 12.10000 14.20000 F I
## 622 405.0000 1170.0000 29.25000 39.80000 I
## 623 194.0000 145.0000 12.00000 14.60000 F I
## 624 190.0000 175.0000 12.40000 15.20000 F I
## 625 195.0000 170.0000 13.10000 14.80000 F I
## 626 161.0000 105.0000 10.30000 11.20000 M I
## 627 168.0000 95.0000 10.00000 11.40000 M I
## 628 160.0000 95.0000 9.80000 10.80000 M I
## 629 392.0000 1085.0000 31.20000 34.60000 I
## 630 201.0000 165.0000 12.30000 14.80000 F I
## 631 395.0000 1115.0000 27.40000 32.70000 I
## 632 390.0000 1195.0000 27.60000 33.00000 I
## 633 161.0000 100.0000 9.80000 11.90000 M I
## 634 230.0000 365.0000 16.90000 23.55000 M A
## 635 192.0000 170.0000 11.90000 9.50000 F I
## 636 156.0000 90.0000 9.80000 11.30000 M I
## 637 158.0000 95.0000 10.70000 11.10000 M I
## 638 167.0000 115.0000 9.80000 11.40000 M I
## 639 199.0000 155.0000 11.90000 14.50000 F I
## 640 320.0000 229.0000 17.00000 21.00000 F I
## 641 389.0000 1165.0000 29.00000 33.10000 A
## 642 227.0000 155.0000 17.10000 21.00000 M I
## 643 230.0000 340.0000 16.10000 20.20000 M A
## 644 199.0000 180.0000 12.00000 15.50000 F A
## 645 378.0000 235.0000 25.40000 30.70000 I
## 646 164.0000 105.0000 10.20000 11.20000 M I
## 647 385.0000 1085.0000 27.50000 30.80000 A
## 648 369.0000 970.0000 26.10000 30.40000 I
## 649 378.0000 1030.0000 28.50000 31.90000 I
## 650 373.0000 1015.0000 25.50000 29.60000 I
## 651 419.0000 1030.0000 29.20000 31.50000 A
## 652 414.0000 1215.0000 26.40000 29.20000 I
## 653 203.0000 185.0000 13.50000 14.20000 F A
## 654 162.0000 95.0000 10.20000 11.00000 M A
## 655 165.0000 95.0000 10.00000 11.00000 M I
## 656 161.0000 95.0000 9.70000 11.00000 M A
## 657 161.0000 110.0000 10.10000 11.80000 M I
## 658 404.0000 1170.0000 28.40000 32.80000 I
## 659 165.0000 105.0000 10.40000 11.20000 M I
## 660 199.0000 175.0000 12.80000 14.50000 F A
## 661 171.0000 95.0000 10.90000 11.70000 M I
## 662 213.0000 190.0000 13.70000 15.20000 F A
## 663 169.0000 105.0000 10.20000 11.80000 M A
## 664 379.0000 1435.0000 27.40000 32.70000 I
## 665 407.0000 1235.0000 30.10000 35.80000 I
## 666 376.0000 1055.0000 29.50000 32.20000 I
## 667 380.0000 1105.0000 22.00000 30.80000 I
## 668 172.0000 120.0000 9.80000 11.80000 M A
## 669 408.0000 1390.0000 28.40000 32.70000 I
## 670 167.0000 105.0000 10.30000 10.80000 M A
## 671 374.0000 1080.0000 26.50000 31.30000 A
## 672 376.0000 910.0000 26.10000 32.20000 I
## 673 258.0000 490.0000 18.00000 24.20000 F I
## 674 370.0000 845.0000 25.00000 27.40000 I
## 675 202.0000 175.0000 13.30000 14.90000 F A
## 676 363.0000 865.0000 25.60000 27.30000 I
## 677 200.0000 180.0000 11.90000 13.50000 F A
## 678 372.0000 2030.0000 26.20000 30.20000 I
## 679 378.0000 960.0000 24.60000 30.00000 A
## 680 254.0000 515.0000 19.50000 23.80000 F A
## 681 361.0000 970.0000 26.30000 30.70000 I
## 682 389.0000 1265.0000 26.60000 30.60000 A
## 683 404.0000 1300.0000 29.40000 32.80000 A
## 684 195.0000 170.0000 12.90000 14.70000 F I
## 685 203.0000 191.0000 13.50000 15.50000 F I
## 686 253.0000 540.0000 19.10000 22.60000 F A
## 687 199.0000 185.0000 12.00000 14.90000 F I
## 688 194.0000 165.0000 11.90000 14.40000 F I
## 689 196.0000 205.0000 12.20000 14.00000 F A
## 690 168.0000 95.0000 10.40000 12.10000 M I
## 691 395.0000 1170.0000 25.80000 30.50000 A
## 692 368.0000 1075.0000 27.70000 31.70000 I
## 693 210.0000 200.0000 12.10000 15.30000 F I
## 694 401.0000 965.0000 25.80000 29.10000 I
## 695 355.0000 785.0000 22.70000 25.00000 I
## 696 377.0000 1095.0000 25.60000 31.70000 A
## 697 197.0000 160.0000 12.00000 14.70000 F I
## 698 171.0000 95.0000 9.10000 11.50000 M I
## 699 277.0000 1500.0000 29.70000 32.10000 A
## 700 435.0000 1595.0000 27.40000 34.50000 A
## 701 372.0000 985.0000 25.40000 31.00000 I
## 702 260.0000 565.0000 20.00000 24.20000 F A
## 703 390.0000 240.0000 25.20000 29.30000 I
## 704 359.0000 875.0000 26.00000 31.10000 I
## 705 393.0000 1225.0000 29.00000 33.40000 I
## 706 402.0000 1255.0000 30.60000 34.60000 I
## 707 362.0000 950.0000 26.80000 30.70000 I
## 708 227.0000 330.0000 16.00000 18.50000 M I
## 709 359.0000 895.0000 27.50000 30.10000 A
## 710 155.0000 100.0000 9.80000 12.00000 M I
## 711 261.0000 455.0000 17.10000 26.80000 F I
## 712 160.0000 90.0000 10.30000 11.50000 M I
## 713 166.0000 105.0000 11.30000 11.40000 M I
## 714 362.0000 1305.0000 28.20000 34.30000 I
## 715 375.0000 975.0000 27.20000 31.80000 I
## 716 388.0000 1185.0000 28.90000 34.30000 I
## 717 392.0000 1030.0000 26.10000 30.50000 I
## 718 412.0000 1215.0000 28.70000 34.10000 I
## 719 371.0000 1075.0000 26.90000 32.80000 I
## 720 255.0000 960.0000 19.70000 42.80000 F A
## 721 391.0000 795.0000 24.30000 27.60000 I
## 722 190.0000 180.0000 12.20000 14.20000 F I
## 723 385.0000 1225.0000 27.80000 32.00000 I
## 724 166.0000 110.0000 10.00000 11.90000 M I
## 725 197.0000 165.0000 12.20000 14.90000 F A
## 726 370.0000 920.0000 26.30000 32.00000 I
## 727 190.0000 170.0000 12.00000 15.00000 F I
## 728 400.0000 1315.0000 29.60000 34.00000 I
## 729 162.0000 100.0000 9.40000 11.10000 M I
## 730 194.0000 155.0000 12.50000 14.50000 F I
## 731 395.0000 1155.0000 29.90000 34.40000 I
## 732 403.0000 1160.0000 29.00000 32.30000 I
## 733 386.0000 955.0000 27.90000 30.40000 I
## 734 193.0000 190.0000 13.10000 14.90000 F A
## 735 203.0000 180.0000 13.80000 14.70000 F A
## 736 159.0000 90.0000 10.00000 11.50000 M A
## 737 163.0000 100.0000 9.80000 11.70000 M I
## 738 191.0000 190.0000 12.40000 14.80000 M A
## 739 166.0000 105.0000 10.30000 12.00000 M I
## 740 361.0000 1030.0000 27.00000 30.50000 I
## 741 260.0000 565.0000 19.70000 54.50000 F A
## 742 234.0000 380.0000 12.40000 21.90000 M A
## 743 377.0000 1040.0000 28.10000 30.90000 I
## 744 361.0000 910.0000 24.30000 27.50000 I
## 745 375.0000 1005.0000 26.00000 32.50000 I
## 746 193.0000 180.0000 11.90000 14.30000 F I
## 747 196.0000 175.0000 12.40000 15.60000 F I
## 748 159.0000 105.0000 9.80000 11.00000 M I
## 749 192.0000 190.0000 11.80000 14.20000 F I
## 750 401.0000 1250.0000 28.20000 35.30000 I
## 751 198.0000 185.0000 12.60000 15.20000 F I
## 752 407.0000 1275.0000 27.50000 33.70000 I
## 753 162.0000 105.0000 9.80000 12.50000 M I
## 754 169.0000 640.0000 16.70000 23.60000 F A
## 755 168.0000 100.0000 10.50000 10.70000 M I
## 756 168.0000 105.0000 10.70000 11.60000 M A
## 757 223.0000 390.0000 15.90000 20.60000 M A
## 758 375.0000 1030.0000 26.90000 31.30000 I
## 759 406.0000 1290.0000 29.30000 33.30000 A
## 760 386.0000 1020.0000 26.90000 31.60000 I
## 761 160.0000 105.0000 9.90000 11.40000 M A
## 762 378.0000 1055.0000 26.50000 29.90000 I
## 763 193.0000 185.0000 12.30000 14.80000 F A
## 764 379.0000 1010.0000 25.00000 29.30000 I
## 765 364.0000 1015.0000 24.90000 29.50000 I
## 766 350.0000 1115.0000 29.50000 30.30000 A
## 767 380.0000 1320.0000 26.70000 31.60000 I
## 768 395.0000 1180.0000 30.30000 33.40000 A
## 769 372.0000 1145.0000 25.90000 32.20000 I
## 770 376.0000 995.0000 28.00000 30.20000 I
## 771 367.0000 1045.0000 26.10000 30.50000 I
## 772 230.0000 340.0000 16.00000 19.50000 M I
## 773 366.0000 935.0000 25.70000 27.10000 I
## 774 386.0000 1065.0000 26.10000 31.00000 I
## 775 375.0000 1110.0000 27.70000 31.30000 I
## 776 199.0000 190.0000 12.00000 15.20000 F I
## 777 405.0000 1255.0000 27.90000 31.80000 A
## 778 371.0000 1015.0000 24.90000 28.40000 A
## 779 193.0000 190.0000 12.20000 15.20000 F I
## 780 350.0000 960.0000 26.60000 29.90000 I
## 781 193.0000 200.0000 11.30000 13.50000 F I
## 782 368.0000 1090.0000 27.30000 30.40000 A
## 783 185.0000 170.0000 12.00000 14.70000 M I
## 784 372.0000 1085.0000 25.40000 29.80000 I
## 785 396.0000 1065.0000 27.70000 30.00000 I
## 786 365.0000 1125.0000 26.90000 29.30000 I
## 787 374.0000 1050.0000 25.50000 30.30000 I
## 788 253.0000 525.0000 19.50000 23.50000 F I
## 789 372.0000 980.0000 26.40000 29.00000 I
## 790 376.0000 1180.0000 24.40000 30.70000 I
## 791 166.0000 115.0000 9.90000 11.60000 M I
## 792 369.0000 1095.0000 26.60000 28.40000 I
## 793 391.0000 1330.0000 26.80000 30.10000 A
## 794 193.0000 185.0000 12.10000 14.90000 F I
## 795 397.0000 1100.0000 22.10000 28.80000 A
## 796 366.0000 1115.0000 27.10000 21.00000 I
## 797 385.0000 1400.0000 30.30000 33.30000 A
## 798 400.0000 1175.0000 27.60000 32.60000 I
## 799 198.0000 185.0000 11.80000 15.10000 F I
## 800 365.0000 970.0000 25.90000 31.60000 A
## 801 194.0000 170.0000 11.60000 14.00000 F I
## 802 195.0000 175.0000 12.00000 15.60000 F I
## 803 200.0000 165.0000 11.50000 14.50000 F I
## 804 384.0000 1260.0000 28.60000 32.50000 I
## 805 159.0000 110.0000 9.90000 11.10000 M I
## 806 161.0000 100.0000 9.30000 11.50000 M I
## 807 191.0000 190.0000 12.30000 14.80000 F I
## 808 216.0000 305.0000 16.00000 20.40000 M I
## 809 256.0000 510.0000 18.80000 23.30000 F I
## 810 161.0000 90.0000 9.50000 11.30000 M I
## 811 396.0000 1195.0000 27.00000 23.80000 A
## 812 391.0000 1035.0000 27.90000 33.10000 I
## 813 160.0000 90.0000 8.80000 11.40000 M I
## 814 183.0000 160.0000 12.70000 14.60000 M I
## 815 156.0000 85.0000 9.70000 11.00000 M I
## 816 393.0000 1155.0000 28.30000 30.90000 I
## 817 397.0000 1260.0000 27.80000 32.90000 I
## 818 159.0000 95.0000 8.90000 10.40000 M I
## 819 255.0000 440.0000 18.60000 22.80000 F I
## 820 197.0000 175.0000 10.00000 14.90000 M I
## 821 218.0000 295.0000 16.10000 19.40000 M I
## 822 196.0000 160.0000 12.60000 14.50000 F I
## 823 384.0000 1010.0000 26.80000 31.10000 I
## 824 385.0000 990.0000 26.00000 29.60000 I
## 825 181.0000 150.0000 11.40000 14.30000 M I
## 826 225.0000 300.0000 16.00000 20.10000 M I
## 827 379.0000 945.0000 24.50000 31.30000 I
## 828 201.0000 188.0000 11.70000 14.90000 F I
## 829 161.0000 95.0000 10.60000 11.50000 M I
## 830 230.0000 330.0000 15.70000 19.40000 M A
## 831 159.0000 95.0000 9.90000 11.20000 M I
## 832 367.0000 970.0000 26.40000 30.50000 I
## 833 396.0000 1240.0000 28.90000 32.80000 I
## 834 157.0000 105.0000 10.00000 11.50000 M I
## 835 191.0000 165.0000 11.50000 14.90000 F I
## 836 191.0000 170.0000 12.10000 15.10000 F I
## 837 168.0000 100.0000 10.20000 11.90000 M I
## 838 428.0000 1290.0000 28.40000 33.90000 I
## 839 252.0000 470.0000 19.50000 28.40000 F A
## 840 192.0000 175.0000 11.70000 14.20000 F A
## 841 195.0000 195.0000 13.60000 14.00000 F A
## 842 233.0000 335.0000 16.30000 21.30000 M A
## 843 364.0000 1150.0000 26.10000 28.20000 A
## 844 370.0000 960.0000 25.40000 30.40000 I
## 845 400.0000 1130.0000 28.30000 29.40000 I
## 846 375.0000 925.0000 25.40000 28.60000 I
## 847 398.0000 1205.0000 27.60000 33.40000 I
## 848 385.0000 1040.0000 27.20000 31.50000 I
## 849 156.0000 100.0000 9.90000 11.20000 M I
## 850 230.0000 335.0000 16.30000 19.70000 M I
## 851 220.0000 335.0000 16.20000 20.00000 M I
## 852 163.0000 105.0000 10.30000 11.70000 M I
## 853 376.0000 860.0000 25.60000 30.00000 I
## 854 360.0000 935.0000 25.80000 30.00000 I
## 855 372.0000 1010.0000 24.30000 29.00000 A
## 856 400.0000 1285.0000 29.70000 33.50000 I
## 857 194.0000 210.0000 13.00000 14.50000 F A
## 858 370.0000 830.0000 23.60000 27.80000 I
## 859 160.0000 95.0000 10.20000 11.20000 M I
## 860 403.0000 1350.0000 28.00000 32.80000 I
## 861 375.0000 1010.0000 25.00000 30.80000 I
## 862 373.0000 960.0000 27.70000 32.50000 I
## 863 385.0000 1370.0000 26.40000 29.20000 I
## 864 143.0000 170.0000 12.80000 13.90000 F I
## 865 162.0000 100.0000 8.70000 11.40000 M I
## 866 392.0000 1250.0000 28.60000 32.90000 I
## 867 372.0000 915.0000 24.70000 28.20000 I
## 868 375.0000 850.0000 25.00000 28.00000 I
## 869 415.0000 1285.0000 29.40000 34.00000 I
## 870 161.0000 95.0000 9.80000 11.70000 M A
## 871 380.0000 1005.0000 27.00000 31.60000 A
## 872 411.0000 1220.0000 28.10000 32.70000 A
## 873 161.0000 95.0000 9.60000 12.40000 M A
## 874 165.0000 100.0000 9.80000 12.00000 M I
## 875 393.0000 1265.0000 28.30000 32.70000 I
## 876 370.0000 1020.0000 24.60000 30.00000 I
## 877 230.0000 360.0000 16.00000 22.10000 M A
## 878 365.0000 895.0000 24.50000 28.90000 I
## 879 371.0000 1160.0000 25.70000 28.40000 I
## 880 400.0000 1585.0000 29.00000 33.80000 I
## 881 382.0000 1140.0000 24.90000 31.60000 A
## 882 371.0000 1115.0000 25.30000 29.20000 A
## 883 370.0000 1145.0000 25.40000 30.20000 A
## 884 194.0000 185.0000 12.80000 14.80000 F A
## 885 347.0000 990.0000 25.30000 29.80000 A
## 886 363.0000 945.0000 24.50000 32.23097 I
## 887 195.0000 165.0000 11.70000 14.50000 F I
## 888 392.0000 1030.0000 26.30000 28.10000 A
## 889 220.0000 320.0000 15.50000 19.50000 M I
## 890 193.0000 105.0000 13.00000 15.60000 F I
## 891 365.0000 990.0000 26.40000 30.00000 I
## 892 387.0000 1065.0000 28.00000 32.70000 A
## 893 400.0000 1050.0000 26.10000 29.70000 I
## 894 362.0000 840.0000 23.20000 26.10000 I
## 895 198.0000 190.0000 12.20000 15.80000 F I
## 896 190.0000 200.0000 12.70000 15.00000 F I
## 897 197.0000 185.0000 12.80000 15.60000 F I
## 898 370.0000 1000.0000 26.90000 31.40000 A
## 899 200.0000 185.0000 12.80000 15.20000 F I
## 900 360.0000 1325.0000 26.20000 30.60000 A
## 901 366.0000 945.0000 25.30000 27.20000 A
## 902 402.0000 1350.0000 28.70000 31.00000 A
## 903 366.0000 805.0000 23.50000 25.70000 I
## 904 380.0000 1525.0000 26.00000 27.60000 I
## 905 190.0000 175.0000 12.70000 15.40000 F I
## 906 360.0000 790.0000 21.90000 27.60000 I
## 907 369.0000 860.0000 25.20000 28.00000 I
## 908 199.0000 1290.0000 28.70000 32.10000 A
In our analysis, we selected two categorical variables to convert into numerical format using the dummy encoding method.
We assign binary values (0 and 1) to the Age categories (Adult = 1, Immature = 0) and Sex categories (Male = 1, Female = 0).
hawks_limpio2 <- hawks_limpio2 %>%
mutate(
Sex_M = ifelse(Sex == "M", 1, 0),
Sex_F = ifelse(Sex == "F", 1, 0),
Age_A = ifelse(Age == "A", 1, 0),
Age_I = ifelse(Age == "I", 1, 0)
)
print(hawks_limpio2)
## Month Day Year CaptureTime ReleaseTime BandNumber Species Age Sex Wing
## 1 9 19 1992 13:30 877-76317 RT I 385.0000
## 2 9 22 1992 10:30 877-76318 RT I 376.0000
## 3 9 23 1992 12:45 877-76319 RT I 381.0000
## 4 9 23 1992 10:50 745-49508 CH I F 265.0000
## 5 9 27 1992 11:15 1253-98801 SS I F 205.0000
## 6 9 28 1992 11:25 1207-55910 RT I 412.0000
## 7 9 28 1992 13:30 877-76320 RT I 370.0000
## 8 9 29 1992 11:45 877-76321 RT A 375.0000
## 9 9 29 1992 15:35 877-76322 RT A 412.0000
## 10 9 30 1992 13:45 1207-55911 RT I 405.0000
## 11 10 5 1992 13:30 877-76323 RT I 393.0000
## 12 10 8 1992 13:45 877-76324 RT I 371.0000
## 13 10 9 1992 12:30 877-76325 RT A 390.0000
## 14 10 10 1992 11:05 1207-55917 RT A 393.0000
## 15 10 11 1992 11:00 1207-55912 RT I 416.0000
## 16 10 11 1992 11:45 1207-55913 RT A 436.0000
## 17 10 11 1992 12:40 877-76326 RT I 418.0000
## 18 10 11 1992 14:20 877-76327 RT A 381.0000
## 19 10 12 1992 13:40 877-76328 RT I 378.0000
## 20 10 13 1992 11:00 877-76329 RT I 396.0000
## 21 10 13 1992 14:50 877-76330 RT I 399.0000
## 22 10 14 1992 13:15 877-76331 RT I 416.0000
## 23 10 17 1992 12:10 877-76332 RT I 415.0000
## 24 10 22 1992 13:05 877-76333 RT A 392.0000
## 25 10 23 1992 11:45 877-76334 RT I 380.0000
## 26 10 23 1992 16:05 1173-19901 SS I M 173.0000
## 27 10 24 1992 14:35 877-76335 RT I 399.0000
## 28 10 25 1992 12:05 1207-55914 RT A 401.0000
## 29 10 27 1992 10:05 1253-98802 SS I F 205.0000
## 30 10 27 1992 10:45 608-48703 RT I 427.0000
## 31 10 27 1992 15:15 1207-55915 RT A 395.0000
## 32 10 30 1992 11:05 877-76336 RT I 362.0000
## 33 11 3 1992 10:15 1207-55916 RT A 396.0000
## 34 11 8 1992 11:45 1207-55918 RT A 391.0000
## 35 11 8 1992 13:30 1207-55919 RT A 413.0000
## 36 11 13 1992 10:45 987-53707 RT A 371.0000
## 37 11 16 1992 11:15 1207-55920 RT A 385.0000
## 38 11 21 1992 14:00 877-76337 RT A 378.0000
## 39 11 22 1992 10:08 1207-55921 RT A 416.0000
## 40 9 13 1993 14:25 173-19904 SS I M 193.0000
## 41 9 17 1993 15:25 193-19905 SS I M 171.0000
## 42 9 20 1993 13:45 120407-804 CH I 233.0000
## 43 9 21 1993 15:11 877-76339 RT I 384.0000
## 44 9 22 1993 13:50 877-76340 RT I 382.0000
## 45 9 22 1993 15:55 877-76341 RT I 390.0000
## 46 9 27 1993 12:15 877-76342 RT I 390.0000
## 47 9 27 1993 13:00 877-76344 RT I 393.0000
## 48 9 27 1993 13:20 877-76345 RT I 378.0000
## 49 9 27 1993 15:03 877-76346 RT I 398.0000
## 50 9 28 1993 11:50 877-76347 RT I 412.0000
## 51 9 28 1993 12:45 877-76348 RT I 400.0000
## 52 9 29 1993 9:53 877-76349 RT I 422.0000
## 53 9 29 1993 10:25 1253-98803 SS I F 202.0000
## 54 9 29 1993 15:30 877-76350 RT I 394.0000
## 55 9 30 1993 13:25 787-53708 RT I 369.0000
## 56 10 1 1993 10:20 745-49512 CH I F 252.0000
## 57 10 1 1993 10:45 745-49513 CH A M 240.0000
## 58 10 3 1993 13:35 1207-55922 RT I 410.0000
## 59 10 4 1993 11:25 1207-55923 RT I 241.0000
## 60 10 7 1993 14:40 1207-55924 RT I 408.0000
## 61 10 9 1993 9:38 877-76351 RT I 37.2000
## 62 10 9 1993 10:20 877-76552 RT I 380.0000
## 63 10 10 1993 11:25 1207-55927 RT I 396.0000
## 64 10 10 1993 13:27 877-76353 RT I 326.0000
## 65 10 11 1993 11:35 1173-19906 SS I M 158.0000
## 66 10 11 1993 14:00 877-76354 RT I 416.0000
## 67 10 12 1993 13:15 745-49515 CH I F 271.0000
## 68 10 13 1993 9:23 1173-19907 SS A M 176.0000
## 69 10 14 1993 14:05 1373-35272 SS A F 194.0000
## 70 10 21 1993 9:20 877-76355 RT A 390.0000
## 71 10 21 1993 15:30 877-76357 RT A 391.0000
## 72 10 22 1993 16:35 877-76358 RT A 387.0000
## 73 10 23 1993 13:05 1207-55941 RT I 420.0000
## 74 10 25 1993 14:12 877-76359 RT A 435.0000
## 75 10 26 1993 15:55 877-76360 RT A 400.0000
## 76 10 31 1993 11:35 1207-55947 RT I 398.0000
## 77 11 5 1993 11:00 877-76361 RT I 395.0000
## 78 11 18 1993 10:37 877-76362 RT I 410.0000
## 79 9 6 1994 9:55 1387-99101 RT I 369.0000
## 80 9 6 1994 10:40 1387-99102 RT I 372.0000
## 81 9 7 1994 12:27 1387-99104 RT I 415.0000
## 82 9 7 1994 13:35 1387-99103 RT I 412.0000
## 83 9 8 1994 12:10 1423-16201 SS I F 205.0000
## 84 9 9 1994 9:02 2003-58433 SS I F 204.0000
## 85 9 9 1994 10:47 872-09611 SS I M 170.0000
## 86 9 12 1994 11:24 1204-45804 CH A M 233.0000
## 87 9 12 1994 13:50 1387-97105 RT I 375.0000
## 88 9 13 1994 11:58 1387-79106 RT I 385.0000
## 89 9 15 1994 12:45 1207-64601 RT I 422.0000
## 90 9 15 1994 13:20 1387-79107 RT I 391.0000
## 91 9 15 1994 13:35 1387-79108 RT I 410.0000
## 92 9 16 1994 10:23 1387-79109 RT I 385.0000
## 93 9 16 1994 11:20 1387-79111 RT I 381.0000
## 94 8 18 1994 12:05 1207-64602 RT A 416.0000
## 95 9 18 1994 13:20 1207-64603 RT I 406.0000
## 96 9 19 1994 12:58 1207-64604 RT I 418.0000
## 97 9 19 1994 14:05 1207-64605 RT I 412.0000
## 98 9 20 1994 9:05 2003-58435 SS A F 208.0000
## 99 9 20 1994 9:33 2003-58436 SS I F 208.0000
## 100 9 20 1994 11:04 1423-16203 SS I M 175.0000
## 101 9 20 1994 12:10 1423-16204 SS I M 166.0000
## 102 9 29 1994 13:55 1387-79112 RT I 405.0000
## 103 9 20 1994 14:00 2003-58437 SS A F 198.0000
## 104 9 29 1994 14:45 2003-58438 SS I F 200.0000
## 105 9 21 1994 13:50 1387-79113 RT I 380.0000
## 106 9 23 1994 11:48 1387-79114 RT I 381.0000
## 107 9 26 1994 10:28 872-09612 SS I M 169.0000
## 108 9 26 1994 10:54 2206-35417 CH I F 260.0000
## 109 9 26 1994 12:10 1207-64606 RT I 428.0000
## 110 9 26 1994 14:02 1207-64607 RT I 400.0000
## 111 9 27 1994 8:00 1705-24603 CH I F 265.0000
## 112 9 27 1994 11:55 1423-16205 SS I M 177.0000
## 113 9 27 1994 15:40 1307-79115 RT I 381.0000
## 114 9 28 1994 9:25 1387-79116 RT I 403.0000
## 115 9 28 1994 11:10 1387-79117 RT I 382.0000
## 116 9 28 1994 11:38 1387-79118 RT I 382.0000
## 117 9 28 1994 13:02 1387-79119 RT I 399.0000
## 118 9 29 1994 13:55 1387-79120 RT I 380.0000
## 119 9 29 1994 13:16 1387-79121 RT I 375.0000
## 120 9 30 1994 10:39 1207-64608 RT I 420.0000
## 121 10 3 1994 11:13 872-09613 SS I M 170.0000
## 122 10 3 1994 13:07 872-09614 SS A M 177.0000
## 123 10 4 1994 13:37 1387-79122 RT I 375.0000
## 124 10 4 1994 14:45 1207-64609 RT I 395.0000
## 125 10 5 1994 11:55 872-09615 SS A M 170.0000
## 126 10 5 1994 13:55 1207-64610 RT I 406.0000
## 127 10 5 1994 15:17 1207-64611 RT I 414.0000
## 128 10 5 1994 16:00 872-09616 SS I M 173.0000
## 129 10 6 1994 10:45 2003-58439 SS I F 209.0000
## 130 10 6 1994 11:23 872-09617 SS I M 177.0000
## 131 10 7 1994 10:50 1387-79123 RT I 388.0000
## 132 10 7 1994 11:24 1387-79124 RT I 277.0000
## 133 10 7 1994 12:15 1207-64612 RT I 423.0000
## 134 10 7 1994 15:40 1387-79125 RT I 365.0000
## 135 10 7 1994 16:35 1387-79126 RT I 383.0000
## 136 10 10 1994 11:02 1387-79127 RT I 391.0000
## 137 10 10 1994 12:01 1387-79128 RT I 389.0000
## 138 10 10 1994 12:23 1387-79129 RT I 392.0000
## 139 10 10 1994 13:10 1387-79130 RT I 375.0000
## 140 10 10 1994 13:50 1207-64613 RT I 410.0000
## 141 10 10 1994 15:07 872-09618 SS I M 179.0000
## 142 10 11 1994 8:52 872-09619 SS I M 172.0000
## 143 10 11 1994 12:36 2003-58440 SS A F 202.0000
## 144 10 12 1994 11:15 1423-16206 SS I M 174.0000
## 145 10 13 1994 13:05 1207-64614 RT I 422.0000
## 146 10 13 1994 14:00 1387-79131 RT I 385.0000
## 147 10 16 1994 12:05 1387-79132 RT I 363.0000
## 148 10 16 1994 11:30 1207-64615 RT I 450.0000
## 149 10 18 1994 10:00 1287-79133 RT I 380.0000
## 150 10 18 1994 12:35 1387-79134 RT I 385.0000
## 151 10 18 1994 13:30 1387-79135 RT I 385.0000
## 152 10 19 1994 9:08 872-09620 SS I M 171.0000
## 153 10 19 1994 10:46 1387-79136 RT I 380.0000
## 154 10 19 1994 11:27 1387-79137 RT I 384.0000
## 155 10 19 1994 12:15 1387-79138 RT I 373.0000
## 156 10 19 1994 12:55 1387-79139 RT I 381.0000
## 157 10 19 1994 13:35 1387-79140 RT I 363.0000
## 158 10 19 1994 13:50 1387-79141 RT I 409.0000
## 159 10 20 1994 12:00 1387-79142 RT A 390.0000
## 160 10 21 1994 10:12 2003-58441 SS I F 204.0000
## 161 10 22 1994 14:45 1423-16207 SS I F 197.0000
## 162 10 23 1994 11:06 1387-79143 RT I 420.0000
## 163 10 23 1994 11:36 1387-79144 RT I 381.0000
## 164 10 23 1994 13:09 1207-64616 RT I 408.0000
## 165 10 23 1994 14:25 1387079145 RT I 388.0000
## 166 10 23 1994 15:00 1387-79146 RT A 398.0000
## 167 10 24 1994 9:05 1423-16208 SS I F 209.0000
## 168 10 25 1994 10:25 2003-58442 SS I F 209.0000
## 169 10 25 1994 14:00 1387-079147 RT A 394.0000
## 170 10 25 1994 14:19 1423-11209 SS A F 204.0000
## 171 10 26 1994 9.12 1423-16210 SS I F 204.0000
## 172 10 26 1994 10:29 2003-58443 SS I F 209.0000
## 173 10 26 1994 11:39 1387-79148 RT I 394.0000
## 174 10 26 1994 14:55 1207-64617 RT I 416.0000
## 175 10 26 1994 15:40 1207-64618 RT I 445.0000
## 176 10 27 1994 9:15 2003-58444 SS I F 209.0000
## 177 10 27 1994 10:55 1387-79149 RT I 388.0000
## 178 10 27 1994 11:50 1387-79150 RT I 397.0000
## 179 10 27 1994 12:24 1387-79151 RT I 384.0000
## 180 10 27 1994 13:37 1387-79152 RT I 379.0000
## 181 10 28 1994 10:05 1387-79199 RT I 393.0000
## 182 10 28 1994 10:45 1387-79153 RT I 386.0000
## 183 10 29 1994 11:05 1387-79154 RT I 397.0000
## 184 10 29 1994 11:50 1387-79155 RT I 382.0000
## 185 11 1 1994 10:45 1387-79156 RT I 386.0000
## 186 11 1 1994 11:21 1387-79157 RT I 417.0000
## 187 11 2 1994 11:41 1387-79158 RT I 403.0000
## 188 11 2 1994 12:26 1204-45805 CH A M 239.0000
## 189 11 2 1994 12:20 1207-64619 RT I 401.0000
## 190 11 2 1994 14:52 1387-79159 RT A 377.0000
## 191 11 6 1994 9:55 1207-64620 RT A 432.0000
## 192 11 6 1994 10:30 1207-64621 RT I 390.0000
## 193 11 6 1994 11:40 1387-79160 RT I 381.0000
## 194 11 7 1994 11:22 1387-79161 RT I 403.0000
## 195 11 7 1994 12:47 1423-16211 SS I F 213.0000
## 196 11 9 1994 9:46 872-09621 SS I M 172.0000
## 197 11 9 1994 15:02 1807-53101 RT I 390.0000
## 198 11 11 1994 10:00 1423-16212 SS I F 204.0000
## 199 11 11 1994 11:59 1387-79162 RT A 386.0000
## 200 11 11 1994 14:42 1387-79163 RT I 402.0000
## 201 11 11 1994 15:01 1423-16213 SS I F 201.0000
## 202 11 11 1994 15:23 1423-16214 SS I F 202.0000
## 203 11 15 1994 11:40 1387-79164 RT A 374.0000
## 204 11 16 1994 11:15 1807-53103 RT I 358.0000
## 205 11 16 1994 12:19 1387-79165 RT I 370.0000
## 206 11 21 1994 10:40 1387-79166 RT I 390.0000
## 207 11 21 1994 13:33 1387-79167 RT I 398.0000
## 208 9 8 1995 13:30 1387-170 RT I 360.0000
## 209 9 8 1995 14:20 1387-79171 RT I 355.0000
## 210 9 13 1995 14:30 1207-64623 RT A 375.0000
## 211 9 13 1995 14:45 2003-59463 SS I F 200.0000
## 212 9 14 1995 10:05 972-09622 SS I M 179.0000
## 213 9 15 1995 9:40 2003-58464 SS I M 175.0000
## 214 9 15 1995 9:50 2003-58465 SS I F 203.0000
## 215 9 15 1995 11:05 2003-58466 SS I F 205.0000
## 216 9 17 1995 11:20 1343-78401 SS I F 213.0000
## 217 9 17 1995 12:15 1387-79173 RT I 409.0000
## 218 9 17 1995 14:58 1343-78402 SS I F 202.0000
## 219 9 18 1995 14:20 1343-78403 SS I F 195.0000
## 220 9 18 1995 15:10 1207-64624 RT I 415.0000
## 221 9 19 1995 10:05 1204-45806 CH A M 236.0000
## 222 9 20 1995 10:50 1387-79174 RT I 363.0000
## 223 9 23 1995 10:10 1387-79175 RT I 381.0000
## 224 9 26 1995 11:05 1387-79176 RT A 350.0000
## 225 9 26 1995 13:03 1387-79177 RT I 398.0000
## 226 9 26 1995 12:55 1207-64625 RT I 412.0000
## 227 9 26 1995 13:55 2003-58467 SS I F 203.0000
## 228 9 27 1995 9:40 2003-58468 SS I F 201.0000
## 229 9 27 1995 12:50 1387-79178 RT I 411.0000
## 230 9 27 1995 13:55 1807-53104 RT I 373.0000
## 231 10 1 1995 10:15 1423-16221 SS I M 178.0000
## 232 10 1 1995 12:04 1207-64626 RT I 415.0000
## 233 10 1 1995 12:50 1387-79179 RT I 383.0000
## 234 10 2 1995 13:55 1705-24606 CH I M 223.0000
## 235 10 3 1995 11:20 1387-79180 RT I 390.0000
## 236 10 3 1995 11:45 1387-79181 RT I 390.0000
## 237 10 4 1995 12:20 1387-79182 RT A 365.0000
## 238 10 4 1995 12:54 1387-79183 RT A 345.0000
## 239 10 5 1995 11:08 1705-24607 CH I F 273.0000
## 240 10 6 1995 12:15 1207-64627 RT I 400.0000
## 241 10 6 1995 12:36 1207-64628 RT I 380.0000
## 242 10 6 1995 13:05 1207-79184 RT I 330.0000
## 243 10 6 1995 13:10 1207-64629 RT I 410.0000
## 244 10 7 1995 12:00 1387-79185 RT I 313.0000
## 245 10 9 1995 11:35 1387-79186 RT I 384.0000
## 246 10 9 1995 11:50 1207-64660 RT I 409.0000
## 247 10 9 1995 12:50 1387-79187 RT I 390.0000
## 248 10 10 1995 11:50 1207-64630 RT I 411.0000
## 249 10 10 1995 14:25 1705-24608 CH I F 259.0000
## 250 10 11 1995 14:25 1387-79188 RT A 380.0000
## 251 10 11 1995 14:25 1387-79189 RT I 370.0000
## 252 10 11 1995 13:15 1387-79190 RT I 415.0000
## 253 10 12 1995 10:37 1204-45807 SS I F 215.0000
## 254 10 12 1995 13:20 1387-79191 RT I 410.0000
## 255 10 12 1995 14:20 1387-79192 RT I 412.0000
## 256 10 12 1995 14:30 1207-64631 RT A 384.0000
## 257 10 13 1995 12:05 1207-64632 RT I 404.0000
## 258 10 13 1995 13:00 1387-79193 RT I 375.0000
## 259 10 13 1995 15:00 1387-79794 RT I 410.0000
## 260 10 14 1995 10:05 1387-79195 RT I 384.0000
## 261 10 14 1995 13:25 1207-64634 RT I 385.0000
## 262 10 14 1995 13:40 1387-79196 RT I 398.0000
## 263 10 15 1995 14:20 CH A 242.4839
## 264 10 15 1995 14:30 1387-79197 RT I 425.0000
## 265 10 15 1995 15:00 1397-79198 RT I 401.0000
## 266 10 16 1995 12:35 1387-79172 RT I 387.0000
## 267 10 16 1995 13:33 1807-53105 RT I 376.0000
## 268 10 17 1995 11:10 1423-16223 SS A M 171.0000
## 269 10 17 1995 11:45 1207-64635 RT A 420.0000
## 270 10 18 1995 12:20 877-76379 RT I 385.0000
## 271 10 18 1995 13:05 2107-64631 RT I 405.0000
## 272 10 18 1995 13:15 1807-53107 RT I 350.0000
## 273 10 18 1995 12:00 1387-79200 RT I 388.0000
## 274 10 18 1995 12:02 877-76380 RT I 398.0000
## 275 10 20 1995 10:10 1207-64637 RT A 410.0000
## 276 10 23 1995 10:30 2003-58469 SS I F 202.0000
## 277 10 23 1995 12:20 1343-78405 SS I F 204.0000
## 278 11 2 1995 12:05 8777-63481 RT A 382.0000
## 279 11 2 1995 13:00 1207-64638 RT I 111.0000
## 280 11 20 1995 14:10 1207-64639 RT I 396.0000
## 281 11 21 1995 11:45 8777-6382 RT I 363.0000
## 282 10 2 1996 9:47 1807-53108 RT I 360.0000
## 283 10 10 1996 10:45 1207-64640 RT I 390.0000
## 284 10 10 1996 11:07 1204-45808 SS I M 195.0000
## 285 10 10 1996 12:15 1207-64641 RT A 390.0000
## 286 10 10 1996 13:20 1207-64642 RT I 380.0000
## 287 10 14 1996 9:40 1705-24609 CH I M 225.0000
## 288 10 17 1996 13:05 1705-24610 CH A M 247.0000
## 289 10 18 1996 10:58 1207-64643 RT A 415.0000
## 290 10 23 1996 9:25 1387-92101 RT I 354.0000
## 291 10 24 1996 10:35 1387-92102 RT A 417.0000
## 292 10 24 1996 11:18 1387-92103 RT I 379.0000
## 293 10 25 1996 10:40 1207-64644 RT A 412.0000
## 294 10 27 1996 16:16 1387-92104 RT A 377.0000
## 295 10 28 1996 12:40 1387-92105 RT I 372.0000
## 296 10 30 1996 9:25 RT I 420.0000
## 297 10 30 1996 11:30 1387-92106 RT I 368.0000
## 298 11 1 1996 14:05 1207-64645 RT I 406.0000
## 299 11 7 1996 13:20 1705-24611 CH I M 225.0000
## 300 9 9 1997 12:01 1387-92125 RT I 392.0000
## 301 9 9 1997 13:06 13:26 2003-58576 SS I F 191.0000
## 302 9 10 1997 10:39 10:53 1423-16276 SS I M 161.0000
## 303 9 10 1997 14:35 14:50 1387-92127 RT I 365.0000
## 304 9 11 1997 10:05 10:32 1423-16277 SS I M 156.0000
## 305 9 12 1997 11:00 10:20 2003-58577 SS I F 191.0000
## 306 9 14 1997 10:46 11:00 2003-58578 SS I F 198.0000
## 307 9 14 1997 12:35 12:50 872-09631 SS I M 160.0000
## 308 9 17 1997 12:26 13:10 872-09633 SS I M 164.0000
## 309 9 17 1997 13:04 13:45 1387-92128 RT I 352.0000
## 310 9 17 1997 15:02 14:07 1705-24626 CH I F 265.0000
## 311 9 18 1997 11:16 11:28 872-09634 SS I M 163.0000
## 312 9 18 1997 14:33 14:45 1423-16228 SS I F 193.0000
## 313 9 19 1997 13:05 13:36 1423-16229 SS I F 190.0000
## 314 9 20 1997 10:30 10:42 972-04635 SS I M 165.0000
## 315 9 21 1997 10:56 11:22 972-09636 SS I M 162.0000
## 316 9 21 1997 11:42 11:50 1426-16230 SS A F 198.0000
## 317 9 21 1997 11:55 12:07 1387-92129 RT I 370.0000
## 318 9 23 1997 13:35 11:55 1202-72601 RT I 230.0000
## 319 9 23 1997 11:43 12:09 1705-24627 CH I M 194.0000
## 320 9 23 1997 12:00 12:24 1423-16231 SS I F 157.0000
## 321 9 23 1997 12:13 10:50 872-09638 SS I M 260.0000
## 322 9 24 1997 10:19 1705-24628 CH A F 377.0000
## 323 9 24 1997 11:20 1387-92130 RT I 364.0000
## 324 9 25 1997 10:45 1387-92131 RT I 367.0000
## 325 9 25 1997 11:00 1387-92132 RT I 233.0000
## 326 9 25 1997 12:05 1204-45809 CH I M 336.0000
## 327 9 26 1997 10:10 1423-16233 SS I F 259.0000
## 328 9 26 1997 10:59 1705-24629 CH I F 199.0000
## 329 9 26 1997 13:35 13:52 1423-16232 SS I F 165.0000
## 330 9 26 1997 13:36 14:40 872-09639 SS I M 370.0000
## 331 9 26 1997 14:26 1387-92133 RT I 362.0000
## 332 9 30 1997 12:10 1207-72602 RT A 368.0000
## 333 9 30 1997 12:50 1387-92134 RT I 368.0000
## 334 10 1 1997 10:50 11:00 1387-92135 RT I 367.0000
## 335 10 1 1997 11:58 12:27 1387-92136 RT I 400.0000
## 336 10 1 1997 12:25 12:41 1387-92137 RT I 379.0000
## 337 10 1 1997 12:32 12:59 1387-92138 RT I 360.0000
## 338 10 1 1997 12:57 13:14 1387-92139 RT I 362.0000
## 339 10 2 1997 11:52 12:05 1387-92140 RT I 378.0000
## 340 10 2 1997 13:17 13:32 1423-16234 SS I F 201.0000
## 341 10 6 1997 12:01 12:21 1423-16235 SS I M 193.0000
## 342 10 6 1997 14:08 14:37 1387-92141 RT I 372.0000
## 343 10 8 1997 10:00 10:25 1387-92142 RT I 369.0000
## 344 10 8 1997 11:52 12:13 1387-92143 RT I 354.0000
## 345 10 9 1997 9:57 11:07 1387-92144 RT I 367.0000
## 346 10 9 1997 13:00 13:32 1387-92145 RT I 349.0000
## 347 10 9 1997 13:27 13:57 1387-92146 RT I 375.0000
## 348 10 9 1997 14:27 14:50 1387-92147 RT I 343.0000
## 349 10 9 1997 14:58 15:15 1387-92148 RT I 360.0000
## 350 10 10 1997 11:45 12:00 1387-92149 RT I 395.0000
## 351 10 10 1997 11:55 12:08 1397-92150 RT I 400.0000
## 352 10 10 1997 12:10 12:30 1423-16236 SS A F 170.0000
## 353 10 13 1997 14:21 14:45 1705-24630 CH I F 268.0000
## 354 10 14 1997 11:52 12:05 1387-92151 RT I 369.0000
## 355 10 14 1997 14:15 14:30 1387-92152 RT I 365.0000
## 356 10 16 1997 13:05 13:25 1387-92153 RT A 375.0000
## 357 10 17 1997 10:00 1423-16238 SS I M 230.0000
## 358 10 17 1997 14:35 15:00 12044-5876 CH A M 213.0000
## 359 10 20 1997 11:21 11:35 1387-92154 RT A 382.0000
## 360 10 20 1997 12:34 12:50 1423-16239 SS I M 168.0000
## 361 10 20 1997 12:49 13:05 1387-92155 RT A 478.0000
## 362 10 20 1997 13:05 13:20 1387-92157 RT I 469.0000
## 363 10 21 1997 12:16 12:33 1423-16278 SS I M 172.0000
## 364 10 21 1997 13:47 14:10 1387-92156 RT I 373.0000
## 365 10 23 1997 12:10 12:36 1387-92158 RT A 386.0000
## 366 10 23 1997 14:36 15:03 1207-72603 RT I 384.0000
## 367 10 31 1997 11:00 11:47 1807-53127 RT I 351.0000
## 368 10 31 1997 11:50 12:14 872-09640 SS I M 168.0000
## 369 11 1 1997 12:21 12:34 1807-53128 RT I 363.0000
## 370 11 1 1997 14:22 14:34 1423-16240 SS I F 199.0000
## 371 11 3 1997 11:30 12:01 12044-5877 CH I M 235.0000
## 372 11 3 1997 12:15 1387-92159 RT A 374.0000
## 373 11 3 1997 12:52 1807-53129 RT I 369.0000
## 374 11 6 1997 11:22 11:41 1343-78476 SS I F 202.0000
## 375 11 7 1997 11:26 11:46 1423-16241 SS I F 202.0000
## 376 11 10 1997 12:30 12:49 1387-92160 RT I 374.0000
## 377 11 11 1997 11:10 11:35 1387-92161 RT I 389.0000
## 378 11 15 1997 12:54 13:08 1387-92162 RT I 379.0000
## 379 11 18 1997 11:25 872-09641 SS I M 170.0000
## 380 9 20 1998 14:45 1387-92166 RT I 373.0000
## 381 9 21 1998 11:45 1207-72604 RT I 403.0000
## 382 10 1 1998 10:42 1207-72606 RT I 400.0000
## 383 10 8 1998 9:45 2003-58581 SS A F 205.0000
## 384 10 8 1998 10:45 1207-72607 RT I 405.0000
## 385 10 8 1998 14:10 1387-92173 RT I 382.0000
## 386 10 9 1998 11:15 1142-19209 SS A M 165.0000
## 387 10 9 1998 12:10 1387-92174 RT I 407.0000
## 388 10 9 1998 12:25 1387-92175 RT I 403.0000
## 389 10 10 1998 11:00 1207-72608 RT I 406.0000
## 390 10 10 1998 12:05 1387-92196 RT I 381.0000
## 391 10 12 1998 10:15 1387-92177 RT I 395.0000
## 392 10 12 1998 11:45 1207-72609 RT I 410.0000
## 393 10 12 1998 14:30 1204-45878 CH A F 243.0000
## 394 10 14 1998 13:30 1423-16242 SS I M 170.0000
## 395 10 15 1998 14:35 1343-78477 SS A F 210.0000
## 396 10 21 1998 10:40 1207-72610 RT A 425.0000
## 397 10 22 1998 14:01 1387-92178 RT I 402.0000
## 398 10 26 1998 10:17 1387-92180 RT A 480.0000
## 399 10 26 1998 12:15 1387-92181 RT I 412.0000
## 400 10 29 1998 10:25 1705-24634 CH I F 260.0000
## 401 11 2 1998 11:55 1207-72611 RT A 381.0000
## 402 11 3 1998 14:53 1207-72612 RT A 392.0000
## 403 11 4 1998 10:35 9387-92182 RT I 382.0000
## 404 11 4 1998 12:10 1343-78478 SS A F 196.0000
## 405 11 9 1998 1:31 1387-92183 RT A 391.0000
## 406 11 11 1998 11:48 1207-72613 RT A 397.0000
## 407 11 11 1998 12:52 1807-53130 RT I 361.0000
## 408 11 11 1998 14:15 1387-92184 RT I 376.0000
## 409 11 12 1998 14:00 1207-726114 RT A 410.0000
## 410 11 18 1998 11:30 1207-72615 RT I 381.0000
## 411 11 19 1998 13:07 1387-92185 RT I 396.0000
## 412 11 20 1998 10:30 1387-92186 RT I 383.0000
## 413 11 20 1998 11:52 1343-78479 SS I F 203.0000
## 414 9 5 1999 11:35 1387-92187 RT I 271.0000
## 415 9 7 1999 11:00 1205-24636 CH I F 255.0000
## 416 9 10 1999 11:05 1423-16243 SS I F 196.0000
## 417 9 13 1999 10:15 872-09646 SS I M 168.0000
## 418 9 14 1999 15:30 1387-92188 RT I 392.0000
## 419 9 16 1999 12:08 1142-19210 SS I M 163.0000
## 420 9 18 1999 11:10 2003-99306 SS I F 205.0000
## 421 9 18 1999 12:08 1207-72616 RT I 395.0000
## 422 9 18 1999 15:08 1142-19211 SS I M 163.0000
## 423 9 18 1999 15:45 1387-92189 RT I 370.0000
## 424 9 20 1999 10:17 1204-45867 CH A M 225.0000
## 425 9 21 1999 12:12 1213-58901 SS I F 197.0000
## 426 9 21 1999 13:00 1387-92190 RT I 376.0000
## 427 9 22 1999 10:55 1387-92191 RT I 372.0000
## 428 9 23 1999 11:11 1207-72617 RT I 391.0000
## 429 9 24 1999 12:30 1142-19212 SS I 165.0000
## 430 9 24 1999 14:24 1387-92192 RT I 364.0000
## 431 9 25 1999 11:35 2003-99307 SS A F 202.0000
## 432 9 25 1999 12:00 1142-19213 SS I M 163.0000
## 433 9 25 1999 12:35 1387-92193 RT I M 381.0000
## 434 9 25 1999 14:10 1387-92194 RT I 375.0000
## 435 9 26 1999 12:55 1387-92195 RT I 392.0000
## 436 9 29 1999 13:08 1207-72618 RT A 398.0000
## 437 9 30 1999 9:20 1387-19197 RT I 371.0000
## 438 9 30 1999 12:31 1387-19298 RT A 367.0000
## 439 9 30 1999 13:10 2003-99308 SS A F 193.0000
## 440 10 2 1999 10:25 1387-19299 RT A 375.0000
## 441 10 4 1999 13:21 1387-19220 RT I 408.0000
## 442 10 4 1999 15:10 22-06-35428 CH A F 252.0000
## 443 10 5 1999 9:38 1204-45868 CH A M 237.0000
## 444 10 5 1999 10:43 1177-04601 RT I 399.0000
## 445 10 6 1999 9:45 1705-24637 CH A F 268.0000
## 446 10 7 1999 12:40 1207-72619 RT I 388.0000
## 447 10 8 1999 13:39 2003-99309 SS A F 200.0000
## 448 10 11 1999 11:13 2003-99310 SS I F 192.0000
## 449 10 11 1999 13:11 1142-19214 SS A M 167.0000
## 450 10 11 1999 15:00 1177-04699 RT I 370.0000
## 451 10 11 1999 15:00 1142-19215 SS A M 162.0000
## 452 10 12 1999 11:05 1177-04602 RT I 363.0000
## 453 10 12 1999 11:20 1177-04603 RT I 371.0000
## 454 10 13 1999 9:01 2003-99311 SS A F 199.0000
## 455 10 14 1999 9:23 1177-04604 RT I 386.0000
## 456 10 14 1999 9:52 1207-72620 RT I 400.0000
## 457 10 14 1999 13:15 1177-04605 RT I 390.0000
## 458 10 14 1999 13:49 2003-99312 SS A F 199.0000
## 459 10 14 1999 14:45 1705-24639 CH A F 254.0000
## 460 10 15 1999 10:08 1177-14606 RT A 382.0000
## 461 10 15 1999 10:50 803-05929 SS A F 196.0000
## 462 10 15 1999 11:29 1177-04607 RT I 354.0000
## 463 10 15 1999 12:27 1177-04608 RT I 403.0000
## 464 10 15 1999 13:35 2003-99313 SS I F 194.0000
## 465 10 15 1999 14:08 1177-04609 RT I 375.0000
## 466 10 15 1999 14:39 1807-53131 RT I 369.0000
## 467 10 15 1999 15:33 1177-04610 RT I 368.0000
## 468 10 16 1999 13:05 1177-04611 RT A 393.0000
## 469 10 20 1999 11:28 1177-04612 RT I 370.0000
## 470 10 20 1999 13:07 1177-04613 RT I 378.0000
## 471 10 21 1999 11:50 1177-04614 RT I 369.0000
## 472 10 21 1999 13:56 1807-53132 RT I 364.0000
## 473 10 22 1999 9:40 1177-06415 RT I 387.0000
## 474 10 23 1999 10:40 1207-72621 RT A 410.0000
## 475 10 23 1999 11:39 2003-99314 SS I F 194.0000
## 476 10 25 1999 14:00 1207-72622 RT A 410.0000
## 477 10 27 1999 11:48 803-05930 SS A F 194.0000
## 478 10 27 1999 12:55 1177-04616 RT I 373.0000
## 479 11 1 1999 12:55 1207-72623 RT I 390.0000
## 480 11 2 1999 10:00 1207-72624 RT A 404.0000
## 481 11 2 1999 11:35 1177-04617 RT I 375.0000
## 482 11 3 1999 10:27 1207-72625 RT I 395.0000
## 483 11 3 1999 14:30 1177-04618 RT I 379.0000
## 484 11 4 1999 12:15 1207-72626 RT I 382.0000
## 485 11 4 1999 14:00 1207-72627 RT I 404.0000
## 486 11 5 1999 10:48 2003-99315 SS A F 205.0000
## 487 11 5 1999 14:10 1177-04619 RT A 377.0000
## 488 11 6 1999 11:54 2003-99316 SS I M 184.0000
## 489 11 8 1999 12:25 1177-04620 RT I 390.0000
## 490 11 9 1999 10:25 1177-14621 RT A 404.0000
## 491 11 10 1999 10:15 1177-04622 RT I 351.0000
## 492 11 10 1999 12:45 1207-72628 RT I 394.0000
## 493 11 10 1999 1:15 1142-19227 SS A M 175.0000
## 494 11 12 1999 13:50 1807-53133 RT A 372.0000
## 495 11 13 1999 10:30 1142-19228 SS I M 169.0000
## 496 11 13 1999 11:30 1177-04623 RT I 376.0000
## 497 11 13 1999 12:05 1177-04624 RT I 399.0000
## 498 11 17 1999 13:11 1207-72629 RT I 399.0000
## 499 11 19 1999 9:58 1177-04625 RT I 357.0000
## 500 9 7 2000 10:30 2003-94317 SS I F 195.0000
## 501 9 7 2000 13:25 1207-22630 RT I 400.0000
## 502 9 9 2000 9:29 1207-72631 RT I 382.0000
## 503 9 9 2000 9:38 1142-18229 SS I M 161.0000
## 504 9 13 2000 9:35 1177-04626 RT I 390.0000
## 505 9 13 2000 10:35 1177-04627 RT I 379.0000
## 506 9 13 2000 11:35 1177-04628 RT I 376.0000
## 507 9 13 2000 12:10 1177-04629 RT A 331.0000
## 508 9 13 2000 14:02 1177-04630 RT I 371.0000
## 509 9 14 2000 11:34 1213-58902 SS I M 160.0000
## 510 9 15 2000 14:12 1177-04631 RT I 361.0000
## 511 9 16 2000 12:23 1705-37411 CH A F 268.0000
## 512 9 18 2000 12:05 1207-72632 RT I 394.0000
## 513 9 18 2000 12:35 2003-99318 SS A F 191.0000
## 514 9 18 2000 13:39 1207-77633 RT A 358.0000
## 515 9 18 2000 14:33 1177-04632 RT I 380.0000
## 516 9 21 2000 10:40 803-05931 SS A F 188.0000
## 517 9 21 2000 11:35 1207-72634 RT I 397.0000
## 518 9 21 2000 12:58 803-05932 SS A F 196.0000
## 519 9 21 2000 13:32 803-05933 SS A F 190.0000
## 520 9 22 2000 13:34 1142-19230 SS I M 161.0000
## 521 9 25 2000 9:50 1705-37412 CH A F 145.0000
## 522 9 25 2000 12:06 1207-72635 RT I 392.0000
## 523 9 25 2000 12:20 803-05934 SS I F 190.0000
## 524 9 25 2000 13:18 1204-45869 CH I M 230.0000
## 525 9 25 2000 14:52 1207-72636 RT A 406.0000
## 526 9 26 2000 10:35 1177-04633 RT I 363.0000
## 527 9 26 2000 11:40 1142-19231 SS I M 162.0000
## 528 9 26 2000 12:10 1177-04634 RT I 374.0000
## 529 9 26 2000 12:40 1177-04635 RT I 412.0000
## 530 9 26 2000 13:23 2206-35431 CH I F 272.0000
## 531 9 26 2000 14:25 1177-04636 RT I 388.0000
## 532 9 27 2000 11:30 1177-04637 RT I 371.0000
## 533 9 27 2000 12:20 1204-45870 CH I M 225.0000
## 534 9 27 2000 13:00 1207-72637 RT I 391.0000
## 535 9 28 2000 14:30 1142-19232 SS I M 163.0000
## 536 9 29 2000 10:25 1207-72638 RT I F 410.0000
## 537 9 29 2000 11:47 1177-04638 RT I 368.0000
## 538 9 29 2000 13:00 1177-04639 RT I F 410.0000
## 539 9 29 2000 13:30 1207-74639 RT A F 425.0000
## 540 9 30 2000 13:30 1177-04640 RT I 368.0000
## 541 9 30 2000 15:01 1207-74640 RT I 392.0000
## 542 10 1 2000 14:00 1705-37413 SS I M 250.0000
## 543 10 1 2000 14:50 1207-72641 RT I 418.0000
## 544 10 2 2000 13:20 1177-04641 RT I 370.0000
## 545 10 3 2000 10:52 1142-19233 SS A M 170.0000
## 546 10 3 2000 14:05 803-05935 SS A F 203.0000
## 547 10 4 2000 10:40 1177-04642 RT A 370.0000
## 548 10 4 2000 11:56 1207-72642 RT A 408.0000
## 549 10 6 2000 12:59 1207-72643 RT A 393.0000
## 550 10 7 2000 9:55 1177-04643 RT I 365.0000
## 551 10 7 2000 10:27 1207-72644 RT I 405.0000
## 552 10 7 2000 10:43 1207-72645 RT I 381.0000
## 553 10 7 2000 12:24 1177-04644 RT I 390.0000
## 554 10 7 2000 15:12 1207-72646 RT I 384.0000
## 555 10 8 2000 12:25 1177-04645 RT I 390.0000
## 556 10 8 2000 13:29 1177-04646 RT I 381.0000
## 557 10 9 2000 10:10 803-05936 SS A F 194.0000
## 558 10 9 2000 14:00 1807-82702 RT I 371.0000
## 559 10 9 2000 14:26 1177-04647 RT I 356.0000
## 560 10 9 2000 14:38 1177-04648 RT I 377.0000
## 561 10 10 2000 13:57 1177-04649 RT I 362.0000
## 562 10 11 2000 12:21 1142-19234 SS A M 165.0000
## 563 10 12 2000 10:10 1142-19235 SS A M 155.0000
## 564 10 12 2000 13:35 1207-72647 RT I 400.0000
## 565 10 13 2000 9:33 1142-19236 SS A M 161.0000
## 566 10 13 2000 9:58 1207-72648 RT I 387.0000
## 567 10 13 2000 11:08 1207-72649 RT I 409.0000
## 568 10 13 2000 12:35 2003-99320 SS A F 195.0000
## 569 10 13 2000 14:45 2003-99321 SS A F 196.0000
## 570 10 14 2000 11:35 1142-19237 SS A M 169.0000
## 571 10 14 2000 12:07 1177-04650 RT I 385.0000
## 572 10 14 2000 13:07 1807-82703 RT I 377.0000
## 573 10 14 2000 13:12 1177-04651 RT I 400.0000
## 574 10 15 2000 12:50 1142-19238 SS I M 164.0000
## 575 10 16 2000 14:30 1142-19239 SS A M 165.0000
## 576 10 17 2000 15:03 1177-04652 RT I 363.0000
## 577 10 18 2000 12:14 2206-35432 CH A F 266.0000
## 578 10 18 2000 14:28 1177-04653 RT I 403.0000
## 579 10 19 2000 12:14 1177-04654 RT I 375.0000
## 580 10 19 2000 13:38 1142-09240 SS A M 166.0000
## 581 10 20 2000 9:48 1177-04655 RT I 373.0000
## 582 10 20 2000 11:46 1177-04656 RT I 373.0000
## 583 10 20 2000 12:38 1142-09241 SS A M 170.0000
## 584 10 20 2000 14:12 1177-04657 RT A 373.0000
## 585 10 20 2000 14:27 1807-82704 RT I 354.0000
## 586 10 20 2000 14:45 1207-72650 RT I 394.0000
## 587 10 21 2000 9:22 1142-09242 SS I M 165.0000
## 588 10 21 2000 13:57 1705-24640 CH A F 261.0000
## 589 10 21 2000 14:12 1177-04658 RT I 377.0000
## 590 10 25 2000 12:51 1177-04659 RT I 364.0000
## 591 10 25 2000 13:45 1177-04660 RT I 385.0000
## 592 10 26 2000 9:21 1177-04661 RT I 390.0000
## 593 10 26 2000 10:53 1177-04662 RT A 383.0000
## 594 10 26 2000 12:53 1177-04663 RT I 365.0000
## 595 10 27 2000 10:49 803-05937 SS I F 201.0000
## 596 10 27 2000 13:15 1177-04664 RT I 376.0000
## 597 10 27 2000 14:49 1207-72651 RT A 402.0000
## 598 10 29 2000 9:45 1177-04665 RT I 394.0000
## 599 10 29 2000 13:36 1204-45871 CH I M 223.0000
## 600 10 30 2000 11:20 1177-04666 RT A 378.0000
## 601 11 1 2000 12:08 1177-04667 RT I 369.0000
## 602 11 1 2000 13:16 1177-04668 RT A 378.0000
## 603 11 2 2000 9:55 1177-04669 RT A 262.0000
## 604 11 2 2000 10:28 1142-19243 SS I M 165.0000
## 605 11 2 2000 12:47 1177-04670 RT A 379.0000
## 606 11 3 2000 9:42 1177-04671 RT I 380.0000
## 607 11 4 2000 11:20 1177-04672 RT A 380.0000
## 608 11 4 2000 13:10 1177-04673 RT I 393.0000
## 609 11 4 2000 13:24 1207-72652 RT A 389.0000
## 610 11 8 2000 10:31 1207-72653 RT I 395.0000
## 611 11 12 2000 13:50 2003-99233 SS I F 207.0000
## 612 11 14 2000 11:40 1807-82705 RT I 367.0000
## 613 11 14 2000 11:57 1177-04674 RT A 368.0000
## 614 11 18 2000 10:47 1177-04675 RT I 377.0000
## 615 11 20 2000 11:15 1177-04676 RT I 374.0000
## 616 11 21 2000 12:03 1177-04677 RT A 385.0000
## 617 9 3 2001 13:30 1177-04698 RT I 363.0000
## 618 9 9 2001 11:51 1142-19244 SS I M 164.0000
## 619 9 10 2001 9:39 2003-99323 SS A F 199.0000
## 620 9 10 2001 14:05 1177-04678 RT I 378.0000
## 621 9 12 2001 11:03 803-05938 SS I F 200.0000
## 622 9 12 2001 11:35 1207-72654 RT I 405.0000
## 623 9 13 2001 10:20 2003-99324 SS I F 194.0000
## 624 9 13 2001 11:00 2003-99325 SS I F 190.0000
## 625 9 13 2001 13:03 2003-99326 SS I F 195.0000
## 626 9 14 2001 10:35 1213-58903 SS I M 161.0000
## 627 9 14 2001 13:05 1213-58904 SS I M 168.0000
## 628 9 14 2001 13:55 1213-58905 SS I M 160.0000
## 629 9 16 2001 14:00 1177-04679 RT I 392.0000
## 630 9 19 2001 10:11 2003-99327 SS I F 201.0000
## 631 9 19 2001 11:55 1207-72655 RT I 395.0000
## 632 9 20 2001 12:50 1207-72656 RT I 390.0000
## 633 9 22 2001 9:45 1142-19245 SS I M 161.0000
## 634 9 22 2001 10:45 1705-24641 CH A M 230.0000
## 635 9 22 2001 14:57 2003-99328 SS I F 192.0000
## 636 9 24 2001 12:50 1213-58906 SS I M 156.0000
## 637 9 24 2001 14:20 1213-58907 SS I M 158.0000
## 638 9 26 2001 10:15 1142-19246 SS I M 167.0000
## 639 9 26 2001 12:20 804-00201 SS I F 199.0000
## 640 9 27 2001 13:40 1705-24642 CH I F 320.0000
## 641 9 30 2001 12:33 1207-72657 RT A 389.0000
## 642 10 2 2001 11:00 804-00202 CH I M 227.0000
## 643 10 2 2001 13:15 804-00203 CH A M 230.0000
## 644 10 3 2001 10:29 2003-99329 SS A F 199.0000
## 645 10 5 2001 14:29 1177-04680 RT I 378.0000
## 646 10 9 2001 13:25 1142-19247 SS I M 164.0000
## 647 10 9 2001 14:58 1207-72658 RT A 385.0000
## 648 10 14 2001 9:36 1177-04681 RT I 369.0000
## 649 10 14 2001 10:27 1177-04682 RT I 378.0000
## 650 10 14 2001 11:52 1177-04683 RT I 373.0000
## 651 10 14 2001 12:20 1177-04684 RT A 419.0000
## 652 10 14 2001 14:12 1177-04685 RT I 414.0000
## 653 10 15 2001 13:20 2003-99330 SS A F 203.0000
## 654 10 17 2001 9:50 1142-19248 SS A M 162.0000
## 655 10 17 2001 10:36 1142-19249 SS I M 165.0000
## 656 10 17 2001 10:58 1142-19250 SS A M 161.0000
## 657 10 17 2001 11:35 1142-19251 SS I M 161.0000
## 658 10 17 2001 12:59 1177-04686 RT I 404.0000
## 659 10 17 2001 13:48 1142-19252 SS I M 165.0000
## 660 10 17 2001 14:03 2003-99331 SS A F 199.0000
## 661 10 18 2001 9:24 1142-19253 SS I M 171.0000
## 662 10 18 2001 9:58 2003-99332 SS A F 213.0000
## 663 10 18 2001 10:11 1142-19254 SS A M 169.0000
## 664 10 18 2001 10:35 1207-72659 RT I 379.0000
## 665 10 18 2001 12:00 1207-72660 RT I 407.0000
## 666 10 18 2001 12:42 1177-04689 RT I 376.0000
## 667 10 18 2001 13:56 1177-04688 RT I 380.0000
## 668 10 18 2001 14:29 1142-19255 SS A M 172.0000
## 669 10 18 2001 15:30 1207-72661 RT I 408.0000
## 670 10 19 2001 11:53 1142-19256 SS A M 167.0000
## 671 10 19 2001 12:42 1177-04690 RT A 374.0000
## 672 10 21 2001 12:48 1177-04691 RT I 376.0000
## 673 10 23 2001 10:55 1705-24643 CH I F 258.0000
## 674 10 23 2001 12:24 1807-66307 RT I 370.0000
## 675 10 23 2001 12:55 2003-99333 SS A F 202.0000
## 676 10 25 2001 10:29 1807-66308 RT I 363.0000
## 677 10 25 2001 11:04 2003-99334 SS A F 200.0000
## 678 10 25 2001 11:50 1177-04692 RT I 372.0000
## 679 10 25 2001 12:55 1807-66309 RT A 378.0000
## 680 10 26 2001 12:20 1750-24644 CH A F 254.0000
## 681 10 26 2001 13:00 1177-04694 RT I 361.0000
## 682 10 28 2001 10:46 1177-04695 RT A 389.0000
## 683 10 28 2001 11:37 1207-72662 RT A 404.0000
## 684 10 31 2001 13:30 2003-99335 SS I F 195.0000
## 685 11 1 2001 11:45 2003-99336 SS I F 203.0000
## 686 11 1 2001 13:45 1705-24645 CH A F 253.0000
## 687 11 2 2001 9:41 2003-99337 SS I F 199.0000
## 688 11 3 2001 13:58 2003-99338 SS I F 194.0000
## 689 11 3 2001 14:23 2003-99339 SS A F 196.0000
## 690 11 5 2001 14:40 1142-19257 SS I M 168.0000
## 691 11 6 2001 13:05 1177-04696 RT A 395.0000
## 692 11 7 2001 11:15 1177-04697 RT I 368.0000
## 693 11 7 2001 13:15 803-05939 SS I F 210.0000
## 694 11 9 2001 9:40 1177-04700 RT I 401.0000
## 695 11 9 2001 10:40 1807-53134 RT I 355.0000
## 696 11 10 2001 10:27 1177-04701 RT A 377.0000
## 697 11 11 2001 9:44 2003-99340 SS I F 197.0000
## 698 11 14 2001 10:04 1142-19258 SS I M 171.0000
## 699 11 19 2001 9:48 1177-04702 RT A 277.0000
## 700 11 19 2001 14:05 1207-72663 RT A 435.0000
## 701 9 4 2002 10:00 1177-04703 RT I 372.0000
## 702 9 5 2002 12:45 1705-24648 CH A F 260.0000
## 703 9 8 2002 12:20 1177-04704 RT I 390.0000
## 704 9 8 2002 12:44 1177-04705 RT I 359.0000
## 705 9 10 2002 12:39 1177-04706 RT I 393.0000
## 706 9 12 2002 10:13 1207-72664 RT I 402.0000
## 707 9 12 2002 11:51 1177-04707 RT I 362.0000
## 708 9 13 2002 12:55 1705-14646 CH I M 227.0000
## 709 9 16 2002 13:14 1807-53135 RT A 359.0000
## 710 9 17 2002 11:20 1142-19259 SS I M 155.0000
## 711 9 18 2002 12:08 1705-24647 CH I F 261.0000
## 712 9 19 2002 9:30 1142-19260 SS I M 160.0000
## 713 9 19 2002 12:01 1142-19261 SS I M 166.0000
## 714 9 21 2002 13:38 1207-72665 RT I 362.0000
## 715 9 22 2002 10:50 1177-04708 RT I 375.0000
## 716 9 22 2002 11:57 1177-04709 RT I 388.0000
## 717 9 22 2002 13:47 1177-04710 RT I 392.0000
## 718 9 22 2002 14:29 1207-72666 RT I 412.0000
## 719 9 23 2002 13:15 1177-04711 RT I 371.0000
## 720 9 23 2002 14:23 1705-24649 CH A F 255.0000
## 721 9 24 2002 12:50 1807-53136 RT I 391.0000
## 722 9 24 2002 13:26 2003-99341 SS I F 190.0000
## 723 9 25 2002 12:36 1177-04712 RT I 385.0000
## 724 9 25 2002 14:05 1142-19262 SS I M 166.0000
## 725 9 26 2002 10:49 2003-99342 SS A F 197.0000
## 726 9 29 2002 10:10 1177-04713 RT I 370.0000
## 727 9 29 2002 10:50 2003-99345 SS I F 190.0000
## 728 9 29 2002 12:52 1207-72667 RT I 400.0000
## 729 9 29 2002 13:06 1142-19263 SS I M 162.0000
## 730 9 30 2002 11:26 2003-00344 SS I F 194.0000
## 731 9 30 2002 11:45 1207-72668 RT I 395.0000
## 732 9 30 2002 12:46 1207-72669 RT I 403.0000
## 733 10 3 2002 9:58 1177-04714 RT I 386.0000
## 734 10 4 2002 9:53 803-05940 SS A F 193.0000
## 735 10 4 2002 15:15 2003-99346 SS A F 203.0000
## 736 10 5 2002 8:34 1142-19264 SS A M 159.0000
## 737 10 5 2002 9:59 1142-19265 SS I M 163.0000
## 738 10 5 2002 10:34 2003-99348 SS A M 191.0000
## 739 10 5 2002 13:08 1142-19266 SS I M 166.0000
## 740 10 5 2002 13:30 1177-04715 RT I 361.0000
## 741 10 5 2002 14:27 1705-37416 CH A F 260.0000
## 742 10 6 2002 9:48 804-00205 CH A M 234.0000
## 743 10 6 2002 10:43 1177-04716 RT I 377.0000
## 744 10 6 2002 12:03 1807-53137 RT I 361.0000
## 745 10 6 2002 12:34 1177-04717 RT I 375.0000
## 746 10 6 2002 14:56 2003-99349 SS I F 193.0000
## 747 10 7 2002 9:40 803-05941 SS I F 196.0000
## 748 10 7 2002 13:25 1142-19267 SS I M 159.0000
## 749 10 7 2002 13:25 1213-58908 SS I F 192.0000
## 750 10 7 2002 13:29 1207-72670 RT I 401.0000
## 751 10 8 2002 14:40 2003-99350 SS I F 198.0000
## 752 10 10 2002 11:36 1177-04718 RT I 407.0000
## 753 10 10 2002 12:46 1142-19268 SS I M 162.0000
## 754 10 11 2002 11:23 2206-35435 CH A F 169.0000
## 755 10 11 2002 14:50 1142-19269 SS I M 168.0000
## 756 10 13 2002 9:38 1142-19270 SS A M 168.0000
## 757 10 13 2002 10:00 804-00206 CH A M 223.0000
## 758 10 13 2002 10:42 1177-04719 RT I 375.0000
## 759 10 13 2002 11:33 1177-04720 RT A 406.0000
## 760 10 14 2002 9:50 1177-04721 RT I 386.0000
## 761 10 14 2002 10:14 1142-19271 SS A M 160.0000
## 762 10 14 2002 12:59 1177-04722 RT I 378.0000
## 763 10 14 2002 14:16 803-05942 SS A F 193.0000
## 764 10 17 2002 9:46 1177-04723 RT I 379.0000
## 765 10 18 2002 10:00 1177-04724 RT I 364.0000
## 766 10 18 2002 12:50 1177-04725 RT A 350.0000
## 767 10 18 2002 13:10 1207-7267 RT I 380.0000
## 768 10 19 2002 10:34 1207-72672 RT A 395.0000
## 769 10 19 2002 11:22 1177-04726 RT I 372.0000
## 770 10 19 2002 13:22 1177-04727 RT I 376.0000
## 771 10 20 2002 13:24 1177-04728 RT I 367.0000
## 772 10 21 2002 11:05 1204-5874 CH I M 230.0000
## 773 10 21 2002 13:55 1807-53138 RT I 366.0000
## 774 10 23 2002 12:56 1177-04729 RT I 386.0000
## 775 10 26 2002 12:45 1177-04730 RT I 375.0000
## 776 10 30 2002 10:30 2003-99351 SS I F 199.0000
## 777 10 30 2002 12:40 1177-04731 RT A 405.0000
## 778 10 31 2002 10:18 1177-04732 RT A 371.0000
## 779 10 31 2002 12:00 2003-99352 SS I F 193.0000
## 780 10 31 2002 12:15 1177-04733 RT I 350.0000
## 781 10 31 2002 13:20 2003-99353 SS I F 193.0000
## 782 11 1 2002 10:50 1177-04734 RT A 368.0000
## 783 11 2 2002 10:34 2003-99354 SS I M 185.0000
## 784 11 2 2002 10:48 1177-04735 RT I 372.0000
## 785 11 2 2002 11:00 1177-04736 RT I 396.0000
## 786 11 2 2002 11:18 1177-04737 RT I 365.0000
## 787 11 3 2002 11:36 1177-04738 RT I 374.0000
## 788 11 4 2002 9:33 1705-24644 CH I F 253.0000
## 789 11 6 2002 12:06 1177-04739 RT I 372.0000
## 790 11 6 2002 14:06 1177-04740 RT I 376.0000
## 791 11 7 2002 10:20 1142-19272 SS I M 166.0000
## 792 11 7 2002 11:58 1177-04741 RT I 369.0000
## 793 11 7 2002 12:28 1207-72673 RT A 391.0000
## 794 11 7 2002 12:59 2003-99355 SS I F 193.0000
## 795 11 8 2002 11:45 1177-0472 RT A 397.0000
## 796 11 8 2002 14:29 1177-0473 RT I 366.0000
## 797 11 10 2002 11:35 1207-72674 RT A 385.0000
## 798 11 10 2002 12:35 1177-0744 RT I 400.0000
## 799 11 11 2002 11:48 2003-99356 SS I F 198.0000
## 800 9 5 2003 10:38 1177-0745 RT A 365.0000
## 801 9 14 2003 10:18 2003-99357 SS I F 194.0000
## 802 9 16 2003 10:15 803-05943 SS I F 195.0000
## 803 9 16 2003 10:57 2003-99358 SS I F 200.0000
## 804 9 16 2003 12:55 1207-72675 RT I 384.0000
## 805 9 17 2003 9:40 1142-19273 SS I M 159.0000
## 806 9 18 2003 10:17 1142-19274 SS I M 161.0000
## 807 9 18 2003 10:17 2003-99359 SS I F 191.0000
## 808 9 18 2003 11:55 1204-45879 CH I M 216.0000
## 809 9 18 2003 13:50 1705-37417 CH I F 256.0000
## 810 9 19 2003 10:59 1142-19275 SS I M 161.0000
## 811 9 20 2003 12:04 1207-99560 RT A 396.0000
## 812 9 20 2003 13:35 1177-04746 RT I 391.0000
## 813 9 20 2003 14:12 1142-19276 SS I M 160.0000
## 814 9 21 2003 9:52 2003-99360 SS I M 183.0000
## 815 9 22 2003 14:21 1142-19277 SS I M 156.0000
## 816 9 23 2003 10:44 1207-72676 RT I 393.0000
## 817 9 23 2003 11:16 1207-72677 RT I 397.0000
## 818 9 23 2003 13:13 1142-19278 SS I M 159.0000
## 819 9 23 2003 14:00 1705-37418 CH I F 255.0000
## 820 9 24 2003 9:35 2003-99362 SS I M 197.0000
## 821 9 24 2003 9:53 1204-45880 CH I M 218.0000
## 822 9 25 2003 9:49 2003-99363 SS I F 196.0000
## 823 9 25 2003 13:08 1177-04747 RT I 384.0000
## 824 9 25 2003 13:30 1177-04748 RT I 385.0000
## 825 9 26 2003 10:19 2003-99364 SS I M 181.0000
## 826 9 26 2003 11:27 1204-45881 CH I M 225.0000
## 827 9 17 2003 9:18 1177-04749 RT I 379.0000
## 828 9 27 2003 10:10 2003-99365 SS I F 201.0000
## 829 9 28 2003 9:36 1142-19279 SS I M 161.0000
## 830 9 28 2003 10:11 1705-37419 CH A M 230.0000
## 831 9 28 2003 12:12 1142-19280 SS I M 159.0000
## 832 9 29 2003 11:20 1177-04750 RT I 367.0000
## 833 9 29 2003 12:02 1207-72678 RT I 396.0000
## 834 9 29 2003 12:58 1142-19281 SS I M 157.0000
## 835 9 29 2003 13:51 2003-99366 SS I F 191.0000
## 836 9 29 2003 14:47 2003-99367 SS I F 191.0000
## 837 9 29 2003 15:15 1142-19282 SS I M 168.0000
## 838 9 29 2003 15:55 1207-72679 RT I 428.0000
## 839 9 30 2003 12:05 1705-37420 CH A F 252.0000
## 840 9 30 2003 12:53 2003-99368 SS A F 192.0000
## 841 9 30 2003 13:22 2003-99369 SS A F 195.0000
## 842 10 1 2003 10:07 1204-45882 CH A M 233.0000
## 843 10 1 2003 11:53 1177-04751 RT A 364.0000
## 844 10 1 2003 13:40 1177-04752 RT I 370.0000
## 845 10 1 2003 14:30 1207-72680 RT I 400.0000
## 846 10 3 2003 9:18 1177-04753 RT I 375.0000
## 847 10 3 2003 14:43 1207-72681 RT I 398.0000
## 848 10 4 2003 11:04 1177-04754 RT I 385.0000
## 849 10 4 2003 11:58 1142-19283 SS I M 156.0000
## 850 10 4 2003 12:46 1204-45883 CH I M 230.0000
## 851 10 5 2003 10:58 1204-45884 CH I M 220.0000
## 852 10 6 2003 14:12 1142-19284 SS I M 163.0000
## 853 10 7 2003 10:46 1807-53139 RT I 376.0000
## 854 10 7 2003 11:17 1177-04755 RT I 360.0000
## 855 10 7 2003 11:42 1177-04756 RT A 372.0000
## 856 10 7 2003 11:58 1207-72682 RT I 400.0000
## 857 10 7 2003 12:10 2003-99370 SS A F 194.0000
## 858 10 7 2003 12:49 1807-53140 RT I 370.0000
## 859 10 8 2003 10:31 1142-19285 SS I M 160.0000
## 860 10 8 2003 11:08 1207-72683 RT I 403.0000
## 861 10 8 2003 12:28 1177-04757 RT I 375.0000
## 862 10 8 2003 14:48 1177-04758 RT I 373.0000
## 863 10 10 2003 11:43 1177-04759 RT I 385.0000
## 864 10 12 2003 10:10 2003-99371 SS I F 143.0000
## 865 10 12 2003 11:30 1142-19286 SS I M 162.0000
## 866 10 12 2003 12:10 1207-72684 RT I 392.0000
## 867 10 12 2003 13:15 1807-53141 RT I 372.0000
## 868 10 13 2003 12:00 1177-04760 RT I 375.0000
## 869 10 13 2003 1207-72685 RT I 415.0000
## 870 10 14 2003 10:53 1142-19287 SS A M 161.0000
## 871 10 14 2003 12:24 1177-04761 RT A 380.0000
## 872 10 18 2003 12:45 788-36611 RT A 411.0000
## 873 10 21 2003 9:08 1142-19288 SS A M 161.0000
## 874 10 21 2003 10:19 1142-19289 SS I M 165.0000
## 875 10 21 2003 11:35 1207-72686 RT I 393.0000
## 876 10 21 2003 13:02 1177-04762 RT I 370.0000
## 877 10 22 2003 12:19 1204-45885 CH A M 230.0000
## 878 10 25 2003 11:07 1177-04763 RT I 365.0000
## 879 10 25 2003 11:53 1177-04764 RT I 371.0000
## 880 10 25 2003 12:47 1207-72687 RT I 400.0000
## 881 10 25 2003 12:55 1177-04765 RT A 382.0000
## 882 10 25 2003 13:27 1807-53142 RT A 371.0000
## 883 10 25 2003 13:40 1177-04766 RT A 370.0000
## 884 10 26 2003 11:35 2003-99372 SS A F 194.0000
## 885 10 26 2003 12:15 1177-04767 RT A 347.0000
## 886 10 30 2003 10:40 1177-04768 RT I 363.0000
## 887 10 30 2003 13:13 1213-58909 SS I F 195.0000
## 888 10 30 2003 13:35 1177-04769 RT A 392.0000
## 889 10 31 2003 11:20 1204-45886 CH I M 220.0000
## 890 11 6 2003 10:06 2003-99373 SS I F 193.0000
## 891 11 6 2003 13:02 1177-04770 RT I 365.0000
## 892 11 7 2003 12:30 1177-04771 RT A 387.0000
## 893 11 7 2003 13:45 1177-04772 RT I 400.0000
## 894 11 8 2003 13:01 1801-53143 RT I 362.0000
## 895 11 9 2003 12:00 803-05944 SS I F 198.0000
## 896 11 9 2003 13:31 2003-99374 SS I F 190.0000
## 897 11 11 2003 10:15 2003-99375 SS I F 197.0000
## 898 11 13 2003 14:00 1177-04773 RT A 370.0000
## 899 11 14 2003 13:35 1213-58910 SS I F 200.0000
## 900 11 17 2003 10:19 1177-04774 RT A 360.0000
## 901 11 18 2003 13:29 1177-04775 RT A 366.0000
## 902 11 18 2003 13:45 1177-04776 RT A 402.0000
## 903 11 18 2003 14:07 1207-53144 RT I 366.0000
## 904 11 18 2003 14:44 1177-04777 RT I 380.0000
## 905 11 19 2003 10:18 803-05985 SS I F 190.0000
## 906 11 19 2003 12:02 1807-53145 RT I 360.0000
## 907 11 20 2003 9:56 1177-04778 RT I 369.0000
## 908 11 20 2003 13:30 1207-53145 RT A 199.0000
## Weight Culmen Hallux Tail Sex_M Sex_F Age_A Age_I
## 1 920.0000 25.70000 30.10000 219 0 0 0 1
## 2 930.0000 26.81197 32.23097 221 0 0 0 1
## 3 990.0000 26.70000 31.30000 235 0 0 0 1
## 4 470.0000 18.70000 23.50000 220 0 1 0 1
## 5 170.0000 12.50000 14.30000 157 0 1 0 1
## 6 1090.0000 28.50000 32.20000 230 0 0 0 1
## 7 960.0000 25.30000 30.10000 212 0 0 0 1
## 8 855.0000 27.20000 30.00000 243 0 0 1 0
## 9 1210.0000 29.30000 31.30000 210 0 0 1 0
## 10 1120.0000 26.00000 30.20000 238 0 0 0 1
## 11 1010.0000 26.30000 30.80000 222 0 0 0 1
## 12 1010.0000 25.40000 29.70000 217 0 0 0 1
## 13 1120.0000 28.90000 30.90000 213 0 0 1 0
## 14 1161.4132 28.20000 30.60000 238 0 0 1 0
## 15 1170.0000 26.50000 34.00000 243 0 0 0 1
## 16 1390.0000 30.50000 34.00000 232 0 0 1 0
## 17 1150.0000 27.10000 31.00000 238 0 0 0 1
## 18 950.0000 28.90000 28.90000 202 0 0 1 0
## 19 910.0000 25.70000 28.20000 227 0 0 0 1
## 20 1010.0000 24.00000 26.90000 227 0 0 0 1
## 21 1070.0000 26.40000 31.20000 222 0 0 0 1
## 22 1190.0000 28.80000 31.60000 237 0 0 0 1
## 23 101.0000 24.90000 30.70000 238 0 0 0 1
## 24 1330.0000 27.00000 30.30000 213 0 0 1 0
## 25 990.0000 26.00000 30.00000 211 0 0 0 1
## 26 100.0000 11.41111 14.24101 130 1 0 0 1
## 27 1100.0000 26.20000 32.50000 190 0 0 0 1
## 28 1190.0000 28.60000 31.60000 245 0 0 1 0
## 29 180.0000 11.70000 15.00000 164 0 1 0 1
## 30 1490.0000 30.10000 32.40000 246 0 0 0 1
## 31 1040.0000 27.10000 31.40000 207 0 0 1 0
## 32 820.0000 24.90000 27.90000 209 0 0 0 1
## 33 1030.0000 26.00000 29.70000 200 0 0 1 0
## 34 1300.0000 25.50000 32.40000 215 0 0 1 0
## 35 1500.0000 26.50000 31.30000 219 0 0 1 0
## 36 1080.0000 25.30000 27.20000 198 0 0 1 0
## 37 1320.0000 27.30000 30.10000 207 0 0 1 0
## 38 1490.0000 25.40000 31.30000 204 0 0 1 0
## 39 1500.0000 29.10000 30.80000 205 0 0 1 0
## 40 100.0000 9.30000 14.24101 144 1 0 0 1
## 41 88.0000 9.70000 11.50000 136 1 0 0 1
## 42 324.0000 16.00000 19.30000 191 0 0 0 1
## 43 1060.0000 26.10000 31.20000 230 0 0 0 1
## 44 1140.0000 25.10000 29.40000 227 0 0 0 1
## 45 1030.0000 27.60000 30.30000 208 0 0 0 1
## 46 1000.0000 25.10000 28.30000 231 0 0 0 1
## 47 1050.0000 28.70000 29.80000 222 0 0 0 1
## 48 1040.0000 26.20000 31.20000 225 0 0 0 1
## 49 1110.0000 26.50000 30.90000 225 0 0 0 1
## 50 1300.0000 27.90000 31.55000 233 0 0 0 1
## 51 980.0000 25.70000 29.30000 214 0 0 0 1
## 52 1120.0000 26.40000 28.30000 233 0 0 0 1
## 53 134.0000 12.40000 13.70000 158 0 1 0 1
## 54 1270.0000 27.80000 31.60000 245 0 0 0 1
## 55 880.0000 25.00000 26.50000 210 0 0 0 1
## 56 340.0000 16.00000 20.80000 230 0 1 0 1
## 57 340.0000 16.10000 19.30000 192 1 0 1 0
## 58 1255.0000 29.70000 31.40000 229 0 0 0 1
## 59 1320.0000 28.60000 36.40000 235 0 0 0 1
## 60 1320.0000 30.00000 33.40000 221 0 0 0 1
## 61 1180.0000 20.20000 26.65000 210 0 0 0 1
## 62 760.0000 24.50000 26.10000 212 0 0 0 1
## 63 1250.0000 26.60000 32.50000 225 0 0 0 1
## 64 1076.4590 25.20000 27.70000 215 0 0 0 1
## 65 100.0000 10.80000 10.50000 122 1 0 0 1
## 66 1300.0000 27.30000 32.70000 235 0 0 0 1
## 67 475.0000 18.20000 24.75000 232 0 1 0 1
## 68 100.0000 9.80000 11.10000 133 1 0 1 0
## 69 150.3824 11.40000 14.20000 154 0 1 1 0
## 70 1080.0000 30.20000 29.10000 209 0 0 1 0
## 71 1130.0000 26.40000 29.40000 212 0 0 1 0
## 72 1160.0000 26.80000 31.00000 209 0 0 1 0
## 73 1345.0000 29.50000 34.30000 250 0 0 0 1
## 74 1385.0000 32.60000 30.60000 235 0 0 1 0
## 75 1210.0000 25.50000 28.60000 222 0 0 1 0
## 76 1455.0000 28.00000 31.50000 236 0 0 0 1
## 77 1180.0000 25.00000 28.90000 210 0 0 0 1
## 78 1500.0000 27.10000 33.20000 239 0 0 0 1
## 79 1025.0000 27.10000 31.50000 228 0 0 0 1
## 80 930.0000 26.10000 31.10000 220 0 0 0 1
## 81 1360.0000 28.60000 33.50000 233 0 0 0 1
## 82 1255.0000 27.70000 32.60000 236 0 0 0 1
## 83 194.0000 12.60000 14.40000 155 0 1 0 1
## 84 159.0000 12.50000 14.80000 152 0 1 0 1
## 85 90.0000 9.50000 11.30000 135 1 0 0 1
## 86 340.0000 17.80000 19.40000 186 1 0 1 0
## 87 1065.0000 25.90000 30.00000 216 0 0 0 1
## 88 1125.0000 19.60000 31.40000 233 0 0 0 1
## 89 1340.0000 28.70000 32.00000 248 0 0 0 1
## 90 1050.0000 26.60000 32.20000 221 0 0 0 1
## 91 1210.0000 27.50000 32.23097 227 0 0 0 1
## 92 980.0000 26.80000 27.80000 223 0 0 0 1
## 93 1000.0000 25.50000 29.80000 219 0 0 0 1
## 94 1390.0000 28.10000 31.30000 225 0 0 1 0
## 95 1275.0000 29.00000 33.70000 238 0 0 0 1
## 96 1180.0000 30.10000 32.23097 235 0 0 0 1
## 97 1210.0000 29.30000 33.80000 222 0 0 0 1
## 98 168.0000 12.70000 14.80000 155 0 1 1 0
## 99 146.0000 11.80000 14.90000 160 0 1 0 1
## 100 108.0000 10.00000 11.50000 137 1 0 0 1
## 101 94.0000 9.50000 11.30000 127 1 0 0 1
## 102 1085.0000 27.70000 29.90000 238 0 0 0 1
## 103 188.0000 12.20000 16.94493 150 0 1 1 0
## 104 154.0000 12.40000 14.40000 150 0 1 0 1
## 105 810.0000 25.90000 28.70000 229 0 0 0 1
## 106 905.0000 27.90000 29.10000 227 0 0 0 1
## 107 94.0000 9.00000 10.20000 129 1 0 0 1
## 108 420.0000 19.60000 23.90000 220 0 1 0 1
## 109 1240.0000 29.10000 34.70000 245 0 0 0 1
## 110 990.0000 26.90000 31.40000 223 0 0 0 1
## 111 365.0000 16.80000 22.50000 224 0 1 0 1
## 112 91.0000 10.20000 11.30000 133 1 0 0 1
## 113 1010.0000 25.80000 31.70000 210 0 0 0 1
## 114 980.0000 26.30000 29.70000 234 0 0 0 1
## 115 860.0000 26.50000 29.00000 219 0 0 0 1
## 116 970.0000 25.80000 29.00000 216 0 0 0 1
## 117 980.0000 27.50000 29.90000 230 0 0 0 1
## 118 985.0000 23.90000 29.00000 223 0 0 0 1
## 119 990.0000 25.60000 30.60000 220 0 0 0 1
## 120 1210.0000 27.80000 32.60000 241 0 0 0 1
## 121 89.0000 8.60000 11.00000 136 1 0 0 1
## 122 97.0000 10.00000 11.30000 137 1 0 1 0
## 123 990.0000 28.00000 29.50000 223 0 0 0 1
## 124 1170.0000 28.10000 31.70000 238 0 0 0 1
## 125 93.0000 10.10000 11.20000 126 1 0 1 0
## 126 1350.0000 30.50000 32.00000 235 0 0 0 1
## 127 1370.0000 29.30000 33.00000 240 0 0 0 1
## 128 103.0000 9.70000 19.40000 137 1 0 0 1
## 129 151.0000 12.20000 13.90000 160 0 1 0 1
## 130 101.0000 10.30000 12.10000 140 1 0 0 1
## 131 985.0000 26.90000 29.80000 220 0 0 0 1
## 132 940.0000 26.50000 30.40000 218 0 0 0 1
## 133 1310.0000 27.40000 34.10000 234 0 0 0 1
## 134 1035.0000 26.10000 30.80000 232 0 0 0 1
## 135 965.0000 26.10000 31.80000 221 0 0 0 1
## 136 1125.0000 25.40000 30.90000 220 0 0 0 1
## 137 975.0000 26.40000 30.30000 232 0 0 0 1
## 138 1140.0000 26.20000 29.80000 214 0 0 0 1
## 139 950.0000 25.30000 29.90000 225 0 0 0 1
## 140 1210.0000 28.10000 28.90000 238 0 0 0 1
## 141 95.0000 10.80000 11.60000 133 1 0 0 1
## 142 89.0000 9.40000 10.80000 136 1 0 0 1
## 143 195.0000 12.40000 14.10000 151 0 1 1 0
## 144 93.0000 9.50000 11.00000 131 1 0 0 1
## 145 1205.0000 28.80000 31.30000 238 0 0 0 1
## 146 1045.0000 27.60000 27.50000 229 0 0 0 1
## 147 1090.0000 26.60000 28.80000 202 0 0 0 1
## 148 1190.0000 30.30000 32.80000 226 0 0 0 1
## 149 960.0000 25.60000 30.10000 220 0 0 0 1
## 150 955.0000 26.30000 30.10000 215 0 0 0 1
## 151 1110.0000 24.70000 30.20000 122 0 0 0 1
## 152 100.0000 19.10000 11.50000 134 1 0 0 1
## 153 900.0000 24.00000 26.50000 215 0 0 0 1
## 154 1075.0000 26.50000 30.70000 208 0 0 0 1
## 155 980.0000 27.90000 32.10000 211 0 0 0 1
## 156 940.0000 27.80000 34.20000 220 0 0 0 1
## 157 1070.0000 25.60000 30.40000 204 0 0 0 1
## 158 1120.0000 29.40000 31.60000 229 0 0 0 1
## 159 1060.0000 27.60000 29.00000 205 0 0 1 0
## 160 168.0000 12.10000 14.30000 155 0 1 0 1
## 161 211.0000 11.50000 13.90000 150 0 1 0 1
## 162 1125.0000 27.20000 27.40000 244 0 0 0 1
## 163 1100.0000 27.00000 28.20000 225 0 0 0 1
## 164 1360.0000 30.00000 33.90000 239 0 0 0 1
## 165 995.0000 26.70000 30.70000 222 0 0 0 1
## 166 1095.0000 21.10000 31.40000 209 0 0 1 0
## 167 196.0000 12.10000 14.60000 164 0 1 0 1
## 168 176.0000 11.70000 15.10000 159 0 1 0 1
## 169 1075.0000 25.50000 29.70000 211 0 0 1 0
## 170 180.0000 12.30000 15.20000 160 0 1 1 0
## 171 164.0000 12.30000 14.30000 157 0 1 0 1
## 172 158.0000 12.20000 14.40000 160 0 1 0 1
## 173 1140.0000 26.80000 29.20000 216 0 0 0 1
## 174 1240.0000 27.90000 31.80000 250 0 0 0 1
## 175 1465.0000 29.70000 34.60000 260 0 0 0 1
## 176 169.0000 12.10000 14.50000 164 0 1 0 1
## 177 1105.0000 26.70000 28.90000 217 0 0 0 1
## 178 1010.0000 27.10000 31.40000 228 0 0 0 1
## 179 1075.0000 26.30000 30.50000 218 0 0 0 1
## 180 1060.0000 27.90000 30.90000 220 0 0 0 1
## 181 1015.0000 27.60000 31.10000 227 0 0 0 1
## 182 1100.0000 26.00000 30.20000 211 0 0 0 1
## 183 1010.0000 25.00000 30.60000 222 0 0 0 1
## 184 1000.0000 26.30000 30.10000 225 0 0 0 1
## 185 980.0000 25.40000 30.20000 221 0 0 0 1
## 186 1240.0000 28.70000 32.40000 231 0 0 0 1
## 187 1360.0000 27.90000 33.10000 235 0 0 0 1
## 188 183.0000 17.30000 19.20000 182 1 0 1 0
## 189 1405.0000 29.10000 32.23097 235 0 0 0 1
## 190 1055.0000 27.00000 29.10000 200 0 0 1 0
## 191 1670.0000 27.10000 32.90000 216 0 0 1 0
## 192 1250.0000 26.20000 30.50000 223 0 0 0 1
## 193 1030.0000 25.30000 29.90000 210 0 0 0 1
## 194 1040.0000 26.81197 29.90000 229 0 0 0 1
## 195 190.0000 12.20000 15.50000 160 0 1 0 1
## 196 105.0000 10.00000 10.80000 125 1 0 0 1
## 197 1090.0000 26.20000 28.80000 226 0 0 0 1
## 198 190.0000 11.80000 13.90000 154 0 1 0 1
## 199 1050.0000 28.40000 29.40000 207 0 0 1 0
## 200 1110.0000 26.10000 30.00000 238 0 0 0 1
## 201 206.0000 12.10000 13.50000 151 0 1 0 1
## 202 195.0000 12.10000 14.80000 158 0 1 0 1
## 203 1010.0000 24.90000 30.10000 197 0 0 1 0
## 204 880.0000 24.20000 28.70000 250 0 0 0 1
## 205 1060.0000 24.30000 29.80000 215 0 0 0 1
## 206 920.0000 25.70000 30.00000 214 0 0 0 1
## 207 1195.0000 26.20000 29.80000 230 0 0 0 1
## 208 890.0000 26.00000 28.40000 213 0 0 0 1
## 209 900.0000 25.30000 29.00000 214 0 0 0 1
## 210 1110.0000 22.20000 31.50000 224 0 0 1 0
## 211 160.0000 10.20000 13.20000 153 0 1 0 1
## 212 105.0000 10.10000 11.30000 131 1 0 0 1
## 213 99.0000 9.60000 12.70000 145 1 0 0 1
## 214 165.0000 12.00000 14.40000 165 0 1 0 1
## 215 100.0000 12.00000 12.50000 168 0 1 0 1
## 216 125.0000 11.50000 14.40000 156 0 1 0 1
## 217 1100.0000 29.00000 32.60000 215 0 0 0 1
## 218 147.0957 11.41111 14.24101 164 0 1 0 1
## 219 155.0000 11.90000 14.60000 155 0 1 0 1
## 220 1285.0000 29.50000 31.80000 239 0 0 0 1
## 221 390.0000 15.10000 20.40000 185 1 0 1 0
## 222 920.0000 26.80000 30.20000 214 0 0 0 1
## 223 1025.0000 25.40000 30.80000 232 0 0 0 1
## 224 940.0000 26.00000 29.10000 205 0 0 1 0
## 225 1240.0000 28.50000 30.80000 243 0 0 0 1
## 226 1160.0000 27.80000 33.00000 255 0 0 0 1
## 227 150.0000 11.50000 13.90000 159 0 1 0 1
## 228 130.0000 11.70000 14.40000 156 0 1 0 1
## 229 1240.0000 26.80000 32.70000 276 0 0 0 1
## 230 930.0000 24.40000 27.40000 210 0 0 0 1
## 231 90.0000 10.90000 12.10000 145 1 0 0 1
## 232 1240.0000 25.60000 31.20000 231 0 0 0 1
## 233 1030.0000 25.20000 29.80000 216 0 0 0 1
## 234 550.0000 18.80000 21.30000 210 1 0 0 1
## 235 1250.0000 26.50000 32.00000 210 0 0 0 1
## 236 999.0000 25.30000 29.80000 220 0 0 0 1
## 237 1120.0000 26.50000 30.80000 260 0 0 1 0
## 238 1000.0000 26.40000 30.10000 200 0 0 1 0
## 239 530.0000 19.20000 24.70000 213 0 1 0 1
## 240 1040.0000 27.70000 32.10000 230 0 0 0 1
## 241 1150.0000 27.80000 31.10000 220 0 0 0 1
## 242 1000.0000 25.90000 30.20000 220 0 0 0 1
## 243 1360.0000 33.30000 28.60000 235 0 0 0 1
## 244 930.0000 25.70000 28.90000 215 0 0 0 1
## 245 980.0000 25.80000 30.40000 215 0 0 0 1
## 246 1260.0000 27.70000 31.80000 221 0 0 0 1
## 247 900.0000 27.50000 28.60000 225 0 0 0 1
## 248 1300.0000 25.90000 31.90000 238 0 0 0 1
## 249 470.0000 16.60000 23.40000 221 0 1 0 1
## 250 1040.0000 26.40000 30.90000 212 0 0 1 0
## 251 950.0000 27.30000 30.50000 215 0 0 0 1
## 252 1320.0000 29.40000 33.90000 235 0 0 0 1
## 253 180.0000 14.10000 12.70000 132 0 1 0 1
## 254 1280.0000 27.90000 32.70000 229 0 0 0 1
## 255 1310.0000 26.10000 31.10000 251 0 0 0 1
## 256 910.0000 26.40000 28.40000 215 0 0 1 0
## 257 1220.0000 28.60000 30.40000 225 0 0 0 1
## 258 920.0000 23.80000 28.80000 210 0 0 0 1
## 259 1135.0000 26.40000 32.40000 267 0 0 0 1
## 260 940.0000 26.20000 29.80000 220 0 0 0 1
## 261 920.0000 25.00000 32.20000 238 0 0 0 1
## 262 1280.0000 28.00000 32.40000 248 0 0 0 1
## 263 480.0000 17.70000 32.10000 198 0 0 1 0
## 264 1220.0000 27.30000 33.00000 241 0 0 0 1
## 265 1000.0000 26.70000 28.00000 212 0 0 0 1
## 266 1120.0000 26.80000 50.20000 221 0 0 0 1
## 267 925.0000 26.00000 30.80000 233 0 0 0 1
## 268 90.0000 9.90000 11.90000 138 1 0 1 0
## 269 1280.0000 27.50000 31.80000 230 0 0 1 0
## 270 985.0000 27.50000 30.80000 223 0 0 0 1
## 271 1350.0000 28.30000 32.60000 226 0 0 0 1
## 272 730.0000 24.60000 25.70000 208 0 0 0 1
## 273 890.0000 27.80000 31.20000 231 0 0 0 1
## 274 1020.0000 26.50000 31.10000 217 0 0 0 1
## 275 1000.0000 27.10000 30.60000 230 0 0 1 0
## 276 150.0000 11.70000 14.10000 153 0 1 0 1
## 277 180.0000 11.50000 12.40000 186 0 1 0 1
## 278 1020.0000 26.50000 29.40000 225 0 0 1 0
## 279 1340.0000 26.85000 31.90000 226 0 0 0 1
## 280 1300.0000 27.30000 30.50000 214 0 0 0 1
## 281 1015.0000 25.50000 30.10000 242 0 0 0 1
## 282 900.0000 30.50000 28.80000 220 0 0 0 1
## 283 1000.0000 26.10000 29.60000 250 0 0 0 1
## 284 150.0000 12.30000 14.60000 178 1 0 0 1
## 285 1050.0000 24.80000 32.50000 220 0 0 1 0
## 286 950.0000 24.90000 29.00000 240 0 0 0 1
## 287 350.0000 12.60000 26.00000 215 1 0 0 1
## 288 375.0000 16.90000 18.20000 160 1 0 1 0
## 289 1175.0000 28.30000 33.20000 230 0 0 1 0
## 290 980.0000 25.80000 29.30000 220 0 0 0 1
## 291 1260.0000 29.00000 32.80000 234 0 0 1 0
## 292 1050.0000 25.90000 31.30000 226 0 0 0 1
## 293 1330.0000 29.20000 32.20000 218 0 0 1 0
## 294 980.0000 28.00000 29.10000 209 0 0 1 0
## 295 920.0000 25.30000 30.00000 228 0 0 0 1
## 296 1540.0000 29.90000 35.50000 235 0 0 0 1
## 297 1060.0000 25.50000 26.90000 223 0 0 0 1
## 298 1420.0000 29.90000 32.00000 245 0 0 0 1
## 299 400.0000 15.00000 20.00000 202 1 0 0 1
## 300 1142.0000 27.20000 33.00000 235 0 0 0 1
## 301 157.0000 12.00000 13.80000 158 0 1 0 1
## 302 98.0000 10.30000 11.70000 133 1 0 0 1
## 303 813.0000 26.20000 30.10000 221 0 0 0 1
## 304 94.0000 9.90000 11.40000 125 1 0 0 1
## 305 155.0000 16.50000 14.40000 158 0 1 0 1
## 306 181.0000 12.50000 14.10000 159 0 1 0 1
## 307 92.0000 9.80000 11.00000 132 1 0 0 1
## 308 98.0000 10.10000 11.40000 136 1 0 0 1
## 309 1024.0000 26.60000 30.30000 216 0 0 0 1
## 310 464.0000 19.20000 24.10000 225 0 1 0 1
## 311 100.0000 10.40000 11.20000 137 1 0 0 1
## 312 186.0000 12.80000 14.00000 155 0 1 0 1
## 313 164.0000 11.90000 14.50000 155 0 1 0 1
## 314 98.0000 10.10000 11.40000 138 1 0 0 1
## 315 147.0957 11.41111 14.24101 130 1 0 0 1
## 316 158.0000 12.10000 14.50000 154 0 1 1 0
## 317 1023.0000 25.80000 30.10000 216 0 0 0 1
## 318 340.0000 16.50000 30.50000 200 0 0 0 1
## 319 163.0000 12.20000 20.00000 158 1 0 0 1
## 320 92.0000 9.80000 14.70000 132 0 1 0 1
## 321 550.0000 19.50000 11.20000 215 1 0 0 1
## 322 1119.0000 25.40000 23.90000 226 0 1 1 0
## 323 917.0000 26.00000 29.60000 216 0 0 0 1
## 324 946.0000 26.70000 28.90000 221 0 0 0 1
## 325 337.0000 15.70000 31.90000 196 0 0 0 1
## 326 742.0000 23.40000 18.80000 221 1 0 0 1
## 327 439.0000 18.80000 15.20000 218 0 1 0 1
## 328 187.0000 12.20000 24.20000 157 0 1 0 1
## 329 92.0000 9.70000 14.60000 135 0 1 0 1
## 330 1094.0000 27.30000 11.50000 221 1 0 0 1
## 331 832.0000 23.80000 32.60000 210 0 0 0 1
## 332 1244.0000 27.53525 31.11598 220 0 0 1 0
## 333 1244.0000 26.70000 30.20000 220 0 0 0 1
## 334 974.0000 25.20000 29.60000 221 0 0 0 1
## 335 1289.0000 28.60000 32.10000 242 0 0 0 1
## 336 999.0000 28.30000 32.00000 220 0 0 0 1
## 337 994.0000 26.50000 30.40000 210 0 0 0 1
## 338 1004.0000 27.00000 31.40000 221 0 0 0 1
## 339 1097.0000 28.90000 33.40000 236 0 0 0 1
## 340 185.0000 13.10000 14.50000 162 0 1 0 1
## 341 181.0000 12.80000 11.50000 150 1 0 0 1
## 342 1092.0000 27.20000 31.80000 235 0 0 0 1
## 343 1049.0000 30.10000 32.00000 231 0 0 0 1
## 344 998.0000 27.20000 29.20000 227 0 0 0 1
## 345 1091.0000 31.80000 34.20000 238 0 0 0 1
## 346 987.0000 29.00000 31.10000 225 0 0 0 1
## 347 1151.0000 34.10000 33.70000 249 0 0 0 1
## 348 971.0000 25.10000 26.10000 213 0 0 0 1
## 349 1159.0000 32.90000 34.00000 240 0 0 0 1
## 350 1239.0000 26.70000 33.20000 231 0 0 0 1
## 351 1216.0000 28.50000 32.10000 227 0 0 0 1
## 352 177.0000 12.30000 14.40000 155 0 1 1 0
## 353 469.0000 20.00000 24.90000 227 0 1 0 1
## 354 1039.0000 26.90000 29.50000 223 0 0 0 1
## 355 1079.0000 25.20000 30.00000 228 0 0 0 1
## 356 1159.0000 33.80000 32.70000 242 0 0 1 0
## 357 162.0000 12.30000 13.80000 149 1 0 0 1
## 358 339.0000 23.50000 13.80000 184 1 0 1 0
## 359 1403.0000 34.90000 34.70000 247 0 0 1 0
## 360 175.0000 12.90000 14.00000 158 1 0 0 1
## 361 1473.0000 39.20000 44.70000 267 0 0 1 0
## 362 1001.0000 29.90000 43.20000 257 0 0 0 1
## 363 98.0000 8.70000 10.90000 148 1 0 0 1
## 364 914.0000 25.90000 30.40000 221 0 0 0 1
## 365 1059.0000 25.50000 30.50000 214 0 0 1 0
## 366 1147.0000 29.00000 35.00000 229 0 0 0 1
## 367 949.0000 26.80000 29.70000 213 0 0 0 1
## 368 102.0000 9.60000 11.90000 138 1 0 0 1
## 369 973.0000 24.80000 27.30000 213 0 0 0 1
## 370 196.0000 12.40000 15.20000 158 0 1 0 1
## 371 327.0000 16.50000 20.30000 193 1 0 0 1
## 372 1064.0000 26.00000 32.10000 201 0 0 1 0
## 373 749.0000 24.00000 26.80000 216 0 0 0 1
## 374 201.0000 11.70000 14.90000 165 0 1 0 1
## 375 180.0000 12.40000 14.10000 160 0 1 0 1
## 376 1213.0000 24.90000 28.00000 244 0 0 0 1
## 377 1200.0000 28.20000 30.80000 230 0 0 0 1
## 378 1040.0000 25.30000 29.40000 227 0 0 0 1
## 379 113.0000 10.60000 11.10000 139 1 0 0 1
## 380 919.0000 24.20000 28.50000 233 0 0 0 1
## 381 1487.0000 26.00000 32.50000 240 0 0 0 1
## 382 1254.0000 25.20000 30.00000 237 0 0 0 1
## 383 156.0000 10.80000 14.10000 144 0 1 1 0
## 384 1189.0000 27.70000 31.30000 210 0 0 0 1
## 385 979.0000 24.80000 27.90000 225 0 0 0 1
## 386 96.0000 10.70000 11.40000 125 1 0 1 0
## 387 1339.0000 27.30000 33.40000 246 0 0 0 1
## 388 1199.0000 28.80000 31.00000 225 0 0 0 1
## 389 1344.0000 27.90000 33.10000 230 0 0 0 1
## 390 969.0000 26.10000 31.10000 220 0 0 0 1
## 391 1039.0000 26.00000 29.70000 230 0 0 0 1
## 392 1054.0000 28.50000 31.50000 233 0 0 0 1
## 393 334.0000 17.50000 19.20000 196 0 1 1 0
## 394 101.0000 9.80000 11.00000 135 1 0 0 1
## 395 181.0000 12.20000 15.00000 170 0 1 1 0
## 396 1449.0000 30.30000 33.00000 232 0 0 1 0
## 397 985.0000 26.60000 29.80000 234 0 0 0 1
## 398 1598.0000 34.20000 35.40000 239 0 0 1 0
## 399 992.0000 30.10000 31.50000 230 0 0 0 1
## 400 569.0000 19.10000 24.00000 227 0 1 0 1
## 401 1354.0000 28.20000 32.00000 213 0 0 1 0
## 402 969.0000 25.90000 29.00000 207 0 0 1 0
## 403 1080.0000 25.30000 31.00000 214 0 0 0 1
## 404 185.0000 12.50000 14.00000 146 0 1 1 0
## 405 1097.0000 27.90000 32.80000 217 0 0 1 0
## 406 1439.0000 28.80000 31.40000 216 0 0 1 0
## 407 1076.4590 24.40000 27.90000 214 0 0 0 1
## 408 1019.0000 25.80000 29.50000 216 0 0 0 1
## 409 1239.0000 29.50000 31.80000 222 0 0 1 0
## 410 1399.0000 27.60000 31.30000 288 0 0 0 1
## 411 1169.0000 27.50000 25.20000 238 0 0 0 1
## 412 1164.0000 27.00000 29.90000 199 0 0 0 1
## 413 176.0000 11.50000 14.70000 161 0 1 0 1
## 414 1076.4590 27.40000 33.00000 235 0 0 0 1
## 415 429.0000 19.00000 22.90000 208 0 1 0 1
## 416 160.0000 12.30000 14.70000 137 0 1 0 1
## 417 105.0000 10.20000 11.00000 143 1 0 0 1
## 418 890.0000 24.10000 29.20000 219 0 0 0 1
## 419 100.0000 9.70000 11.60000 128 1 0 0 1
## 420 147.0957 13.70000 15.00000 161 0 1 0 1
## 421 1215.0000 28.30000 33.00000 236 0 0 0 1
## 422 100.0000 9.90000 11.30000 131 1 0 0 1
## 423 1030.0000 27.60000 31.40000 225 0 0 0 1
## 424 340.0000 15.70000 19.40000 190 1 0 1 0
## 425 165.0000 11.90000 9.60000 150 0 1 0 1
## 426 985.0000 26.40000 30.30000 223 0 0 0 1
## 427 975.0000 26.50000 31.60000 225 0 0 0 1
## 428 1165.0000 28.20000 32.40000 241 0 0 0 1
## 429 95.0000 9.70000 11.20000 136 0 0 0 1
## 430 1044.0000 23.50000 29.00000 210 0 0 0 1
## 431 180.0000 12.90000 15.00000 160 0 1 1 0
## 432 125.0000 9.70000 10.90000 135 1 0 0 1
## 433 1080.0000 26.81197 32.30000 223 1 0 0 1
## 434 890.0000 24.60000 28.00000 219 0 0 0 1
## 435 1105.0000 26.40000 33.60000 229 0 0 0 1
## 436 1310.0000 28.30000 35.20000 211 0 0 1 0
## 437 895.0000 26.80000 31.00000 204 0 0 0 1
## 438 1060.0000 26.80000 31.00000 204 0 0 1 0
## 439 165.0000 13.20000 14.60000 146 0 1 1 0
## 440 960.0000 28.90000 29.30000 214 0 0 1 0
## 441 1270.0000 29.40000 33.00000 236 0 0 0 1
## 442 540.0000 20.00000 28.80000 185 0 1 1 0
## 443 365.0000 17.30000 19.90000 195 1 0 1 0
## 444 1170.0000 28.30000 29.90000 247 0 0 0 1
## 445 590.0000 20.00000 19.90000 215 0 1 1 0
## 446 1225.0000 29.00000 31.50000 227 0 0 0 1
## 447 175.0000 12.30000 15.60000 155 0 1 1 0
## 448 170.0000 12.40000 15.50000 159 0 1 0 1
## 449 100.0000 10.00000 11.30000 132 1 0 1 0
## 450 1060.0000 26.60000 31.90000 225 0 0 0 1
## 451 110.0000 10.00000 11.80000 130 1 0 1 0
## 452 850.0000 25.50000 30.00000 220 0 0 0 1
## 453 1145.0000 25.50000 10.30000 215 0 0 0 1
## 454 165.0000 12.50000 15.70000 161 0 1 1 0
## 455 1090.0000 26.10000 28.20000 226 0 0 0 1
## 456 1345.0000 32.60000 33.90000 227 0 0 0 1
## 457 1050.0000 26.60000 29.00000 236 0 0 0 1
## 458 200.0000 12.50000 14.90000 169 0 1 1 0
## 459 505.0000 19.60000 24.00000 212 0 1 1 0
## 460 1040.0000 27.10000 30.80000 210 0 0 1 0
## 461 155.0000 12.70000 14.30000 164 0 1 1 0
## 462 965.0000 26.20000 28.50000 226 0 0 0 1
## 463 1105.0000 28.90000 33.20000 242 0 0 0 1
## 464 155.0000 12.60000 13.70000 153 0 1 0 1
## 465 1045.0000 27.20000 30.00000 221 0 0 0 1
## 466 900.0000 24.40000 27.30000 220 0 0 0 1
## 467 1015.0000 25.70000 30.30000 219 0 0 0 1
## 468 1385.0000 27.90000 32.60000 225 0 0 1 0
## 469 1165.0000 26.00000 31.50000 221 0 0 0 1
## 470 905.0000 28.00000 32.30000 215 0 0 0 1
## 471 985.0000 26.00000 31.10000 223 0 0 0 1
## 472 800.0000 25.50000 28.60000 219 0 0 0 1
## 473 995.0000 26.90000 31.40000 235 0 0 0 1
## 474 1460.0000 29.40000 33.60000 216 0 0 1 0
## 475 165.0000 11.90000 14.10000 151 0 1 0 1
## 476 1585.0000 30.60000 39.80000 130 0 0 1 0
## 477 185.0000 13.10000 15.50000 154 0 1 1 0
## 478 920.0000 25.00000 28.30000 223 0 0 0 1
## 479 1460.0000 29.30000 35.60000 221 0 0 0 1
## 480 1315.0000 30.00000 32.50000 220 0 0 1 0
## 481 1019.0000 26.00000 29.90000 186 0 0 0 1
## 482 1215.0000 29.70000 31.30000 217 0 0 0 1
## 483 1005.0000 27.80000 31.40000 209 0 0 0 1
## 484 1350.0000 27.90000 29.90000 215 0 0 0 1
## 485 1145.0000 27.70000 31.80000 214 0 0 0 1
## 486 175.0000 12.25000 15.50000 169 0 1 1 0
## 487 1010.0000 25.40000 29.00000 207 0 0 1 0
## 488 155.0000 12.00000 14.90000 153 1 0 0 1
## 489 1120.0000 26.60000 30.00000 210 0 0 0 1
## 490 280.0000 28.20000 31.55000 224 0 0 1 0
## 491 775.0000 25.40000 29.30000 200 0 0 0 1
## 492 1210.0000 29.40000 31.70000 207 0 0 0 1
## 493 107.0000 10.00000 11.40000 137 1 0 1 0
## 494 909.0000 24.40000 25.40000 212 0 0 1 0
## 495 95.0000 10.00000 11.85000 132 1 0 0 1
## 496 1145.0000 25.10000 31.55000 226 0 0 0 1
## 497 1150.0000 27.20000 29.55000 232 0 0 0 1
## 498 1560.0000 30.00000 33.85000 228 0 0 0 1
## 499 940.0000 23.60000 28.35000 205 0 0 0 1
## 500 145.0000 11.70000 14.60000 155 0 1 0 1
## 501 1089.0000 27.30000 33.10000 228 0 0 0 1
## 502 1194.0000 29.40000 33.80000 237 0 0 0 1
## 503 95.0000 10.10000 11.30000 135 1 0 0 1
## 504 1015.0000 28.00000 30.10000 230 0 0 0 1
## 505 975.0000 24.10000 29.10000 219 0 0 0 1
## 506 1035.0000 26.80000 30.50000 223 0 0 0 1
## 507 1055.0000 27.00000 30.40000 210 0 0 1 0
## 508 945.0000 26.10000 30.20000 222 0 0 0 1
## 509 90.0000 11.00000 11.80000 124 1 0 0 1
## 510 785.0000 25.20000 28.70000 201 0 0 0 1
## 511 56.0000 19.30000 26.10000 206 0 1 1 0
## 512 1220.0000 30.30000 34.50000 234 0 0 0 1
## 513 175.0000 13.00000 15.30000 149 0 1 1 0
## 514 1025.0000 27.40000 29.00000 204 0 0 1 0
## 515 1000.0000 26.90000 29.00000 204 0 0 0 1
## 516 175.0000 12.10000 14.20000 154 0 1 1 0
## 517 1210.0000 28.30000 34.00000 224 0 0 0 1
## 518 180.0000 13.10000 13.90000 150 0 1 1 0
## 519 175.0000 12.80000 14.60000 147 0 1 1 0
## 520 90.0000 9.80000 11.10000 130 1 0 0 1
## 521 320.0000 16.50000 20.50000 180 0 1 1 0
## 522 1185.0000 28.50000 33.00000 229 0 0 0 1
## 523 147.0957 11.90000 14.60000 153 0 1 0 1
## 524 350.0000 16.40000 21.30000 187 1 0 0 1
## 525 1161.4132 27.00000 31.10000 222 0 0 1 0
## 526 950.0000 24.60000 30.30000 214 0 0 0 1
## 527 85.0000 10.10000 11.40000 132 1 0 0 1
## 528 895.0000 26.40000 30.80000 219 0 0 0 1
## 529 1150.0000 27.80000 33.20000 230 0 0 0 1
## 530 565.0000 20.70000 24.00000 219 0 1 0 1
## 531 950.0000 26.50000 32.20000 230 0 0 0 1
## 532 990.0000 26.90000 29.70000 217 0 0 0 1
## 533 325.0000 15.80000 18.70000 179 1 0 0 1
## 534 1120.0000 29.00000 33.90000 225 0 0 0 1
## 535 90.0000 9.80000 11.50000 123 1 0 0 1
## 536 1120.0000 28.50000 33.60000 229 0 1 0 1
## 537 820.0000 25.20000 28.70000 215 0 0 0 1
## 538 1200.0000 26.70000 29.40000 247 0 1 0 1
## 539 1120.0000 29.40000 33.30000 222 0 1 1 0
## 540 1120.0000 24.70000 30.80000 220 0 0 0 1
## 541 1220.0000 27.30000 34.10000 234 0 0 0 1
## 542 470.0000 18.90000 25.30000 192 1 0 0 1
## 543 1310.0000 29.10000 31.90000 248 0 0 0 1
## 544 920.0000 26.80000 29.70000 221 0 0 0 1
## 545 100.0000 10.90000 12.20000 132 1 0 1 0
## 546 180.0000 13.20000 15.60000 162 0 1 1 0
## 547 955.0000 26.50000 30.50000 218 0 0 1 0
## 548 1225.0000 28.80000 32.70000 225 0 0 1 0
## 549 1400.0000 27.90000 35.30000 215 0 0 1 0
## 550 1025.0000 24.60000 30.10000 225 0 0 0 1
## 551 1140.0000 28.20000 31.90000 244 0 0 0 1
## 552 1080.0000 26.10000 31.60000 232 0 0 0 1
## 553 1135.0000 27.60000 31.10000 238 0 0 0 1
## 554 1430.0000 29.80000 35.00000 231 0 0 0 1
## 555 1050.0000 25.60000 29.90000 218 0 0 0 1
## 556 920.0000 27.00000 29.60000 223 0 0 0 1
## 557 175.0000 12.40000 14.00000 152 0 1 1 0
## 558 905.0000 23.60000 26.80000 197 0 0 0 1
## 559 915.0000 26.40000 28.90000 195 0 0 0 1
## 560 910.0000 25.00000 29.00000 206 0 0 0 1
## 561 950.0000 25.40000 29.70000 213 0 0 0 1
## 562 105.0000 10.10000 11.80000 127 1 0 1 0
## 563 100.0000 9.30000 11.80000 122 1 0 1 0
## 564 1225.0000 27.30000 34.20000 222 0 0 0 1
## 565 105.0000 10.40000 12.00000 124 1 0 1 0
## 566 1090.0000 27.90000 32.40000 227 0 0 0 1
## 567 1350.0000 30.00000 32.70000 235 0 0 0 1
## 568 200.0000 13.00000 13.40000 158 0 1 1 0
## 569 200.0000 13.50000 15.40000 150 0 1 1 0
## 570 100.0000 10.00000 11.70000 133 1 0 1 0
## 571 940.0000 26.20000 30.50000 228 0 0 0 1
## 572 920.0000 24.70000 29.30000 219 0 0 0 1
## 573 1190.0000 29.40000 33.30000 231 0 0 0 1
## 574 90.0000 9.40000 10.70000 127 1 0 0 1
## 575 95.0000 10.40000 11.40000 127 1 0 1 0
## 576 915.0000 25.00000 28.30000 209 0 0 0 1
## 577 535.0000 18.80000 25.40000 223 0 1 1 0
## 578 1310.0000 29.10000 33.30000 237 0 0 0 1
## 579 950.0000 26.90000 30.10000 210 0 0 0 1
## 580 120.0000 10.10000 11.70000 133 1 0 1 0
## 581 975.0000 26.10000 27.90000 215 0 0 0 1
## 582 990.0000 27.90000 31.00000 217 0 0 0 1
## 583 110.0000 11.40000 16.94493 135 1 0 1 0
## 584 1270.0000 26.50000 29.60000 207 0 0 1 0
## 585 960.0000 26.00000 31.00000 211 0 0 0 1
## 586 1290.0000 28.80000 30.70000 225 0 0 0 1
## 587 95.0000 10.20000 11.60000 131 1 0 0 1
## 588 505.0000 19.20000 25.10000 203 0 1 1 0
## 589 1045.0000 26.90000 31.50000 223 0 0 0 1
## 590 1090.0000 27.10000 30.30000 218 0 0 0 1
## 591 1180.0000 28.60000 30.00000 222 0 0 0 1
## 592 1195.0000 27.60000 34.70000 235 0 0 0 1
## 593 1055.0000 27.70000 32.70000 208 0 0 1 0
## 594 1025.0000 26.10000 30.30000 216 0 0 0 1
## 595 175.0000 12.00000 14.80000 157 0 1 0 1
## 596 940.0000 25.10000 31.70000 217 0 0 0 1
## 597 1335.0000 28.30000 33.30000 219 0 0 1 0
## 598 1085.0000 29.40000 32.70000 235 0 0 0 1
## 599 375.0000 16.20000 20.70000 185 1 0 0 1
## 600 1090.0000 28.00000 30.90000 212 0 0 1 0
## 601 995.0000 26.00000 28.20000 211 0 0 0 1
## 602 1090.0000 28.00000 30.70000 201 0 0 1 0
## 603 1020.0000 28.00000 31.20000 200 0 0 1 0
## 604 100.0000 10.60000 12.10000 137 1 0 0 1
## 605 1000.0000 28.60000 32.20000 217 0 0 1 0
## 606 1085.0000 27.40000 33.30000 223 0 0 0 1
## 607 1045.0000 24.90000 27.00000 199 0 0 1 0
## 608 1060.0000 27.70000 32.40000 217 0 0 0 1
## 609 1135.0000 27.10000 32.10000 207 0 0 1 0
## 610 1210.0000 28.50000 28.50000 222 0 0 0 1
## 611 185.0000 13.00000 14.30000 163 0 1 0 1
## 612 965.0000 24.80000 24.10000 217 0 0 0 1
## 613 905.0000 26.80000 27.00000 200 0 0 1 0
## 614 1125.0000 25.30000 29.50000 220 0 0 0 1
## 615 950.0000 27.20000 29.80000 216 0 0 0 1
## 616 1195.0000 27.30000 30.90000 216 0 0 1 0
## 617 1005.0000 25.00000 31.60000 222 0 0 0 1
## 618 95.0000 11.40000 14.24101 136 1 0 0 1
## 619 175.0000 12.30000 15.00000 142 0 1 1 0
## 620 995.0000 26.20000 30.00000 213 0 0 0 1
## 621 165.0000 12.10000 14.20000 154 0 1 0 1
## 622 1170.0000 29.25000 39.80000 226 0 0 0 1
## 623 145.0000 12.00000 14.60000 156 0 1 0 1
## 624 175.0000 12.40000 15.20000 160 0 1 0 1
## 625 170.0000 13.10000 14.80000 149 0 1 0 1
## 626 105.0000 10.30000 11.20000 131 1 0 0 1
## 627 95.0000 10.00000 11.40000 137 1 0 0 1
## 628 95.0000 9.80000 10.80000 126 1 0 0 1
## 629 1085.0000 31.20000 34.60000 210 0 0 0 1
## 630 165.0000 12.30000 14.80000 165 0 1 0 1
## 631 1115.0000 27.40000 32.70000 235 0 0 0 1
## 632 1195.0000 27.60000 33.00000 222 0 0 0 1
## 633 100.0000 9.80000 11.90000 129 1 0 0 1
## 634 365.0000 16.90000 23.55000 192 1 0 1 0
## 635 170.0000 11.90000 9.50000 156 0 1 0 1
## 636 90.0000 9.80000 11.30000 135 1 0 0 1
## 637 95.0000 10.70000 11.10000 129 1 0 0 1
## 638 115.0000 9.80000 11.40000 131 1 0 0 1
## 639 155.0000 11.90000 14.50000 160 0 1 0 1
## 640 229.0000 17.00000 21.00000 195 0 1 0 1
## 641 1165.0000 29.00000 33.10000 223 0 0 1 0
## 642 155.0000 17.10000 21.00000 192 1 0 0 1
## 643 340.0000 16.10000 20.20000 198 1 0 1 0
## 644 180.0000 12.00000 15.50000 152 0 1 1 0
## 645 235.0000 25.40000 30.70000 223 0 0 0 1
## 646 105.0000 10.20000 11.20000 132 1 0 0 1
## 647 1085.0000 27.50000 30.80000 216 0 0 1 0
## 648 970.0000 26.10000 30.40000 207 0 0 0 1
## 649 1030.0000 28.50000 31.90000 218 0 0 0 1
## 650 1015.0000 25.50000 29.60000 215 0 0 0 1
## 651 1030.0000 29.20000 31.50000 224 0 0 1 0
## 652 1215.0000 26.40000 29.20000 242 0 0 0 1
## 653 185.0000 13.50000 14.20000 157 0 1 1 0
## 654 95.0000 10.20000 11.00000 119 1 0 1 0
## 655 95.0000 10.00000 11.00000 130 1 0 0 1
## 656 95.0000 9.70000 11.00000 124 1 0 1 0
## 657 110.0000 10.10000 11.80000 130 1 0 0 1
## 658 1170.0000 28.40000 32.80000 237 0 0 0 1
## 659 105.0000 10.40000 11.20000 140 1 0 0 1
## 660 175.0000 12.80000 14.50000 159 0 1 1 0
## 661 95.0000 10.90000 11.70000 138 1 0 0 1
## 662 190.0000 13.70000 15.20000 159 0 1 1 0
## 663 105.0000 10.20000 11.80000 136 1 0 1 0
## 664 1435.0000 27.40000 32.70000 221 0 0 0 1
## 665 1235.0000 30.10000 35.80000 243 0 0 0 1
## 666 1055.0000 29.50000 32.20000 222 0 0 0 1
## 667 1105.0000 22.00000 30.80000 208 0 0 0 1
## 668 120.0000 9.80000 11.80000 132 1 0 1 0
## 669 1390.0000 28.40000 32.70000 245 0 0 0 1
## 670 105.0000 10.30000 10.80000 131 1 0 1 0
## 671 1080.0000 26.50000 31.30000 206 0 0 1 0
## 672 910.0000 26.10000 32.20000 220 0 0 0 1
## 673 490.0000 18.00000 24.20000 214 0 1 0 1
## 674 845.0000 25.00000 27.40000 217 0 0 0 1
## 675 175.0000 13.30000 14.90000 162 0 1 1 0
## 676 865.0000 25.60000 27.30000 210 0 0 0 1
## 677 180.0000 11.90000 13.50000 163 0 1 1 0
## 678 2030.0000 26.20000 30.20000 196 0 0 0 1
## 679 960.0000 24.60000 30.00000 206 0 0 1 0
## 680 515.0000 19.50000 23.80000 218 0 1 1 0
## 681 970.0000 26.30000 30.70000 218 0 0 0 1
## 682 1265.0000 26.60000 30.60000 210 0 0 1 0
## 683 1300.0000 29.40000 32.80000 224 0 0 1 0
## 684 170.0000 12.90000 14.70000 154 0 1 0 1
## 685 191.0000 13.50000 15.50000 161 0 1 0 1
## 686 540.0000 19.10000 22.60000 209 0 1 1 0
## 687 185.0000 12.00000 14.90000 157 0 1 0 1
## 688 165.0000 11.90000 14.40000 158 0 1 0 1
## 689 205.0000 12.20000 14.00000 156 0 1 1 0
## 690 95.0000 10.40000 12.10000 133 1 0 0 1
## 691 1170.0000 25.80000 30.50000 218 0 0 1 0
## 692 1075.0000 27.70000 31.70000 213 0 0 0 1
## 693 200.0000 12.10000 15.30000 165 0 1 0 1
## 694 965.0000 25.80000 29.10000 235 0 0 0 1
## 695 785.0000 22.70000 25.00000 206 0 0 0 1
## 696 1095.0000 25.60000 31.70000 206 0 0 1 0
## 697 160.0000 12.00000 14.70000 153 0 1 0 1
## 698 95.0000 9.10000 11.50000 135 1 0 0 1
## 699 1500.0000 29.70000 32.10000 207 0 0 1 0
## 700 1595.0000 27.40000 34.50000 230 0 0 1 0
## 701 985.0000 25.40000 31.00000 224 0 0 0 1
## 702 565.0000 20.00000 24.20000 216 0 1 1 0
## 703 240.0000 25.20000 29.30000 218 0 0 0 1
## 704 875.0000 26.00000 31.10000 215 0 0 0 1
## 705 1225.0000 29.00000 33.40000 226 0 0 0 1
## 706 1255.0000 30.60000 34.60000 242 0 0 0 1
## 707 950.0000 26.80000 30.70000 212 0 0 0 1
## 708 330.0000 16.00000 18.50000 193 1 0 0 1
## 709 895.0000 27.50000 30.10000 201 0 0 1 0
## 710 100.0000 9.80000 12.00000 129 1 0 0 1
## 711 455.0000 17.10000 26.80000 216 0 1 0 1
## 712 90.0000 10.30000 11.50000 132 1 0 0 1
## 713 105.0000 11.30000 11.40000 131 1 0 0 1
## 714 1305.0000 28.20000 34.30000 234 0 0 0 1
## 715 975.0000 27.20000 31.80000 220 0 0 0 1
## 716 1185.0000 28.90000 34.30000 225 0 0 0 1
## 717 1030.0000 26.10000 30.50000 214 0 0 0 1
## 718 1215.0000 28.70000 34.10000 230 0 0 0 1
## 719 1075.0000 26.90000 32.80000 220 0 0 0 1
## 720 960.0000 19.70000 42.80000 200 0 1 1 0
## 721 795.0000 24.30000 27.60000 209 0 0 0 1
## 722 180.0000 12.20000 14.20000 156 0 1 0 1
## 723 1225.0000 27.80000 32.00000 225 0 0 0 1
## 724 110.0000 10.00000 11.90000 139 1 0 0 1
## 725 165.0000 12.20000 14.90000 159 0 1 1 0
## 726 920.0000 26.30000 32.00000 226 0 0 0 1
## 727 170.0000 12.00000 15.00000 154 0 1 0 1
## 728 1315.0000 29.60000 34.00000 230 0 0 0 1
## 729 100.0000 9.40000 11.10000 131 1 0 0 1
## 730 155.0000 12.50000 14.50000 156 0 1 0 1
## 731 1155.0000 29.90000 34.40000 233 0 0 0 1
## 732 1160.0000 29.00000 32.30000 235 0 0 0 1
## 733 955.0000 27.90000 30.40000 226 0 0 0 1
## 734 190.0000 13.10000 14.90000 145 0 1 1 0
## 735 180.0000 13.80000 14.70000 156 0 1 1 0
## 736 90.0000 10.00000 11.50000 130 1 0 1 0
## 737 100.0000 9.80000 11.70000 130 1 0 0 1
## 738 190.0000 12.40000 14.80000 147 1 0 1 0
## 739 105.0000 10.30000 12.00000 141 1 0 0 1
## 740 1030.0000 27.00000 30.50000 231 0 0 0 1
## 741 565.0000 19.70000 54.50000 205 0 1 1 0
## 742 380.0000 12.40000 21.90000 192 1 0 1 0
## 743 1040.0000 28.10000 30.90000 225 0 0 0 1
## 744 910.0000 24.30000 27.50000 205 0 0 0 1
## 745 1005.0000 26.00000 32.50000 226 0 0 0 1
## 746 180.0000 11.90000 14.30000 156 0 1 0 1
## 747 175.0000 12.40000 15.60000 153 0 1 0 1
## 748 105.0000 9.80000 11.00000 131 1 0 0 1
## 749 190.0000 11.80000 14.20000 155 0 1 0 1
## 750 1250.0000 28.20000 35.30000 230 0 0 0 1
## 751 185.0000 12.60000 15.20000 165 0 1 0 1
## 752 1275.0000 27.50000 33.70000 238 0 0 0 1
## 753 105.0000 9.80000 12.50000 132 1 0 0 1
## 754 640.0000 16.70000 23.60000 233 0 1 1 0
## 755 100.0000 10.50000 10.70000 135 1 0 0 1
## 756 105.0000 10.70000 11.60000 134 1 0 1 0
## 757 390.0000 15.90000 20.60000 181 1 0 1 0
## 758 1030.0000 26.90000 31.30000 217 0 0 0 1
## 759 1290.0000 29.30000 33.30000 227 0 0 1 0
## 760 1020.0000 26.90000 31.60000 230 0 0 0 1
## 761 105.0000 9.90000 11.40000 136 1 0 1 0
## 762 1055.0000 26.50000 29.90000 217 0 0 0 1
## 763 185.0000 12.30000 14.80000 154 0 1 1 0
## 764 1010.0000 25.00000 29.30000 216 0 0 0 1
## 765 1015.0000 24.90000 29.50000 215 0 0 0 1
## 766 1115.0000 29.50000 30.30000 199 0 0 1 0
## 767 1320.0000 26.70000 31.60000 210 0 0 0 1
## 768 1180.0000 30.30000 33.40000 217 0 0 1 0
## 769 1145.0000 25.90000 32.20000 212 0 0 0 1
## 770 995.0000 28.00000 30.20000 223 0 0 0 1
## 771 1045.0000 26.10000 30.50000 215 0 0 0 1
## 772 340.0000 16.00000 19.50000 196 1 0 0 1
## 773 935.0000 25.70000 27.10000 218 0 0 0 1
## 774 1065.0000 26.10000 31.00000 221 0 0 0 1
## 775 1110.0000 27.70000 31.30000 215 0 0 0 1
## 776 190.0000 12.00000 15.20000 163 0 1 0 1
## 777 1255.0000 27.90000 31.80000 218 0 0 1 0
## 778 1015.0000 24.90000 28.40000 204 0 0 1 0
## 779 190.0000 12.20000 15.20000 151 0 1 0 1
## 780 960.0000 26.60000 29.90000 218 0 0 0 1
## 781 200.0000 11.30000 13.50000 155 0 1 0 1
## 782 1090.0000 27.30000 30.40000 216 0 0 1 0
## 783 170.0000 12.00000 14.70000 156 1 0 0 1
## 784 1085.0000 25.40000 29.80000 220 0 0 0 1
## 785 1065.0000 27.70000 30.00000 230 0 0 0 1
## 786 1125.0000 26.90000 29.30000 213 0 0 0 1
## 787 1050.0000 25.50000 30.30000 220 0 0 0 1
## 788 525.0000 19.50000 23.50000 213 0 1 0 1
## 789 980.0000 26.40000 29.00000 215 0 0 0 1
## 790 1180.0000 24.40000 30.70000 214 0 0 0 1
## 791 115.0000 9.90000 11.60000 136 1 0 0 1
## 792 1095.0000 26.60000 28.40000 215 0 0 0 1
## 793 1330.0000 26.80000 30.10000 217 0 0 1 0
## 794 185.0000 12.10000 14.90000 158 0 1 0 1
## 795 1100.0000 22.10000 28.80000 219 0 0 1 0
## 796 1115.0000 27.10000 21.00000 215 0 0 0 1
## 797 1400.0000 30.30000 33.30000 211 0 0 1 0
## 798 1175.0000 27.60000 32.60000 234 0 0 0 1
## 799 185.0000 11.80000 15.10000 161 0 1 0 1
## 800 970.0000 25.90000 31.60000 208 0 0 1 0
## 801 170.0000 11.60000 14.00000 153 0 1 0 1
## 802 175.0000 12.00000 15.60000 152 0 1 0 1
## 803 165.0000 11.50000 14.50000 163 0 1 0 1
## 804 1260.0000 28.60000 32.50000 226 0 0 0 1
## 805 110.0000 9.90000 11.10000 125 1 0 0 1
## 806 100.0000 9.30000 11.50000 134 1 0 0 1
## 807 190.0000 12.30000 14.80000 162 0 1 0 1
## 808 305.0000 16.00000 20.40000 185 1 0 0 1
## 809 510.0000 18.80000 23.30000 212 0 1 0 1
## 810 90.0000 9.50000 11.30000 123 1 0 0 1
## 811 1195.0000 27.00000 23.80000 228 0 0 1 0
## 812 1035.0000 27.90000 33.10000 221 0 0 0 1
## 813 90.0000 8.80000 11.40000 131 1 0 0 1
## 814 160.0000 12.70000 14.60000 143 1 0 0 1
## 815 85.0000 9.70000 11.00000 129 1 0 0 1
## 816 1155.0000 28.30000 30.90000 223 0 0 0 1
## 817 1260.0000 27.80000 32.90000 232 0 0 0 1
## 818 95.0000 8.90000 10.40000 125 1 0 0 1
## 819 440.0000 18.60000 22.80000 214 0 1 0 1
## 820 175.0000 10.00000 14.90000 150 1 0 0 1
## 821 295.0000 16.10000 19.40000 183 1 0 0 1
## 822 160.0000 12.60000 14.50000 158 0 1 0 1
## 823 1010.0000 26.80000 31.10000 230 0 0 0 1
## 824 990.0000 26.00000 29.60000 225 0 0 0 1
## 825 150.0000 11.40000 14.30000 141 1 0 0 1
## 826 300.0000 16.00000 20.10000 183 1 0 0 1
## 827 945.0000 24.50000 31.30000 224 0 0 0 1
## 828 188.0000 11.70000 14.90000 162 0 1 0 1
## 829 95.0000 10.60000 11.50000 131 1 0 0 1
## 830 330.0000 15.70000 19.40000 188 1 0 1 0
## 831 95.0000 9.90000 11.20000 132 1 0 0 1
## 832 970.0000 26.40000 30.50000 215 0 0 0 1
## 833 1240.0000 28.90000 32.80000 237 0 0 0 1
## 834 105.0000 10.00000 11.50000 133 1 0 0 1
## 835 165.0000 11.50000 14.90000 156 0 1 0 1
## 836 170.0000 12.10000 15.10000 163 0 1 0 1
## 837 100.0000 10.20000 11.90000 134 1 0 0 1
## 838 1290.0000 28.40000 33.90000 253 0 0 0 1
## 839 470.0000 19.50000 28.40000 211 0 1 1 0
## 840 175.0000 11.70000 14.20000 160 0 1 1 0
## 841 195.0000 13.60000 14.00000 158 0 1 1 0
## 842 335.0000 16.30000 21.30000 187 1 0 1 0
## 843 1150.0000 26.10000 28.20000 196 0 0 1 0
## 844 960.0000 25.40000 30.40000 217 0 0 0 1
## 845 1130.0000 28.30000 29.40000 227 0 0 0 1
## 846 925.0000 25.40000 28.60000 220 0 0 0 1
## 847 1205.0000 27.60000 33.40000 227 0 0 0 1
## 848 1040.0000 27.20000 31.50000 238 0 0 0 1
## 849 100.0000 9.90000 11.20000 122 1 0 0 1
## 850 335.0000 16.30000 19.70000 201 1 0 0 1
## 851 335.0000 16.20000 20.00000 185 1 0 0 1
## 852 105.0000 10.30000 11.70000 137 1 0 0 1
## 853 860.0000 25.60000 30.00000 220 0 0 0 1
## 854 935.0000 25.80000 30.00000 212 0 0 0 1
## 855 1010.0000 24.30000 29.00000 197 0 0 1 0
## 856 1285.0000 29.70000 33.50000 230 0 0 0 1
## 857 210.0000 13.00000 14.50000 147 0 1 1 0
## 858 830.0000 23.60000 27.80000 233 0 0 0 1
## 859 95.0000 10.20000 11.20000 135 1 0 0 1
## 860 1350.0000 28.00000 32.80000 140 0 0 0 1
## 861 1010.0000 25.00000 30.80000 218 0 0 0 1
## 862 960.0000 27.70000 32.50000 222 0 0 0 1
## 863 1370.0000 26.40000 29.20000 233 0 0 0 1
## 864 170.0000 12.80000 13.90000 159 0 1 0 1
## 865 100.0000 8.70000 11.40000 136 1 0 0 1
## 866 1250.0000 28.60000 32.90000 222 0 0 0 1
## 867 915.0000 24.70000 28.20000 203 0 0 0 1
## 868 850.0000 25.00000 28.00000 218 0 0 0 1
## 869 1285.0000 29.40000 34.00000 242 0 0 0 1
## 870 95.0000 9.80000 11.70000 129 1 0 1 0
## 871 1005.0000 27.00000 31.60000 205 0 0 1 0
## 872 1220.0000 28.10000 32.70000 236 0 0 1 0
## 873 95.0000 9.60000 12.40000 121 1 0 1 0
## 874 100.0000 9.80000 12.00000 134 1 0 0 1
## 875 1265.0000 28.30000 32.70000 233 0 0 0 1
## 876 1020.0000 24.60000 30.00000 211 0 0 0 1
## 877 360.0000 16.00000 22.10000 186 1 0 1 0
## 878 895.0000 24.50000 28.90000 217 0 0 0 1
## 879 1160.0000 25.70000 28.40000 218 0 0 0 1
## 880 1585.0000 29.00000 33.80000 241 0 0 0 1
## 881 1140.0000 24.90000 31.60000 218 0 0 1 0
## 882 1115.0000 25.30000 29.20000 208 0 0 1 0
## 883 1145.0000 25.40000 30.20000 212 0 0 1 0
## 884 185.0000 12.80000 14.80000 152 0 1 1 0
## 885 990.0000 25.30000 29.80000 203 0 0 1 0
## 886 945.0000 24.50000 32.23097 218 0 0 0 1
## 887 165.0000 11.70000 14.50000 153 0 1 0 1
## 888 1030.0000 26.30000 28.10000 196 0 0 1 0
## 889 320.0000 15.50000 19.50000 184 1 0 0 1
## 890 105.0000 13.00000 15.60000 156 0 1 0 1
## 891 990.0000 26.40000 30.00000 217 0 0 0 1
## 892 1065.0000 28.00000 32.70000 212 0 0 1 0
## 893 1050.0000 26.10000 29.70000 237 0 0 0 1
## 894 840.0000 23.20000 26.10000 206 0 0 0 1
## 895 190.0000 12.20000 15.80000 158 0 1 0 1
## 896 200.0000 12.70000 15.00000 157 0 1 0 1
## 897 185.0000 12.80000 15.60000 157 0 1 0 1
## 898 1000.0000 26.90000 31.40000 201 0 0 1 0
## 899 185.0000 12.80000 15.20000 158 0 1 0 1
## 900 1325.0000 26.20000 30.60000 224 0 0 1 0
## 901 945.0000 25.30000 27.20000 199 0 0 1 0
## 902 1350.0000 28.70000 31.00000 219 0 0 1 0
## 903 805.0000 23.50000 25.70000 217 0 0 0 1
## 904 1525.0000 26.00000 27.60000 224 0 0 0 1
## 905 175.0000 12.70000 15.40000 150 0 1 0 1
## 906 790.0000 21.90000 27.60000 211 0 0 0 1
## 907 860.0000 25.20000 28.00000 207 0 0 0 1
## 908 1290.0000 28.70000 32.10000 222 0 0 1 0
Now, we create a subset of the dataset containing only numerical variables, including categorical variables converted into numerical format using dummy encoding.
hawks_selected <- hawks_limpio2 %>%
select(Wing, Weight, Culmen, Hallux, Sex_M, Sex_F, Age_A, Age_I)
print(hawks_selected)
## Wing Weight Culmen Hallux Sex_M Sex_F Age_A Age_I
## 1 385.0000 920.0000 25.70000 30.10000 0 0 0 1
## 2 376.0000 930.0000 26.81197 32.23097 0 0 0 1
## 3 381.0000 990.0000 26.70000 31.30000 0 0 0 1
## 4 265.0000 470.0000 18.70000 23.50000 0 1 0 1
## 5 205.0000 170.0000 12.50000 14.30000 0 1 0 1
## 6 412.0000 1090.0000 28.50000 32.20000 0 0 0 1
## 7 370.0000 960.0000 25.30000 30.10000 0 0 0 1
## 8 375.0000 855.0000 27.20000 30.00000 0 0 1 0
## 9 412.0000 1210.0000 29.30000 31.30000 0 0 1 0
## 10 405.0000 1120.0000 26.00000 30.20000 0 0 0 1
## 11 393.0000 1010.0000 26.30000 30.80000 0 0 0 1
## 12 371.0000 1010.0000 25.40000 29.70000 0 0 0 1
## 13 390.0000 1120.0000 28.90000 30.90000 0 0 1 0
## 14 393.0000 1161.4132 28.20000 30.60000 0 0 1 0
## 15 416.0000 1170.0000 26.50000 34.00000 0 0 0 1
## 16 436.0000 1390.0000 30.50000 34.00000 0 0 1 0
## 17 418.0000 1150.0000 27.10000 31.00000 0 0 0 1
## 18 381.0000 950.0000 28.90000 28.90000 0 0 1 0
## 19 378.0000 910.0000 25.70000 28.20000 0 0 0 1
## 20 396.0000 1010.0000 24.00000 26.90000 0 0 0 1
## 21 399.0000 1070.0000 26.40000 31.20000 0 0 0 1
## 22 416.0000 1190.0000 28.80000 31.60000 0 0 0 1
## 23 415.0000 101.0000 24.90000 30.70000 0 0 0 1
## 24 392.0000 1330.0000 27.00000 30.30000 0 0 1 0
## 25 380.0000 990.0000 26.00000 30.00000 0 0 0 1
## 26 173.0000 100.0000 11.41111 14.24101 1 0 0 1
## 27 399.0000 1100.0000 26.20000 32.50000 0 0 0 1
## 28 401.0000 1190.0000 28.60000 31.60000 0 0 1 0
## 29 205.0000 180.0000 11.70000 15.00000 0 1 0 1
## 30 427.0000 1490.0000 30.10000 32.40000 0 0 0 1
## 31 395.0000 1040.0000 27.10000 31.40000 0 0 1 0
## 32 362.0000 820.0000 24.90000 27.90000 0 0 0 1
## 33 396.0000 1030.0000 26.00000 29.70000 0 0 1 0
## 34 391.0000 1300.0000 25.50000 32.40000 0 0 1 0
## 35 413.0000 1500.0000 26.50000 31.30000 0 0 1 0
## 36 371.0000 1080.0000 25.30000 27.20000 0 0 1 0
## 37 385.0000 1320.0000 27.30000 30.10000 0 0 1 0
## 38 378.0000 1490.0000 25.40000 31.30000 0 0 1 0
## 39 416.0000 1500.0000 29.10000 30.80000 0 0 1 0
## 40 193.0000 100.0000 9.30000 14.24101 1 0 0 1
## 41 171.0000 88.0000 9.70000 11.50000 1 0 0 1
## 42 233.0000 324.0000 16.00000 19.30000 0 0 0 1
## 43 384.0000 1060.0000 26.10000 31.20000 0 0 0 1
## 44 382.0000 1140.0000 25.10000 29.40000 0 0 0 1
## 45 390.0000 1030.0000 27.60000 30.30000 0 0 0 1
## 46 390.0000 1000.0000 25.10000 28.30000 0 0 0 1
## 47 393.0000 1050.0000 28.70000 29.80000 0 0 0 1
## 48 378.0000 1040.0000 26.20000 31.20000 0 0 0 1
## 49 398.0000 1110.0000 26.50000 30.90000 0 0 0 1
## 50 412.0000 1300.0000 27.90000 31.55000 0 0 0 1
## 51 400.0000 980.0000 25.70000 29.30000 0 0 0 1
## 52 422.0000 1120.0000 26.40000 28.30000 0 0 0 1
## 53 202.0000 134.0000 12.40000 13.70000 0 1 0 1
## 54 394.0000 1270.0000 27.80000 31.60000 0 0 0 1
## 55 369.0000 880.0000 25.00000 26.50000 0 0 0 1
## 56 252.0000 340.0000 16.00000 20.80000 0 1 0 1
## 57 240.0000 340.0000 16.10000 19.30000 1 0 1 0
## 58 410.0000 1255.0000 29.70000 31.40000 0 0 0 1
## 59 241.0000 1320.0000 28.60000 36.40000 0 0 0 1
## 60 408.0000 1320.0000 30.00000 33.40000 0 0 0 1
## 61 37.2000 1180.0000 20.20000 26.65000 0 0 0 1
## 62 380.0000 760.0000 24.50000 26.10000 0 0 0 1
## 63 396.0000 1250.0000 26.60000 32.50000 0 0 0 1
## 64 326.0000 1076.4590 25.20000 27.70000 0 0 0 1
## 65 158.0000 100.0000 10.80000 10.50000 1 0 0 1
## 66 416.0000 1300.0000 27.30000 32.70000 0 0 0 1
## 67 271.0000 475.0000 18.20000 24.75000 0 1 0 1
## 68 176.0000 100.0000 9.80000 11.10000 1 0 1 0
## 69 194.0000 150.3824 11.40000 14.20000 0 1 1 0
## 70 390.0000 1080.0000 30.20000 29.10000 0 0 1 0
## 71 391.0000 1130.0000 26.40000 29.40000 0 0 1 0
## 72 387.0000 1160.0000 26.80000 31.00000 0 0 1 0
## 73 420.0000 1345.0000 29.50000 34.30000 0 0 0 1
## 74 435.0000 1385.0000 32.60000 30.60000 0 0 1 0
## 75 400.0000 1210.0000 25.50000 28.60000 0 0 1 0
## 76 398.0000 1455.0000 28.00000 31.50000 0 0 0 1
## 77 395.0000 1180.0000 25.00000 28.90000 0 0 0 1
## 78 410.0000 1500.0000 27.10000 33.20000 0 0 0 1
## 79 369.0000 1025.0000 27.10000 31.50000 0 0 0 1
## 80 372.0000 930.0000 26.10000 31.10000 0 0 0 1
## 81 415.0000 1360.0000 28.60000 33.50000 0 0 0 1
## 82 412.0000 1255.0000 27.70000 32.60000 0 0 0 1
## 83 205.0000 194.0000 12.60000 14.40000 0 1 0 1
## 84 204.0000 159.0000 12.50000 14.80000 0 1 0 1
## 85 170.0000 90.0000 9.50000 11.30000 1 0 0 1
## 86 233.0000 340.0000 17.80000 19.40000 1 0 1 0
## 87 375.0000 1065.0000 25.90000 30.00000 0 0 0 1
## 88 385.0000 1125.0000 19.60000 31.40000 0 0 0 1
## 89 422.0000 1340.0000 28.70000 32.00000 0 0 0 1
## 90 391.0000 1050.0000 26.60000 32.20000 0 0 0 1
## 91 410.0000 1210.0000 27.50000 32.23097 0 0 0 1
## 92 385.0000 980.0000 26.80000 27.80000 0 0 0 1
## 93 381.0000 1000.0000 25.50000 29.80000 0 0 0 1
## 94 416.0000 1390.0000 28.10000 31.30000 0 0 1 0
## 95 406.0000 1275.0000 29.00000 33.70000 0 0 0 1
## 96 418.0000 1180.0000 30.10000 32.23097 0 0 0 1
## 97 412.0000 1210.0000 29.30000 33.80000 0 0 0 1
## 98 208.0000 168.0000 12.70000 14.80000 0 1 1 0
## 99 208.0000 146.0000 11.80000 14.90000 0 1 0 1
## 100 175.0000 108.0000 10.00000 11.50000 1 0 0 1
## 101 166.0000 94.0000 9.50000 11.30000 1 0 0 1
## 102 405.0000 1085.0000 27.70000 29.90000 0 0 0 1
## 103 198.0000 188.0000 12.20000 16.94493 0 1 1 0
## 104 200.0000 154.0000 12.40000 14.40000 0 1 0 1
## 105 380.0000 810.0000 25.90000 28.70000 0 0 0 1
## 106 381.0000 905.0000 27.90000 29.10000 0 0 0 1
## 107 169.0000 94.0000 9.00000 10.20000 1 0 0 1
## 108 260.0000 420.0000 19.60000 23.90000 0 1 0 1
## 109 428.0000 1240.0000 29.10000 34.70000 0 0 0 1
## 110 400.0000 990.0000 26.90000 31.40000 0 0 0 1
## 111 265.0000 365.0000 16.80000 22.50000 0 1 0 1
## 112 177.0000 91.0000 10.20000 11.30000 1 0 0 1
## 113 381.0000 1010.0000 25.80000 31.70000 0 0 0 1
## 114 403.0000 980.0000 26.30000 29.70000 0 0 0 1
## 115 382.0000 860.0000 26.50000 29.00000 0 0 0 1
## 116 382.0000 970.0000 25.80000 29.00000 0 0 0 1
## 117 399.0000 980.0000 27.50000 29.90000 0 0 0 1
## 118 380.0000 985.0000 23.90000 29.00000 0 0 0 1
## 119 375.0000 990.0000 25.60000 30.60000 0 0 0 1
## 120 420.0000 1210.0000 27.80000 32.60000 0 0 0 1
## 121 170.0000 89.0000 8.60000 11.00000 1 0 0 1
## 122 177.0000 97.0000 10.00000 11.30000 1 0 1 0
## 123 375.0000 990.0000 28.00000 29.50000 0 0 0 1
## 124 395.0000 1170.0000 28.10000 31.70000 0 0 0 1
## 125 170.0000 93.0000 10.10000 11.20000 1 0 1 0
## 126 406.0000 1350.0000 30.50000 32.00000 0 0 0 1
## 127 414.0000 1370.0000 29.30000 33.00000 0 0 0 1
## 128 173.0000 103.0000 9.70000 19.40000 1 0 0 1
## 129 209.0000 151.0000 12.20000 13.90000 0 1 0 1
## 130 177.0000 101.0000 10.30000 12.10000 1 0 0 1
## 131 388.0000 985.0000 26.90000 29.80000 0 0 0 1
## 132 277.0000 940.0000 26.50000 30.40000 0 0 0 1
## 133 423.0000 1310.0000 27.40000 34.10000 0 0 0 1
## 134 365.0000 1035.0000 26.10000 30.80000 0 0 0 1
## 135 383.0000 965.0000 26.10000 31.80000 0 0 0 1
## 136 391.0000 1125.0000 25.40000 30.90000 0 0 0 1
## 137 389.0000 975.0000 26.40000 30.30000 0 0 0 1
## 138 392.0000 1140.0000 26.20000 29.80000 0 0 0 1
## 139 375.0000 950.0000 25.30000 29.90000 0 0 0 1
## 140 410.0000 1210.0000 28.10000 28.90000 0 0 0 1
## 141 179.0000 95.0000 10.80000 11.60000 1 0 0 1
## 142 172.0000 89.0000 9.40000 10.80000 1 0 0 1
## 143 202.0000 195.0000 12.40000 14.10000 0 1 1 0
## 144 174.0000 93.0000 9.50000 11.00000 1 0 0 1
## 145 422.0000 1205.0000 28.80000 31.30000 0 0 0 1
## 146 385.0000 1045.0000 27.60000 27.50000 0 0 0 1
## 147 363.0000 1090.0000 26.60000 28.80000 0 0 0 1
## 148 450.0000 1190.0000 30.30000 32.80000 0 0 0 1
## 149 380.0000 960.0000 25.60000 30.10000 0 0 0 1
## 150 385.0000 955.0000 26.30000 30.10000 0 0 0 1
## 151 385.0000 1110.0000 24.70000 30.20000 0 0 0 1
## 152 171.0000 100.0000 19.10000 11.50000 1 0 0 1
## 153 380.0000 900.0000 24.00000 26.50000 0 0 0 1
## 154 384.0000 1075.0000 26.50000 30.70000 0 0 0 1
## 155 373.0000 980.0000 27.90000 32.10000 0 0 0 1
## 156 381.0000 940.0000 27.80000 34.20000 0 0 0 1
## 157 363.0000 1070.0000 25.60000 30.40000 0 0 0 1
## 158 409.0000 1120.0000 29.40000 31.60000 0 0 0 1
## 159 390.0000 1060.0000 27.60000 29.00000 0 0 1 0
## 160 204.0000 168.0000 12.10000 14.30000 0 1 0 1
## 161 197.0000 211.0000 11.50000 13.90000 0 1 0 1
## 162 420.0000 1125.0000 27.20000 27.40000 0 0 0 1
## 163 381.0000 1100.0000 27.00000 28.20000 0 0 0 1
## 164 408.0000 1360.0000 30.00000 33.90000 0 0 0 1
## 165 388.0000 995.0000 26.70000 30.70000 0 0 0 1
## 166 398.0000 1095.0000 21.10000 31.40000 0 0 1 0
## 167 209.0000 196.0000 12.10000 14.60000 0 1 0 1
## 168 209.0000 176.0000 11.70000 15.10000 0 1 0 1
## 169 394.0000 1075.0000 25.50000 29.70000 0 0 1 0
## 170 204.0000 180.0000 12.30000 15.20000 0 1 1 0
## 171 204.0000 164.0000 12.30000 14.30000 0 1 0 1
## 172 209.0000 158.0000 12.20000 14.40000 0 1 0 1
## 173 394.0000 1140.0000 26.80000 29.20000 0 0 0 1
## 174 416.0000 1240.0000 27.90000 31.80000 0 0 0 1
## 175 445.0000 1465.0000 29.70000 34.60000 0 0 0 1
## 176 209.0000 169.0000 12.10000 14.50000 0 1 0 1
## 177 388.0000 1105.0000 26.70000 28.90000 0 0 0 1
## 178 397.0000 1010.0000 27.10000 31.40000 0 0 0 1
## 179 384.0000 1075.0000 26.30000 30.50000 0 0 0 1
## 180 379.0000 1060.0000 27.90000 30.90000 0 0 0 1
## 181 393.0000 1015.0000 27.60000 31.10000 0 0 0 1
## 182 386.0000 1100.0000 26.00000 30.20000 0 0 0 1
## 183 397.0000 1010.0000 25.00000 30.60000 0 0 0 1
## 184 382.0000 1000.0000 26.30000 30.10000 0 0 0 1
## 185 386.0000 980.0000 25.40000 30.20000 0 0 0 1
## 186 417.0000 1240.0000 28.70000 32.40000 0 0 0 1
## 187 403.0000 1360.0000 27.90000 33.10000 0 0 0 1
## 188 239.0000 183.0000 17.30000 19.20000 1 0 1 0
## 189 401.0000 1405.0000 29.10000 32.23097 0 0 0 1
## 190 377.0000 1055.0000 27.00000 29.10000 0 0 1 0
## 191 432.0000 1670.0000 27.10000 32.90000 0 0 1 0
## 192 390.0000 1250.0000 26.20000 30.50000 0 0 0 1
## 193 381.0000 1030.0000 25.30000 29.90000 0 0 0 1
## 194 403.0000 1040.0000 26.81197 29.90000 0 0 0 1
## 195 213.0000 190.0000 12.20000 15.50000 0 1 0 1
## 196 172.0000 105.0000 10.00000 10.80000 1 0 0 1
## 197 390.0000 1090.0000 26.20000 28.80000 0 0 0 1
## 198 204.0000 190.0000 11.80000 13.90000 0 1 0 1
## 199 386.0000 1050.0000 28.40000 29.40000 0 0 1 0
## 200 402.0000 1110.0000 26.10000 30.00000 0 0 0 1
## 201 201.0000 206.0000 12.10000 13.50000 0 1 0 1
## 202 202.0000 195.0000 12.10000 14.80000 0 1 0 1
## 203 374.0000 1010.0000 24.90000 30.10000 0 0 1 0
## 204 358.0000 880.0000 24.20000 28.70000 0 0 0 1
## 205 370.0000 1060.0000 24.30000 29.80000 0 0 0 1
## 206 390.0000 920.0000 25.70000 30.00000 0 0 0 1
## 207 398.0000 1195.0000 26.20000 29.80000 0 0 0 1
## 208 360.0000 890.0000 26.00000 28.40000 0 0 0 1
## 209 355.0000 900.0000 25.30000 29.00000 0 0 0 1
## 210 375.0000 1110.0000 22.20000 31.50000 0 0 1 0
## 211 200.0000 160.0000 10.20000 13.20000 0 1 0 1
## 212 179.0000 105.0000 10.10000 11.30000 1 0 0 1
## 213 175.0000 99.0000 9.60000 12.70000 1 0 0 1
## 214 203.0000 165.0000 12.00000 14.40000 0 1 0 1
## 215 205.0000 100.0000 12.00000 12.50000 0 1 0 1
## 216 213.0000 125.0000 11.50000 14.40000 0 1 0 1
## 217 409.0000 1100.0000 29.00000 32.60000 0 0 0 1
## 218 202.0000 147.0957 11.41111 14.24101 0 1 0 1
## 219 195.0000 155.0000 11.90000 14.60000 0 1 0 1
## 220 415.0000 1285.0000 29.50000 31.80000 0 0 0 1
## 221 236.0000 390.0000 15.10000 20.40000 1 0 1 0
## 222 363.0000 920.0000 26.80000 30.20000 0 0 0 1
## 223 381.0000 1025.0000 25.40000 30.80000 0 0 0 1
## 224 350.0000 940.0000 26.00000 29.10000 0 0 1 0
## 225 398.0000 1240.0000 28.50000 30.80000 0 0 0 1
## 226 412.0000 1160.0000 27.80000 33.00000 0 0 0 1
## 227 203.0000 150.0000 11.50000 13.90000 0 1 0 1
## 228 201.0000 130.0000 11.70000 14.40000 0 1 0 1
## 229 411.0000 1240.0000 26.80000 32.70000 0 0 0 1
## 230 373.0000 930.0000 24.40000 27.40000 0 0 0 1
## 231 178.0000 90.0000 10.90000 12.10000 1 0 0 1
## 232 415.0000 1240.0000 25.60000 31.20000 0 0 0 1
## 233 383.0000 1030.0000 25.20000 29.80000 0 0 0 1
## 234 223.0000 550.0000 18.80000 21.30000 1 0 0 1
## 235 390.0000 1250.0000 26.50000 32.00000 0 0 0 1
## 236 390.0000 999.0000 25.30000 29.80000 0 0 0 1
## 237 365.0000 1120.0000 26.50000 30.80000 0 0 1 0
## 238 345.0000 1000.0000 26.40000 30.10000 0 0 1 0
## 239 273.0000 530.0000 19.20000 24.70000 0 1 0 1
## 240 400.0000 1040.0000 27.70000 32.10000 0 0 0 1
## 241 380.0000 1150.0000 27.80000 31.10000 0 0 0 1
## 242 330.0000 1000.0000 25.90000 30.20000 0 0 0 1
## 243 410.0000 1360.0000 33.30000 28.60000 0 0 0 1
## 244 313.0000 930.0000 25.70000 28.90000 0 0 0 1
## 245 384.0000 980.0000 25.80000 30.40000 0 0 0 1
## 246 409.0000 1260.0000 27.70000 31.80000 0 0 0 1
## 247 390.0000 900.0000 27.50000 28.60000 0 0 0 1
## 248 411.0000 1300.0000 25.90000 31.90000 0 0 0 1
## 249 259.0000 470.0000 16.60000 23.40000 0 1 0 1
## 250 380.0000 1040.0000 26.40000 30.90000 0 0 1 0
## 251 370.0000 950.0000 27.30000 30.50000 0 0 0 1
## 252 415.0000 1320.0000 29.40000 33.90000 0 0 0 1
## 253 215.0000 180.0000 14.10000 12.70000 0 1 0 1
## 254 410.0000 1280.0000 27.90000 32.70000 0 0 0 1
## 255 412.0000 1310.0000 26.10000 31.10000 0 0 0 1
## 256 384.0000 910.0000 26.40000 28.40000 0 0 1 0
## 257 404.0000 1220.0000 28.60000 30.40000 0 0 0 1
## 258 375.0000 920.0000 23.80000 28.80000 0 0 0 1
## 259 410.0000 1135.0000 26.40000 32.40000 0 0 0 1
## 260 384.0000 940.0000 26.20000 29.80000 0 0 0 1
## 261 385.0000 920.0000 25.00000 32.20000 0 0 0 1
## 262 398.0000 1280.0000 28.00000 32.40000 0 0 0 1
## 263 242.4839 480.0000 17.70000 32.10000 0 0 1 0
## 264 425.0000 1220.0000 27.30000 33.00000 0 0 0 1
## 265 401.0000 1000.0000 26.70000 28.00000 0 0 0 1
## 266 387.0000 1120.0000 26.80000 50.20000 0 0 0 1
## 267 376.0000 925.0000 26.00000 30.80000 0 0 0 1
## 268 171.0000 90.0000 9.90000 11.90000 1 0 1 0
## 269 420.0000 1280.0000 27.50000 31.80000 0 0 1 0
## 270 385.0000 985.0000 27.50000 30.80000 0 0 0 1
## 271 405.0000 1350.0000 28.30000 32.60000 0 0 0 1
## 272 350.0000 730.0000 24.60000 25.70000 0 0 0 1
## 273 388.0000 890.0000 27.80000 31.20000 0 0 0 1
## 274 398.0000 1020.0000 26.50000 31.10000 0 0 0 1
## 275 410.0000 1000.0000 27.10000 30.60000 0 0 1 0
## 276 202.0000 150.0000 11.70000 14.10000 0 1 0 1
## 277 204.0000 180.0000 11.50000 12.40000 0 1 0 1
## 278 382.0000 1020.0000 26.50000 29.40000 0 0 1 0
## 279 111.0000 1340.0000 26.85000 31.90000 0 0 0 1
## 280 396.0000 1300.0000 27.30000 30.50000 0 0 0 1
## 281 363.0000 1015.0000 25.50000 30.10000 0 0 0 1
## 282 360.0000 900.0000 30.50000 28.80000 0 0 0 1
## 283 390.0000 1000.0000 26.10000 29.60000 0 0 0 1
## 284 195.0000 150.0000 12.30000 14.60000 1 0 0 1
## 285 390.0000 1050.0000 24.80000 32.50000 0 0 1 0
## 286 380.0000 950.0000 24.90000 29.00000 0 0 0 1
## 287 225.0000 350.0000 12.60000 26.00000 1 0 0 1
## 288 247.0000 375.0000 16.90000 18.20000 1 0 1 0
## 289 415.0000 1175.0000 28.30000 33.20000 0 0 1 0
## 290 354.0000 980.0000 25.80000 29.30000 0 0 0 1
## 291 417.0000 1260.0000 29.00000 32.80000 0 0 1 0
## 292 379.0000 1050.0000 25.90000 31.30000 0 0 0 1
## 293 412.0000 1330.0000 29.20000 32.20000 0 0 1 0
## 294 377.0000 980.0000 28.00000 29.10000 0 0 1 0
## 295 372.0000 920.0000 25.30000 30.00000 0 0 0 1
## 296 420.0000 1540.0000 29.90000 35.50000 0 0 0 1
## 297 368.0000 1060.0000 25.50000 26.90000 0 0 0 1
## 298 406.0000 1420.0000 29.90000 32.00000 0 0 0 1
## 299 225.0000 400.0000 15.00000 20.00000 1 0 0 1
## 300 392.0000 1142.0000 27.20000 33.00000 0 0 0 1
## 301 191.0000 157.0000 12.00000 13.80000 0 1 0 1
## 302 161.0000 98.0000 10.30000 11.70000 1 0 0 1
## 303 365.0000 813.0000 26.20000 30.10000 0 0 0 1
## 304 156.0000 94.0000 9.90000 11.40000 1 0 0 1
## 305 191.0000 155.0000 16.50000 14.40000 0 1 0 1
## 306 198.0000 181.0000 12.50000 14.10000 0 1 0 1
## 307 160.0000 92.0000 9.80000 11.00000 1 0 0 1
## 308 164.0000 98.0000 10.10000 11.40000 1 0 0 1
## 309 352.0000 1024.0000 26.60000 30.30000 0 0 0 1
## 310 265.0000 464.0000 19.20000 24.10000 0 1 0 1
## 311 163.0000 100.0000 10.40000 11.20000 1 0 0 1
## 312 193.0000 186.0000 12.80000 14.00000 0 1 0 1
## 313 190.0000 164.0000 11.90000 14.50000 0 1 0 1
## 314 165.0000 98.0000 10.10000 11.40000 1 0 0 1
## 315 162.0000 147.0957 11.41111 14.24101 1 0 0 1
## 316 198.0000 158.0000 12.10000 14.50000 0 1 1 0
## 317 370.0000 1023.0000 25.80000 30.10000 0 0 0 1
## 318 230.0000 340.0000 16.50000 30.50000 0 0 0 1
## 319 194.0000 163.0000 12.20000 20.00000 1 0 0 1
## 320 157.0000 92.0000 9.80000 14.70000 0 1 0 1
## 321 260.0000 550.0000 19.50000 11.20000 1 0 0 1
## 322 377.0000 1119.0000 25.40000 23.90000 0 1 1 0
## 323 364.0000 917.0000 26.00000 29.60000 0 0 0 1
## 324 367.0000 946.0000 26.70000 28.90000 0 0 0 1
## 325 233.0000 337.0000 15.70000 31.90000 0 0 0 1
## 326 336.0000 742.0000 23.40000 18.80000 1 0 0 1
## 327 259.0000 439.0000 18.80000 15.20000 0 1 0 1
## 328 199.0000 187.0000 12.20000 24.20000 0 1 0 1
## 329 165.0000 92.0000 9.70000 14.60000 0 1 0 1
## 330 370.0000 1094.0000 27.30000 11.50000 1 0 0 1
## 331 362.0000 832.0000 23.80000 32.60000 0 0 0 1
## 332 368.0000 1244.0000 27.53525 31.11598 0 0 1 0
## 333 368.0000 1244.0000 26.70000 30.20000 0 0 0 1
## 334 367.0000 974.0000 25.20000 29.60000 0 0 0 1
## 335 400.0000 1289.0000 28.60000 32.10000 0 0 0 1
## 336 379.0000 999.0000 28.30000 32.00000 0 0 0 1
## 337 360.0000 994.0000 26.50000 30.40000 0 0 0 1
## 338 362.0000 1004.0000 27.00000 31.40000 0 0 0 1
## 339 378.0000 1097.0000 28.90000 33.40000 0 0 0 1
## 340 201.0000 185.0000 13.10000 14.50000 0 1 0 1
## 341 193.0000 181.0000 12.80000 11.50000 1 0 0 1
## 342 372.0000 1092.0000 27.20000 31.80000 0 0 0 1
## 343 369.0000 1049.0000 30.10000 32.00000 0 0 0 1
## 344 354.0000 998.0000 27.20000 29.20000 0 0 0 1
## 345 367.0000 1091.0000 31.80000 34.20000 0 0 0 1
## 346 349.0000 987.0000 29.00000 31.10000 0 0 0 1
## 347 375.0000 1151.0000 34.10000 33.70000 0 0 0 1
## 348 343.0000 971.0000 25.10000 26.10000 0 0 0 1
## 349 360.0000 1159.0000 32.90000 34.00000 0 0 0 1
## 350 395.0000 1239.0000 26.70000 33.20000 0 0 0 1
## 351 400.0000 1216.0000 28.50000 32.10000 0 0 0 1
## 352 170.0000 177.0000 12.30000 14.40000 0 1 1 0
## 353 268.0000 469.0000 20.00000 24.90000 0 1 0 1
## 354 369.0000 1039.0000 26.90000 29.50000 0 0 0 1
## 355 365.0000 1079.0000 25.20000 30.00000 0 0 0 1
## 356 375.0000 1159.0000 33.80000 32.70000 0 0 1 0
## 357 230.0000 162.0000 12.30000 13.80000 1 0 0 1
## 358 213.0000 339.0000 23.50000 13.80000 1 0 1 0
## 359 382.0000 1403.0000 34.90000 34.70000 0 0 1 0
## 360 168.0000 175.0000 12.90000 14.00000 1 0 0 1
## 361 478.0000 1473.0000 39.20000 44.70000 0 0 1 0
## 362 469.0000 1001.0000 29.90000 43.20000 0 0 0 1
## 363 172.0000 98.0000 8.70000 10.90000 1 0 0 1
## 364 373.0000 914.0000 25.90000 30.40000 0 0 0 1
## 365 386.0000 1059.0000 25.50000 30.50000 0 0 1 0
## 366 384.0000 1147.0000 29.00000 35.00000 0 0 0 1
## 367 351.0000 949.0000 26.80000 29.70000 0 0 0 1
## 368 168.0000 102.0000 9.60000 11.90000 1 0 0 1
## 369 363.0000 973.0000 24.80000 27.30000 0 0 0 1
## 370 199.0000 196.0000 12.40000 15.20000 0 1 0 1
## 371 235.0000 327.0000 16.50000 20.30000 1 0 0 1
## 372 374.0000 1064.0000 26.00000 32.10000 0 0 1 0
## 373 369.0000 749.0000 24.00000 26.80000 0 0 0 1
## 374 202.0000 201.0000 11.70000 14.90000 0 1 0 1
## 375 202.0000 180.0000 12.40000 14.10000 0 1 0 1
## 376 374.0000 1213.0000 24.90000 28.00000 0 0 0 1
## 377 389.0000 1200.0000 28.20000 30.80000 0 0 0 1
## 378 379.0000 1040.0000 25.30000 29.40000 0 0 0 1
## 379 170.0000 113.0000 10.60000 11.10000 1 0 0 1
## 380 373.0000 919.0000 24.20000 28.50000 0 0 0 1
## 381 403.0000 1487.0000 26.00000 32.50000 0 0 0 1
## 382 400.0000 1254.0000 25.20000 30.00000 0 0 0 1
## 383 205.0000 156.0000 10.80000 14.10000 0 1 1 0
## 384 405.0000 1189.0000 27.70000 31.30000 0 0 0 1
## 385 382.0000 979.0000 24.80000 27.90000 0 0 0 1
## 386 165.0000 96.0000 10.70000 11.40000 1 0 1 0
## 387 407.0000 1339.0000 27.30000 33.40000 0 0 0 1
## 388 403.0000 1199.0000 28.80000 31.00000 0 0 0 1
## 389 406.0000 1344.0000 27.90000 33.10000 0 0 0 1
## 390 381.0000 969.0000 26.10000 31.10000 0 0 0 1
## 391 395.0000 1039.0000 26.00000 29.70000 0 0 0 1
## 392 410.0000 1054.0000 28.50000 31.50000 0 0 0 1
## 393 243.0000 334.0000 17.50000 19.20000 0 1 1 0
## 394 170.0000 101.0000 9.80000 11.00000 1 0 0 1
## 395 210.0000 181.0000 12.20000 15.00000 0 1 1 0
## 396 425.0000 1449.0000 30.30000 33.00000 0 0 1 0
## 397 402.0000 985.0000 26.60000 29.80000 0 0 0 1
## 398 480.0000 1598.0000 34.20000 35.40000 0 0 1 0
## 399 412.0000 992.0000 30.10000 31.50000 0 0 0 1
## 400 260.0000 569.0000 19.10000 24.00000 0 1 0 1
## 401 381.0000 1354.0000 28.20000 32.00000 0 0 1 0
## 402 392.0000 969.0000 25.90000 29.00000 0 0 1 0
## 403 382.0000 1080.0000 25.30000 31.00000 0 0 0 1
## 404 196.0000 185.0000 12.50000 14.00000 0 1 1 0
## 405 391.0000 1097.0000 27.90000 32.80000 0 0 1 0
## 406 397.0000 1439.0000 28.80000 31.40000 0 0 1 0
## 407 361.0000 1076.4590 24.40000 27.90000 0 0 0 1
## 408 376.0000 1019.0000 25.80000 29.50000 0 0 0 1
## 409 410.0000 1239.0000 29.50000 31.80000 0 0 1 0
## 410 381.0000 1399.0000 27.60000 31.30000 0 0 0 1
## 411 396.0000 1169.0000 27.50000 25.20000 0 0 0 1
## 412 383.0000 1164.0000 27.00000 29.90000 0 0 0 1
## 413 203.0000 176.0000 11.50000 14.70000 0 1 0 1
## 414 271.0000 1076.4590 27.40000 33.00000 0 0 0 1
## 415 255.0000 429.0000 19.00000 22.90000 0 1 0 1
## 416 196.0000 160.0000 12.30000 14.70000 0 1 0 1
## 417 168.0000 105.0000 10.20000 11.00000 1 0 0 1
## 418 392.0000 890.0000 24.10000 29.20000 0 0 0 1
## 419 163.0000 100.0000 9.70000 11.60000 1 0 0 1
## 420 205.0000 147.0957 13.70000 15.00000 0 1 0 1
## 421 395.0000 1215.0000 28.30000 33.00000 0 0 0 1
## 422 163.0000 100.0000 9.90000 11.30000 1 0 0 1
## 423 370.0000 1030.0000 27.60000 31.40000 0 0 0 1
## 424 225.0000 340.0000 15.70000 19.40000 1 0 1 0
## 425 197.0000 165.0000 11.90000 9.60000 0 1 0 1
## 426 376.0000 985.0000 26.40000 30.30000 0 0 0 1
## 427 372.0000 975.0000 26.50000 31.60000 0 0 0 1
## 428 391.0000 1165.0000 28.20000 32.40000 0 0 0 1
## 429 165.0000 95.0000 9.70000 11.20000 0 0 0 1
## 430 364.0000 1044.0000 23.50000 29.00000 0 0 0 1
## 431 202.0000 180.0000 12.90000 15.00000 0 1 1 0
## 432 163.0000 125.0000 9.70000 10.90000 1 0 0 1
## 433 381.0000 1080.0000 26.81197 32.30000 1 0 0 1
## 434 375.0000 890.0000 24.60000 28.00000 0 0 0 1
## 435 392.0000 1105.0000 26.40000 33.60000 0 0 0 1
## 436 398.0000 1310.0000 28.30000 35.20000 0 0 1 0
## 437 371.0000 895.0000 26.80000 31.00000 0 0 0 1
## 438 367.0000 1060.0000 26.80000 31.00000 0 0 1 0
## 439 193.0000 165.0000 13.20000 14.60000 0 1 1 0
## 440 375.0000 960.0000 28.90000 29.30000 0 0 1 0
## 441 408.0000 1270.0000 29.40000 33.00000 0 0 0 1
## 442 252.0000 540.0000 20.00000 28.80000 0 1 1 0
## 443 237.0000 365.0000 17.30000 19.90000 1 0 1 0
## 444 399.0000 1170.0000 28.30000 29.90000 0 0 0 1
## 445 268.0000 590.0000 20.00000 19.90000 0 1 1 0
## 446 388.0000 1225.0000 29.00000 31.50000 0 0 0 1
## 447 200.0000 175.0000 12.30000 15.60000 0 1 1 0
## 448 192.0000 170.0000 12.40000 15.50000 0 1 0 1
## 449 167.0000 100.0000 10.00000 11.30000 1 0 1 0
## 450 370.0000 1060.0000 26.60000 31.90000 0 0 0 1
## 451 162.0000 110.0000 10.00000 11.80000 1 0 1 0
## 452 363.0000 850.0000 25.50000 30.00000 0 0 0 1
## 453 371.0000 1145.0000 25.50000 10.30000 0 0 0 1
## 454 199.0000 165.0000 12.50000 15.70000 0 1 1 0
## 455 386.0000 1090.0000 26.10000 28.20000 0 0 0 1
## 456 400.0000 1345.0000 32.60000 33.90000 0 0 0 1
## 457 390.0000 1050.0000 26.60000 29.00000 0 0 0 1
## 458 199.0000 200.0000 12.50000 14.90000 0 1 1 0
## 459 254.0000 505.0000 19.60000 24.00000 0 1 1 0
## 460 382.0000 1040.0000 27.10000 30.80000 0 0 1 0
## 461 196.0000 155.0000 12.70000 14.30000 0 1 1 0
## 462 354.0000 965.0000 26.20000 28.50000 0 0 0 1
## 463 403.0000 1105.0000 28.90000 33.20000 0 0 0 1
## 464 194.0000 155.0000 12.60000 13.70000 0 1 0 1
## 465 375.0000 1045.0000 27.20000 30.00000 0 0 0 1
## 466 369.0000 900.0000 24.40000 27.30000 0 0 0 1
## 467 368.0000 1015.0000 25.70000 30.30000 0 0 0 1
## 468 393.0000 1385.0000 27.90000 32.60000 0 0 1 0
## 469 370.0000 1165.0000 26.00000 31.50000 0 0 0 1
## 470 378.0000 905.0000 28.00000 32.30000 0 0 0 1
## 471 369.0000 985.0000 26.00000 31.10000 0 0 0 1
## 472 364.0000 800.0000 25.50000 28.60000 0 0 0 1
## 473 387.0000 995.0000 26.90000 31.40000 0 0 0 1
## 474 410.0000 1460.0000 29.40000 33.60000 0 0 1 0
## 475 194.0000 165.0000 11.90000 14.10000 0 1 0 1
## 476 410.0000 1585.0000 30.60000 39.80000 0 0 1 0
## 477 194.0000 185.0000 13.10000 15.50000 0 1 1 0
## 478 373.0000 920.0000 25.00000 28.30000 0 0 0 1
## 479 390.0000 1460.0000 29.30000 35.60000 0 0 0 1
## 480 404.0000 1315.0000 30.00000 32.50000 0 0 1 0
## 481 375.0000 1019.0000 26.00000 29.90000 0 0 0 1
## 482 395.0000 1215.0000 29.70000 31.30000 0 0 0 1
## 483 379.0000 1005.0000 27.80000 31.40000 0 0 0 1
## 484 382.0000 1350.0000 27.90000 29.90000 0 0 0 1
## 485 404.0000 1145.0000 27.70000 31.80000 0 0 0 1
## 486 205.0000 175.0000 12.25000 15.50000 0 1 1 0
## 487 377.0000 1010.0000 25.40000 29.00000 0 0 1 0
## 488 184.0000 155.0000 12.00000 14.90000 1 0 0 1
## 489 390.0000 1120.0000 26.60000 30.00000 0 0 0 1
## 490 404.0000 280.0000 28.20000 31.55000 0 0 1 0
## 491 351.0000 775.0000 25.40000 29.30000 0 0 0 1
## 492 394.0000 1210.0000 29.40000 31.70000 0 0 0 1
## 493 175.0000 107.0000 10.00000 11.40000 1 0 1 0
## 494 372.0000 909.0000 24.40000 25.40000 0 0 1 0
## 495 169.0000 95.0000 10.00000 11.85000 1 0 0 1
## 496 376.0000 1145.0000 25.10000 31.55000 0 0 0 1
## 497 399.0000 1150.0000 27.20000 29.55000 0 0 0 1
## 498 399.0000 1560.0000 30.00000 33.85000 0 0 0 1
## 499 357.0000 940.0000 23.60000 28.35000 0 0 0 1
## 500 195.0000 145.0000 11.70000 14.60000 0 1 0 1
## 501 400.0000 1089.0000 27.30000 33.10000 0 0 0 1
## 502 382.0000 1194.0000 29.40000 33.80000 0 0 0 1
## 503 161.0000 95.0000 10.10000 11.30000 1 0 0 1
## 504 390.0000 1015.0000 28.00000 30.10000 0 0 0 1
## 505 379.0000 975.0000 24.10000 29.10000 0 0 0 1
## 506 376.0000 1035.0000 26.80000 30.50000 0 0 0 1
## 507 331.0000 1055.0000 27.00000 30.40000 0 0 1 0
## 508 371.0000 945.0000 26.10000 30.20000 0 0 0 1
## 509 160.0000 90.0000 11.00000 11.80000 1 0 0 1
## 510 361.0000 785.0000 25.20000 28.70000 0 0 0 1
## 511 268.0000 56.0000 19.30000 26.10000 0 1 1 0
## 512 394.0000 1220.0000 30.30000 34.50000 0 0 0 1
## 513 191.0000 175.0000 13.00000 15.30000 0 1 1 0
## 514 358.0000 1025.0000 27.40000 29.00000 0 0 1 0
## 515 380.0000 1000.0000 26.90000 29.00000 0 0 0 1
## 516 188.0000 175.0000 12.10000 14.20000 0 1 1 0
## 517 397.0000 1210.0000 28.30000 34.00000 0 0 0 1
## 518 196.0000 180.0000 13.10000 13.90000 0 1 1 0
## 519 190.0000 175.0000 12.80000 14.60000 0 1 1 0
## 520 161.0000 90.0000 9.80000 11.10000 1 0 0 1
## 521 145.0000 320.0000 16.50000 20.50000 0 1 1 0
## 522 392.0000 1185.0000 28.50000 33.00000 0 0 0 1
## 523 190.0000 147.0957 11.90000 14.60000 0 1 0 1
## 524 230.0000 350.0000 16.40000 21.30000 1 0 0 1
## 525 406.0000 1161.4132 27.00000 31.10000 0 0 1 0
## 526 363.0000 950.0000 24.60000 30.30000 0 0 0 1
## 527 162.0000 85.0000 10.10000 11.40000 1 0 0 1
## 528 374.0000 895.0000 26.40000 30.80000 0 0 0 1
## 529 412.0000 1150.0000 27.80000 33.20000 0 0 0 1
## 530 272.0000 565.0000 20.70000 24.00000 0 1 0 1
## 531 388.0000 950.0000 26.50000 32.20000 0 0 0 1
## 532 371.0000 990.0000 26.90000 29.70000 0 0 0 1
## 533 225.0000 325.0000 15.80000 18.70000 1 0 0 1
## 534 391.0000 1120.0000 29.00000 33.90000 0 0 0 1
## 535 163.0000 90.0000 9.80000 11.50000 1 0 0 1
## 536 410.0000 1120.0000 28.50000 33.60000 0 1 0 1
## 537 368.0000 820.0000 25.20000 28.70000 0 0 0 1
## 538 410.0000 1200.0000 26.70000 29.40000 0 1 0 1
## 539 425.0000 1120.0000 29.40000 33.30000 0 1 1 0
## 540 368.0000 1120.0000 24.70000 30.80000 0 0 0 1
## 541 392.0000 1220.0000 27.30000 34.10000 0 0 0 1
## 542 250.0000 470.0000 18.90000 25.30000 1 0 0 1
## 543 418.0000 1310.0000 29.10000 31.90000 0 0 0 1
## 544 370.0000 920.0000 26.80000 29.70000 0 0 0 1
## 545 170.0000 100.0000 10.90000 12.20000 1 0 1 0
## 546 203.0000 180.0000 13.20000 15.60000 0 1 1 0
## 547 370.0000 955.0000 26.50000 30.50000 0 0 1 0
## 548 408.0000 1225.0000 28.80000 32.70000 0 0 1 0
## 549 393.0000 1400.0000 27.90000 35.30000 0 0 1 0
## 550 365.0000 1025.0000 24.60000 30.10000 0 0 0 1
## 551 405.0000 1140.0000 28.20000 31.90000 0 0 0 1
## 552 381.0000 1080.0000 26.10000 31.60000 0 0 0 1
## 553 390.0000 1135.0000 27.60000 31.10000 0 0 0 1
## 554 384.0000 1430.0000 29.80000 35.00000 0 0 0 1
## 555 390.0000 1050.0000 25.60000 29.90000 0 0 0 1
## 556 381.0000 920.0000 27.00000 29.60000 0 0 0 1
## 557 194.0000 175.0000 12.40000 14.00000 0 1 1 0
## 558 371.0000 905.0000 23.60000 26.80000 0 0 0 1
## 559 356.0000 915.0000 26.40000 28.90000 0 0 0 1
## 560 377.0000 910.0000 25.00000 29.00000 0 0 0 1
## 561 362.0000 950.0000 25.40000 29.70000 0 0 0 1
## 562 165.0000 105.0000 10.10000 11.80000 1 0 1 0
## 563 155.0000 100.0000 9.30000 11.80000 1 0 1 0
## 564 400.0000 1225.0000 27.30000 34.20000 0 0 0 1
## 565 161.0000 105.0000 10.40000 12.00000 1 0 1 0
## 566 387.0000 1090.0000 27.90000 32.40000 0 0 0 1
## 567 409.0000 1350.0000 30.00000 32.70000 0 0 0 1
## 568 195.0000 200.0000 13.00000 13.40000 0 1 1 0
## 569 196.0000 200.0000 13.50000 15.40000 0 1 1 0
## 570 169.0000 100.0000 10.00000 11.70000 1 0 1 0
## 571 385.0000 940.0000 26.20000 30.50000 0 0 0 1
## 572 377.0000 920.0000 24.70000 29.30000 0 0 0 1
## 573 400.0000 1190.0000 29.40000 33.30000 0 0 0 1
## 574 164.0000 90.0000 9.40000 10.70000 1 0 0 1
## 575 165.0000 95.0000 10.40000 11.40000 1 0 1 0
## 576 363.0000 915.0000 25.00000 28.30000 0 0 0 1
## 577 266.0000 535.0000 18.80000 25.40000 0 1 1 0
## 578 403.0000 1310.0000 29.10000 33.30000 0 0 0 1
## 579 375.0000 950.0000 26.90000 30.10000 0 0 0 1
## 580 166.0000 120.0000 10.10000 11.70000 1 0 1 0
## 581 373.0000 975.0000 26.10000 27.90000 0 0 0 1
## 582 373.0000 990.0000 27.90000 31.00000 0 0 0 1
## 583 170.0000 110.0000 11.40000 16.94493 1 0 1 0
## 584 373.0000 1270.0000 26.50000 29.60000 0 0 1 0
## 585 354.0000 960.0000 26.00000 31.00000 0 0 0 1
## 586 394.0000 1290.0000 28.80000 30.70000 0 0 0 1
## 587 165.0000 95.0000 10.20000 11.60000 1 0 0 1
## 588 261.0000 505.0000 19.20000 25.10000 0 1 1 0
## 589 377.0000 1045.0000 26.90000 31.50000 0 0 0 1
## 590 364.0000 1090.0000 27.10000 30.30000 0 0 0 1
## 591 385.0000 1180.0000 28.60000 30.00000 0 0 0 1
## 592 390.0000 1195.0000 27.60000 34.70000 0 0 0 1
## 593 383.0000 1055.0000 27.70000 32.70000 0 0 1 0
## 594 365.0000 1025.0000 26.10000 30.30000 0 0 0 1
## 595 201.0000 175.0000 12.00000 14.80000 0 1 0 1
## 596 376.0000 940.0000 25.10000 31.70000 0 0 0 1
## 597 402.0000 1335.0000 28.30000 33.30000 0 0 1 0
## 598 394.0000 1085.0000 29.40000 32.70000 0 0 0 1
## 599 223.0000 375.0000 16.20000 20.70000 1 0 0 1
## 600 378.0000 1090.0000 28.00000 30.90000 0 0 1 0
## 601 369.0000 995.0000 26.00000 28.20000 0 0 0 1
## 602 378.0000 1090.0000 28.00000 30.70000 0 0 1 0
## 603 262.0000 1020.0000 28.00000 31.20000 0 0 1 0
## 604 165.0000 100.0000 10.60000 12.10000 1 0 0 1
## 605 379.0000 1000.0000 28.60000 32.20000 0 0 1 0
## 606 380.0000 1085.0000 27.40000 33.30000 0 0 0 1
## 607 380.0000 1045.0000 24.90000 27.00000 0 0 1 0
## 608 393.0000 1060.0000 27.70000 32.40000 0 0 0 1
## 609 389.0000 1135.0000 27.10000 32.10000 0 0 1 0
## 610 395.0000 1210.0000 28.50000 28.50000 0 0 0 1
## 611 207.0000 185.0000 13.00000 14.30000 0 1 0 1
## 612 367.0000 965.0000 24.80000 24.10000 0 0 0 1
## 613 368.0000 905.0000 26.80000 27.00000 0 0 1 0
## 614 377.0000 1125.0000 25.30000 29.50000 0 0 0 1
## 615 374.0000 950.0000 27.20000 29.80000 0 0 0 1
## 616 385.0000 1195.0000 27.30000 30.90000 0 0 1 0
## 617 363.0000 1005.0000 25.00000 31.60000 0 0 0 1
## 618 164.0000 95.0000 11.40000 14.24101 1 0 0 1
## 619 199.0000 175.0000 12.30000 15.00000 0 1 1 0
## 620 378.0000 995.0000 26.20000 30.00000 0 0 0 1
## 621 200.0000 165.0000 12.10000 14.20000 0 1 0 1
## 622 405.0000 1170.0000 29.25000 39.80000 0 0 0 1
## 623 194.0000 145.0000 12.00000 14.60000 0 1 0 1
## 624 190.0000 175.0000 12.40000 15.20000 0 1 0 1
## 625 195.0000 170.0000 13.10000 14.80000 0 1 0 1
## 626 161.0000 105.0000 10.30000 11.20000 1 0 0 1
## 627 168.0000 95.0000 10.00000 11.40000 1 0 0 1
## 628 160.0000 95.0000 9.80000 10.80000 1 0 0 1
## 629 392.0000 1085.0000 31.20000 34.60000 0 0 0 1
## 630 201.0000 165.0000 12.30000 14.80000 0 1 0 1
## 631 395.0000 1115.0000 27.40000 32.70000 0 0 0 1
## 632 390.0000 1195.0000 27.60000 33.00000 0 0 0 1
## 633 161.0000 100.0000 9.80000 11.90000 1 0 0 1
## 634 230.0000 365.0000 16.90000 23.55000 1 0 1 0
## 635 192.0000 170.0000 11.90000 9.50000 0 1 0 1
## 636 156.0000 90.0000 9.80000 11.30000 1 0 0 1
## 637 158.0000 95.0000 10.70000 11.10000 1 0 0 1
## 638 167.0000 115.0000 9.80000 11.40000 1 0 0 1
## 639 199.0000 155.0000 11.90000 14.50000 0 1 0 1
## 640 320.0000 229.0000 17.00000 21.00000 0 1 0 1
## 641 389.0000 1165.0000 29.00000 33.10000 0 0 1 0
## 642 227.0000 155.0000 17.10000 21.00000 1 0 0 1
## 643 230.0000 340.0000 16.10000 20.20000 1 0 1 0
## 644 199.0000 180.0000 12.00000 15.50000 0 1 1 0
## 645 378.0000 235.0000 25.40000 30.70000 0 0 0 1
## 646 164.0000 105.0000 10.20000 11.20000 1 0 0 1
## 647 385.0000 1085.0000 27.50000 30.80000 0 0 1 0
## 648 369.0000 970.0000 26.10000 30.40000 0 0 0 1
## 649 378.0000 1030.0000 28.50000 31.90000 0 0 0 1
## 650 373.0000 1015.0000 25.50000 29.60000 0 0 0 1
## 651 419.0000 1030.0000 29.20000 31.50000 0 0 1 0
## 652 414.0000 1215.0000 26.40000 29.20000 0 0 0 1
## 653 203.0000 185.0000 13.50000 14.20000 0 1 1 0
## 654 162.0000 95.0000 10.20000 11.00000 1 0 1 0
## 655 165.0000 95.0000 10.00000 11.00000 1 0 0 1
## 656 161.0000 95.0000 9.70000 11.00000 1 0 1 0
## 657 161.0000 110.0000 10.10000 11.80000 1 0 0 1
## 658 404.0000 1170.0000 28.40000 32.80000 0 0 0 1
## 659 165.0000 105.0000 10.40000 11.20000 1 0 0 1
## 660 199.0000 175.0000 12.80000 14.50000 0 1 1 0
## 661 171.0000 95.0000 10.90000 11.70000 1 0 0 1
## 662 213.0000 190.0000 13.70000 15.20000 0 1 1 0
## 663 169.0000 105.0000 10.20000 11.80000 1 0 1 0
## 664 379.0000 1435.0000 27.40000 32.70000 0 0 0 1
## 665 407.0000 1235.0000 30.10000 35.80000 0 0 0 1
## 666 376.0000 1055.0000 29.50000 32.20000 0 0 0 1
## 667 380.0000 1105.0000 22.00000 30.80000 0 0 0 1
## 668 172.0000 120.0000 9.80000 11.80000 1 0 1 0
## 669 408.0000 1390.0000 28.40000 32.70000 0 0 0 1
## 670 167.0000 105.0000 10.30000 10.80000 1 0 1 0
## 671 374.0000 1080.0000 26.50000 31.30000 0 0 1 0
## 672 376.0000 910.0000 26.10000 32.20000 0 0 0 1
## 673 258.0000 490.0000 18.00000 24.20000 0 1 0 1
## 674 370.0000 845.0000 25.00000 27.40000 0 0 0 1
## 675 202.0000 175.0000 13.30000 14.90000 0 1 1 0
## 676 363.0000 865.0000 25.60000 27.30000 0 0 0 1
## 677 200.0000 180.0000 11.90000 13.50000 0 1 1 0
## 678 372.0000 2030.0000 26.20000 30.20000 0 0 0 1
## 679 378.0000 960.0000 24.60000 30.00000 0 0 1 0
## 680 254.0000 515.0000 19.50000 23.80000 0 1 1 0
## 681 361.0000 970.0000 26.30000 30.70000 0 0 0 1
## 682 389.0000 1265.0000 26.60000 30.60000 0 0 1 0
## 683 404.0000 1300.0000 29.40000 32.80000 0 0 1 0
## 684 195.0000 170.0000 12.90000 14.70000 0 1 0 1
## 685 203.0000 191.0000 13.50000 15.50000 0 1 0 1
## 686 253.0000 540.0000 19.10000 22.60000 0 1 1 0
## 687 199.0000 185.0000 12.00000 14.90000 0 1 0 1
## 688 194.0000 165.0000 11.90000 14.40000 0 1 0 1
## 689 196.0000 205.0000 12.20000 14.00000 0 1 1 0
## 690 168.0000 95.0000 10.40000 12.10000 1 0 0 1
## 691 395.0000 1170.0000 25.80000 30.50000 0 0 1 0
## 692 368.0000 1075.0000 27.70000 31.70000 0 0 0 1
## 693 210.0000 200.0000 12.10000 15.30000 0 1 0 1
## 694 401.0000 965.0000 25.80000 29.10000 0 0 0 1
## 695 355.0000 785.0000 22.70000 25.00000 0 0 0 1
## 696 377.0000 1095.0000 25.60000 31.70000 0 0 1 0
## 697 197.0000 160.0000 12.00000 14.70000 0 1 0 1
## 698 171.0000 95.0000 9.10000 11.50000 1 0 0 1
## 699 277.0000 1500.0000 29.70000 32.10000 0 0 1 0
## 700 435.0000 1595.0000 27.40000 34.50000 0 0 1 0
## 701 372.0000 985.0000 25.40000 31.00000 0 0 0 1
## 702 260.0000 565.0000 20.00000 24.20000 0 1 1 0
## 703 390.0000 240.0000 25.20000 29.30000 0 0 0 1
## 704 359.0000 875.0000 26.00000 31.10000 0 0 0 1
## 705 393.0000 1225.0000 29.00000 33.40000 0 0 0 1
## 706 402.0000 1255.0000 30.60000 34.60000 0 0 0 1
## 707 362.0000 950.0000 26.80000 30.70000 0 0 0 1
## 708 227.0000 330.0000 16.00000 18.50000 1 0 0 1
## 709 359.0000 895.0000 27.50000 30.10000 0 0 1 0
## 710 155.0000 100.0000 9.80000 12.00000 1 0 0 1
## 711 261.0000 455.0000 17.10000 26.80000 0 1 0 1
## 712 160.0000 90.0000 10.30000 11.50000 1 0 0 1
## 713 166.0000 105.0000 11.30000 11.40000 1 0 0 1
## 714 362.0000 1305.0000 28.20000 34.30000 0 0 0 1
## 715 375.0000 975.0000 27.20000 31.80000 0 0 0 1
## 716 388.0000 1185.0000 28.90000 34.30000 0 0 0 1
## 717 392.0000 1030.0000 26.10000 30.50000 0 0 0 1
## 718 412.0000 1215.0000 28.70000 34.10000 0 0 0 1
## 719 371.0000 1075.0000 26.90000 32.80000 0 0 0 1
## 720 255.0000 960.0000 19.70000 42.80000 0 1 1 0
## 721 391.0000 795.0000 24.30000 27.60000 0 0 0 1
## 722 190.0000 180.0000 12.20000 14.20000 0 1 0 1
## 723 385.0000 1225.0000 27.80000 32.00000 0 0 0 1
## 724 166.0000 110.0000 10.00000 11.90000 1 0 0 1
## 725 197.0000 165.0000 12.20000 14.90000 0 1 1 0
## 726 370.0000 920.0000 26.30000 32.00000 0 0 0 1
## 727 190.0000 170.0000 12.00000 15.00000 0 1 0 1
## 728 400.0000 1315.0000 29.60000 34.00000 0 0 0 1
## 729 162.0000 100.0000 9.40000 11.10000 1 0 0 1
## 730 194.0000 155.0000 12.50000 14.50000 0 1 0 1
## 731 395.0000 1155.0000 29.90000 34.40000 0 0 0 1
## 732 403.0000 1160.0000 29.00000 32.30000 0 0 0 1
## 733 386.0000 955.0000 27.90000 30.40000 0 0 0 1
## 734 193.0000 190.0000 13.10000 14.90000 0 1 1 0
## 735 203.0000 180.0000 13.80000 14.70000 0 1 1 0
## 736 159.0000 90.0000 10.00000 11.50000 1 0 1 0
## 737 163.0000 100.0000 9.80000 11.70000 1 0 0 1
## 738 191.0000 190.0000 12.40000 14.80000 1 0 1 0
## 739 166.0000 105.0000 10.30000 12.00000 1 0 0 1
## 740 361.0000 1030.0000 27.00000 30.50000 0 0 0 1
## 741 260.0000 565.0000 19.70000 54.50000 0 1 1 0
## 742 234.0000 380.0000 12.40000 21.90000 1 0 1 0
## 743 377.0000 1040.0000 28.10000 30.90000 0 0 0 1
## 744 361.0000 910.0000 24.30000 27.50000 0 0 0 1
## 745 375.0000 1005.0000 26.00000 32.50000 0 0 0 1
## 746 193.0000 180.0000 11.90000 14.30000 0 1 0 1
## 747 196.0000 175.0000 12.40000 15.60000 0 1 0 1
## 748 159.0000 105.0000 9.80000 11.00000 1 0 0 1
## 749 192.0000 190.0000 11.80000 14.20000 0 1 0 1
## 750 401.0000 1250.0000 28.20000 35.30000 0 0 0 1
## 751 198.0000 185.0000 12.60000 15.20000 0 1 0 1
## 752 407.0000 1275.0000 27.50000 33.70000 0 0 0 1
## 753 162.0000 105.0000 9.80000 12.50000 1 0 0 1
## 754 169.0000 640.0000 16.70000 23.60000 0 1 1 0
## 755 168.0000 100.0000 10.50000 10.70000 1 0 0 1
## 756 168.0000 105.0000 10.70000 11.60000 1 0 1 0
## 757 223.0000 390.0000 15.90000 20.60000 1 0 1 0
## 758 375.0000 1030.0000 26.90000 31.30000 0 0 0 1
## 759 406.0000 1290.0000 29.30000 33.30000 0 0 1 0
## 760 386.0000 1020.0000 26.90000 31.60000 0 0 0 1
## 761 160.0000 105.0000 9.90000 11.40000 1 0 1 0
## 762 378.0000 1055.0000 26.50000 29.90000 0 0 0 1
## 763 193.0000 185.0000 12.30000 14.80000 0 1 1 0
## 764 379.0000 1010.0000 25.00000 29.30000 0 0 0 1
## 765 364.0000 1015.0000 24.90000 29.50000 0 0 0 1
## 766 350.0000 1115.0000 29.50000 30.30000 0 0 1 0
## 767 380.0000 1320.0000 26.70000 31.60000 0 0 0 1
## 768 395.0000 1180.0000 30.30000 33.40000 0 0 1 0
## 769 372.0000 1145.0000 25.90000 32.20000 0 0 0 1
## 770 376.0000 995.0000 28.00000 30.20000 0 0 0 1
## 771 367.0000 1045.0000 26.10000 30.50000 0 0 0 1
## 772 230.0000 340.0000 16.00000 19.50000 1 0 0 1
## 773 366.0000 935.0000 25.70000 27.10000 0 0 0 1
## 774 386.0000 1065.0000 26.10000 31.00000 0 0 0 1
## 775 375.0000 1110.0000 27.70000 31.30000 0 0 0 1
## 776 199.0000 190.0000 12.00000 15.20000 0 1 0 1
## 777 405.0000 1255.0000 27.90000 31.80000 0 0 1 0
## 778 371.0000 1015.0000 24.90000 28.40000 0 0 1 0
## 779 193.0000 190.0000 12.20000 15.20000 0 1 0 1
## 780 350.0000 960.0000 26.60000 29.90000 0 0 0 1
## 781 193.0000 200.0000 11.30000 13.50000 0 1 0 1
## 782 368.0000 1090.0000 27.30000 30.40000 0 0 1 0
## 783 185.0000 170.0000 12.00000 14.70000 1 0 0 1
## 784 372.0000 1085.0000 25.40000 29.80000 0 0 0 1
## 785 396.0000 1065.0000 27.70000 30.00000 0 0 0 1
## 786 365.0000 1125.0000 26.90000 29.30000 0 0 0 1
## 787 374.0000 1050.0000 25.50000 30.30000 0 0 0 1
## 788 253.0000 525.0000 19.50000 23.50000 0 1 0 1
## 789 372.0000 980.0000 26.40000 29.00000 0 0 0 1
## 790 376.0000 1180.0000 24.40000 30.70000 0 0 0 1
## 791 166.0000 115.0000 9.90000 11.60000 1 0 0 1
## 792 369.0000 1095.0000 26.60000 28.40000 0 0 0 1
## 793 391.0000 1330.0000 26.80000 30.10000 0 0 1 0
## 794 193.0000 185.0000 12.10000 14.90000 0 1 0 1
## 795 397.0000 1100.0000 22.10000 28.80000 0 0 1 0
## 796 366.0000 1115.0000 27.10000 21.00000 0 0 0 1
## 797 385.0000 1400.0000 30.30000 33.30000 0 0 1 0
## 798 400.0000 1175.0000 27.60000 32.60000 0 0 0 1
## 799 198.0000 185.0000 11.80000 15.10000 0 1 0 1
## 800 365.0000 970.0000 25.90000 31.60000 0 0 1 0
## 801 194.0000 170.0000 11.60000 14.00000 0 1 0 1
## 802 195.0000 175.0000 12.00000 15.60000 0 1 0 1
## 803 200.0000 165.0000 11.50000 14.50000 0 1 0 1
## 804 384.0000 1260.0000 28.60000 32.50000 0 0 0 1
## 805 159.0000 110.0000 9.90000 11.10000 1 0 0 1
## 806 161.0000 100.0000 9.30000 11.50000 1 0 0 1
## 807 191.0000 190.0000 12.30000 14.80000 0 1 0 1
## 808 216.0000 305.0000 16.00000 20.40000 1 0 0 1
## 809 256.0000 510.0000 18.80000 23.30000 0 1 0 1
## 810 161.0000 90.0000 9.50000 11.30000 1 0 0 1
## 811 396.0000 1195.0000 27.00000 23.80000 0 0 1 0
## 812 391.0000 1035.0000 27.90000 33.10000 0 0 0 1
## 813 160.0000 90.0000 8.80000 11.40000 1 0 0 1
## 814 183.0000 160.0000 12.70000 14.60000 1 0 0 1
## 815 156.0000 85.0000 9.70000 11.00000 1 0 0 1
## 816 393.0000 1155.0000 28.30000 30.90000 0 0 0 1
## 817 397.0000 1260.0000 27.80000 32.90000 0 0 0 1
## 818 159.0000 95.0000 8.90000 10.40000 1 0 0 1
## 819 255.0000 440.0000 18.60000 22.80000 0 1 0 1
## 820 197.0000 175.0000 10.00000 14.90000 1 0 0 1
## 821 218.0000 295.0000 16.10000 19.40000 1 0 0 1
## 822 196.0000 160.0000 12.60000 14.50000 0 1 0 1
## 823 384.0000 1010.0000 26.80000 31.10000 0 0 0 1
## 824 385.0000 990.0000 26.00000 29.60000 0 0 0 1
## 825 181.0000 150.0000 11.40000 14.30000 1 0 0 1
## 826 225.0000 300.0000 16.00000 20.10000 1 0 0 1
## 827 379.0000 945.0000 24.50000 31.30000 0 0 0 1
## 828 201.0000 188.0000 11.70000 14.90000 0 1 0 1
## 829 161.0000 95.0000 10.60000 11.50000 1 0 0 1
## 830 230.0000 330.0000 15.70000 19.40000 1 0 1 0
## 831 159.0000 95.0000 9.90000 11.20000 1 0 0 1
## 832 367.0000 970.0000 26.40000 30.50000 0 0 0 1
## 833 396.0000 1240.0000 28.90000 32.80000 0 0 0 1
## 834 157.0000 105.0000 10.00000 11.50000 1 0 0 1
## 835 191.0000 165.0000 11.50000 14.90000 0 1 0 1
## 836 191.0000 170.0000 12.10000 15.10000 0 1 0 1
## 837 168.0000 100.0000 10.20000 11.90000 1 0 0 1
## 838 428.0000 1290.0000 28.40000 33.90000 0 0 0 1
## 839 252.0000 470.0000 19.50000 28.40000 0 1 1 0
## 840 192.0000 175.0000 11.70000 14.20000 0 1 1 0
## 841 195.0000 195.0000 13.60000 14.00000 0 1 1 0
## 842 233.0000 335.0000 16.30000 21.30000 1 0 1 0
## 843 364.0000 1150.0000 26.10000 28.20000 0 0 1 0
## 844 370.0000 960.0000 25.40000 30.40000 0 0 0 1
## 845 400.0000 1130.0000 28.30000 29.40000 0 0 0 1
## 846 375.0000 925.0000 25.40000 28.60000 0 0 0 1
## 847 398.0000 1205.0000 27.60000 33.40000 0 0 0 1
## 848 385.0000 1040.0000 27.20000 31.50000 0 0 0 1
## 849 156.0000 100.0000 9.90000 11.20000 1 0 0 1
## 850 230.0000 335.0000 16.30000 19.70000 1 0 0 1
## 851 220.0000 335.0000 16.20000 20.00000 1 0 0 1
## 852 163.0000 105.0000 10.30000 11.70000 1 0 0 1
## 853 376.0000 860.0000 25.60000 30.00000 0 0 0 1
## 854 360.0000 935.0000 25.80000 30.00000 0 0 0 1
## 855 372.0000 1010.0000 24.30000 29.00000 0 0 1 0
## 856 400.0000 1285.0000 29.70000 33.50000 0 0 0 1
## 857 194.0000 210.0000 13.00000 14.50000 0 1 1 0
## 858 370.0000 830.0000 23.60000 27.80000 0 0 0 1
## 859 160.0000 95.0000 10.20000 11.20000 1 0 0 1
## 860 403.0000 1350.0000 28.00000 32.80000 0 0 0 1
## 861 375.0000 1010.0000 25.00000 30.80000 0 0 0 1
## 862 373.0000 960.0000 27.70000 32.50000 0 0 0 1
## 863 385.0000 1370.0000 26.40000 29.20000 0 0 0 1
## 864 143.0000 170.0000 12.80000 13.90000 0 1 0 1
## 865 162.0000 100.0000 8.70000 11.40000 1 0 0 1
## 866 392.0000 1250.0000 28.60000 32.90000 0 0 0 1
## 867 372.0000 915.0000 24.70000 28.20000 0 0 0 1
## 868 375.0000 850.0000 25.00000 28.00000 0 0 0 1
## 869 415.0000 1285.0000 29.40000 34.00000 0 0 0 1
## 870 161.0000 95.0000 9.80000 11.70000 1 0 1 0
## 871 380.0000 1005.0000 27.00000 31.60000 0 0 1 0
## 872 411.0000 1220.0000 28.10000 32.70000 0 0 1 0
## 873 161.0000 95.0000 9.60000 12.40000 1 0 1 0
## 874 165.0000 100.0000 9.80000 12.00000 1 0 0 1
## 875 393.0000 1265.0000 28.30000 32.70000 0 0 0 1
## 876 370.0000 1020.0000 24.60000 30.00000 0 0 0 1
## 877 230.0000 360.0000 16.00000 22.10000 1 0 1 0
## 878 365.0000 895.0000 24.50000 28.90000 0 0 0 1
## 879 371.0000 1160.0000 25.70000 28.40000 0 0 0 1
## 880 400.0000 1585.0000 29.00000 33.80000 0 0 0 1
## 881 382.0000 1140.0000 24.90000 31.60000 0 0 1 0
## 882 371.0000 1115.0000 25.30000 29.20000 0 0 1 0
## 883 370.0000 1145.0000 25.40000 30.20000 0 0 1 0
## 884 194.0000 185.0000 12.80000 14.80000 0 1 1 0
## 885 347.0000 990.0000 25.30000 29.80000 0 0 1 0
## 886 363.0000 945.0000 24.50000 32.23097 0 0 0 1
## 887 195.0000 165.0000 11.70000 14.50000 0 1 0 1
## 888 392.0000 1030.0000 26.30000 28.10000 0 0 1 0
## 889 220.0000 320.0000 15.50000 19.50000 1 0 0 1
## 890 193.0000 105.0000 13.00000 15.60000 0 1 0 1
## 891 365.0000 990.0000 26.40000 30.00000 0 0 0 1
## 892 387.0000 1065.0000 28.00000 32.70000 0 0 1 0
## 893 400.0000 1050.0000 26.10000 29.70000 0 0 0 1
## 894 362.0000 840.0000 23.20000 26.10000 0 0 0 1
## 895 198.0000 190.0000 12.20000 15.80000 0 1 0 1
## 896 190.0000 200.0000 12.70000 15.00000 0 1 0 1
## 897 197.0000 185.0000 12.80000 15.60000 0 1 0 1
## 898 370.0000 1000.0000 26.90000 31.40000 0 0 1 0
## 899 200.0000 185.0000 12.80000 15.20000 0 1 0 1
## 900 360.0000 1325.0000 26.20000 30.60000 0 0 1 0
## 901 366.0000 945.0000 25.30000 27.20000 0 0 1 0
## 902 402.0000 1350.0000 28.70000 31.00000 0 0 1 0
## 903 366.0000 805.0000 23.50000 25.70000 0 0 0 1
## 904 380.0000 1525.0000 26.00000 27.60000 0 0 0 1
## 905 190.0000 175.0000 12.70000 15.40000 0 1 0 1
## 906 360.0000 790.0000 21.90000 27.60000 0 0 0 1
## 907 369.0000 860.0000 25.20000 28.00000 0 0 0 1
## 908 199.0000 1290.0000 28.70000 32.10000 0 0 1 0
As we can observe, the transformation was successfully applied.
Now, we just need to normalize this dataset.
We must consider that dummy numerical variables should not be scaled, so we exclude them from the scaling process.
Reference:
https://stackoverflow.com/questions/74365630/how-to-avoid-scaling-dummy-variables-in-dataframe-in-r
hawks_scaled <- hawks_selected %>%
mutate(
Wing = scale(Wing),
Weight = scale(Weight),
Culmen = scale(Culmen),
Hallux = scale(Hallux) )
print(hawks_scaled)
## Wing Weight Culmen Hallux Sex_M Sex_F Age_A Age_I
## 1 0.72901533 0.323037860 0.53643756 0.58802795 0 0 0 1
## 2 0.63453308 0.344646534 0.68899769 0.84440031 0 0 0 1
## 3 0.68702322 0.474298581 0.67363520 0.73239710 0 0 0 1
## 4 -0.53074792 -0.649352494 -0.42394592 -0.20600240 0 1 0 1
## 5 -1.16062955 -1.297612730 -1.27457130 -1.31283258 0 1 0 1
## 6 1.01246206 0.690385326 0.92059096 0.84067397 0 0 0 1
## 7 0.57154492 0.409472558 0.48155851 0.58802795 0 0 0 1
## 8 0.62403506 0.182581475 0.74223402 0.57599719 0 0 1 0
## 9 1.01246206 0.949689421 1.03034907 0.73239710 0 0 1 0
## 10 0.93897587 0.755211350 0.57759685 0.60005871 0 0 0 1
## 11 0.81299955 0.517515930 0.61875615 0.67224329 0 0 0 1
## 12 0.58204295 0.517515930 0.49527827 0.53990490 0 0 0 1
## 13 0.78150546 0.755211350 0.97547001 0.68427405 0 0 1 0
## 14 0.81299955 0.844699836 0.87943166 0.64818176 0 0 1 0
## 15 1.05445417 0.863254723 0.64619568 1.05722770 0 0 0 1
## 16 1.26441471 1.338645562 1.19498624 1.05722770 0 0 1 0
## 17 1.07545022 0.820037374 0.72851426 0.69630482 0 0 0 1
## 18 0.68702322 0.387863883 0.97547001 0.44365880 0 0 1 0
## 19 0.65552914 0.301429185 0.53643756 0.35944346 0 0 0 1
## 20 0.84449363 0.517515930 0.30320157 0.20304354 0 0 0 1
## 21 0.87598771 0.647167977 0.63247591 0.72036634 0 0 0 1
## 22 1.05445417 0.906472072 0.96175025 0.76848939 0 0 0 1
## 23 1.04395614 -1.446712584 0.42667945 0.66021253 0 0 0 1
## 24 0.80250152 1.208993515 0.71479450 0.61208948 0 0 1 0
## 25 0.67652519 0.474298581 0.57759685 0.57599719 0 0 0 1
## 26 -1.49656641 -1.448873451 -1.42396428 -1.31993010 1 0 0 1
## 27 0.87598771 0.711994001 0.60503638 0.87676626 0 0 0 1
## 28 0.89698376 0.906472072 0.93431072 0.76848939 0 0 1 0
## 29 -1.16062955 -1.276004055 -1.38432941 -1.22861724 0 1 0 1
## 30 1.16993247 1.554732307 1.14010718 0.86473550 0 0 0 1
## 31 0.83399560 0.582341954 0.72851426 0.74442787 0 0 1 0
## 32 0.48756071 0.106951114 0.42667945 0.32335117 0 0 0 1
## 33 0.84449363 0.560733279 0.57759685 0.53990490 0 0 1 0
## 34 0.79200349 1.144167491 0.50899803 0.86473550 0 0 1 0
## 35 1.02296009 1.576340982 0.64619568 0.73239710 0 0 1 0
## 36 0.58204295 0.668776652 0.48155851 0.23913583 0 0 1 0
## 37 0.72901533 1.187384840 0.75595379 0.58802795 0 0 1 0
## 38 0.65552914 1.554732307 0.49527827 0.73239710 0 0 1 0
## 39 1.05445417 1.576340982 1.00290954 0.67224329 0 0 1 0
## 40 -1.28660587 -1.448873451 -1.71360375 -1.31993010 1 0 0 1
## 41 -1.51756247 -1.474803861 -1.65872469 -1.64969394 1 0 0 1
## 42 -0.86668479 -0.964839142 -0.79437955 -0.71129444 0 0 0 1
## 43 0.71851730 0.625559303 0.59131662 0.72036634 0 0 0 1
## 44 0.69752125 0.798428699 0.45411898 0.50381261 0 0 0 1
## 45 0.78150546 0.560733279 0.79711308 0.61208948 0 0 0 1
## 46 0.78150546 0.495907256 0.45411898 0.37147422 0 0 0 1
## 47 0.81299955 0.603950628 0.94803048 0.55193566 0 0 0 1
## 48 0.65552914 0.582341954 0.60503638 0.72036634 0 0 0 1
## 49 0.86548968 0.733602675 0.64619568 0.68427405 0 0 0 1
## 50 1.01246206 1.144167491 0.83827237 0.76247401 0 0 0 1
## 51 0.88648573 0.452689907 0.53643756 0.49178185 0 0 0 1
## 52 1.11744233 0.755211350 0.63247591 0.37147422 0 0 0 1
## 53 -1.19212363 -1.375403958 -1.28829106 -1.38501716 0 1 0 1
## 54 0.82349757 1.079341468 0.82455261 0.76848939 0 0 0 1
## 55 0.56104690 0.236603161 0.44039921 0.15492049 0 0 0 1
## 56 -0.66722227 -0.930265263 -0.79437955 -0.53083300 0 1 0 1
## 57 -0.79319860 -0.930265263 -0.78065979 -0.71129444 1 0 1 0
## 58 0.99146601 1.046928456 1.08522813 0.74442787 0 0 0 1
## 59 -0.78270057 1.187384840 0.93431072 1.34596601 0 0 0 1
## 60 0.97046995 1.187384840 1.12638742 0.98504313 0 0 0 1
## 61 -2.92219849 0.884863397 -0.21814946 0.17296663 0 0 0 1
## 62 0.67652519 -0.022700933 0.37180039 0.10679744 0 0 0 1
## 63 0.84449363 1.036124119 0.65991544 0.87676626 0 0 0 1
## 64 0.10963173 0.661124977 0.46783874 0.29928964 0 0 0 1
## 65 -1.65403682 -1.448873451 -1.50780728 -1.77000157 1 0 0 1
## 66 1.05445417 1.144167491 0.75595379 0.90082778 0 0 0 1
## 67 -0.46775976 -0.638548157 -0.49254474 -0.05561786 0 1 0 1
## 68 -1.46507233 -1.448873451 -1.64500493 -1.69781700 1 0 1 0
## 69 -1.27610784 -1.340003865 -1.42548870 -1.32486335 0 1 1 0
## 70 0.78150546 0.668776652 1.15382695 0.46772032 0 0 1 0
## 71 0.79200349 0.776820025 0.63247591 0.50381261 0 0 1 0
## 72 0.75001138 0.841646048 0.68735497 0.69630482 0 0 1 0
## 73 1.09644628 1.241406527 1.05778860 1.09331999 0 0 0 1
## 74 1.25391668 1.327841225 1.48310128 0.64818176 0 0 1 0
## 75 0.88648573 0.949689421 0.50899803 0.40756651 0 0 1 0
## 76 0.86548968 1.479101947 0.85199214 0.75645863 0 0 0 1
## 77 0.83399560 0.884863397 0.44039921 0.44365880 0 0 0 1
## 78 0.99146601 1.576340982 0.72851426 0.96098160 0 0 0 1
## 79 0.56104690 0.549928942 0.72851426 0.75645863 0 0 0 1
## 80 0.59254098 0.344646534 0.59131662 0.70833558 0 0 0 1
## 81 1.04395614 1.273819539 0.93431072 0.99707389 0 0 0 1
## 82 1.01246206 1.046928456 0.81083284 0.88879702 0 0 0 1
## 83 -1.16062955 -1.245751911 -1.26085153 -1.30080182 0 1 0 1
## 84 -1.17112757 -1.321382272 -1.27457130 -1.25267877 0 1 0 1
## 85 -1.52806050 -1.470482126 -1.68616422 -1.67375547 1 0 0 1
## 86 -0.86668479 -0.930265263 -0.54742380 -0.69926368 1 0 1 0
## 87 0.62403506 0.636363640 0.56387709 0.57599719 0 0 0 1
## 88 0.72901533 0.766015687 -0.30046805 0.74442787 0 0 0 1
## 89 1.11744233 1.230602190 0.94803048 0.81661244 0 0 0 1
## 90 0.79200349 0.603950628 0.65991544 0.84067397 0 0 0 1
## 91 0.99146601 0.949689421 0.78339332 0.84440031 0 0 0 1
## 92 0.72901533 0.452689907 0.68735497 0.31132040 0 0 0 1
## 93 0.68702322 0.495907256 0.50899803 0.55193566 0 0 0 1
## 94 1.05445417 1.338645562 0.86571190 0.73239710 0 0 1 0
## 95 0.94947390 1.090145805 0.98918978 1.02113541 0 0 0 1
## 96 1.07545022 0.884863397 1.14010718 0.84440031 0 0 0 1
## 97 1.01246206 0.949689421 1.03034907 1.03316618 0 0 0 1
## 98 -1.12913547 -1.301934465 -1.24713177 -1.25267877 0 1 1 0
## 99 -1.12913547 -1.349473549 -1.37060964 -1.24064801 0 1 0 1
## 100 -1.47557036 -1.431586512 -1.61756540 -1.64969394 1 0 0 1
## 101 -1.57005260 -1.461838656 -1.68616422 -1.67375547 1 0 0 1
## 102 0.93897587 0.679580989 0.81083284 0.56396642 0 0 0 1
## 103 -1.23411574 -1.258717116 -1.31573059 -0.99462762 0 1 1 0
## 104 -1.21311968 -1.332186609 -1.28829106 -1.30080182 0 1 0 1
## 105 0.67652519 0.085342440 0.56387709 0.41959727 0 0 0 1
## 106 0.68702322 0.290624848 0.83827237 0.46772032 0 0 0 1
## 107 -1.53855852 -1.461838656 -1.75476304 -1.80609386 1 0 0 1
## 108 -0.58323806 -0.757395867 -0.30046805 -0.15787935 0 1 0 1
## 109 1.18043049 1.014515444 1.00290954 1.14144304 0 0 0 1
## 110 0.88648573 0.474298581 0.70107473 0.74442787 0 0 0 1
## 111 -0.53074792 -0.876243577 -0.68462144 -0.32631003 0 1 0 1
## 112 -1.45457431 -1.468321258 -1.59012587 -1.67375547 1 0 0 1
## 113 0.68702322 0.517515930 0.55015733 0.78052016 0 0 0 1
## 114 0.91797982 0.452689907 0.61875615 0.53990490 0 0 0 1
## 115 0.69752125 0.193385812 0.64619568 0.45568956 0 0 0 1
## 116 0.69752125 0.431081232 0.55015733 0.45568956 0 0 0 1
## 117 0.87598771 0.452689907 0.78339332 0.56396642 0 0 0 1
## 118 0.67652519 0.463494244 0.28948181 0.45568956 0 0 0 1
## 119 0.62403506 0.474298581 0.52271780 0.64818176 0 0 0 1
## 120 1.09644628 0.949689421 0.82455261 0.88879702 0 0 0 1
## 121 -1.52806050 -1.472642993 -1.80964209 -1.70984776 1 0 0 1
## 122 -1.45457431 -1.455356054 -1.61756540 -1.67375547 1 0 1 0
## 123 0.62403506 0.474298581 0.85199214 0.51584337 0 0 0 1
## 124 0.83399560 0.863254723 0.86571190 0.78052016 0 0 0 1
## 125 -1.52806050 -1.463999524 -1.60384563 -1.68578623 1 0 1 0
## 126 0.94947390 1.252210864 1.19498624 0.81661244 0 0 0 1
## 127 1.03345811 1.295428213 1.03034907 0.93692007 0 0 0 1
## 128 -1.49656641 -1.442390849 -1.65872469 -0.69926368 1 0 0 1
## 129 -1.11863744 -1.338669211 -1.31573059 -1.36095563 0 1 0 1
## 130 -1.45457431 -1.446712584 -1.57640611 -1.57750937 1 0 0 1
## 131 0.76050941 0.463494244 0.70107473 0.55193566 0 0 0 1
## 132 -0.40477160 0.366255209 0.64619568 0.62412024 0 0 0 1
## 133 1.12794036 1.165776166 0.76967355 1.06925847 0 0 0 1
## 134 0.51905479 0.571537617 0.59131662 0.67224329 0 0 0 1
## 135 0.70801927 0.420276895 0.59131662 0.79255092 0 0 0 1
## 136 0.79200349 0.766015687 0.49527827 0.68427405 0 0 0 1
## 137 0.77100744 0.441885569 0.63247591 0.61208948 0 0 0 1
## 138 0.80250152 0.798428699 0.60503638 0.55193566 0 0 0 1
## 139 0.62403506 0.387863883 0.48155851 0.56396642 0 0 0 1
## 140 0.99146601 0.949689421 0.86571190 0.44365880 0 0 0 1
## 141 -1.43357825 -1.459677789 -1.50780728 -1.63766318 1 0 0 1
## 142 -1.50706444 -1.472642993 -1.69988398 -1.73390928 1 0 0 1
## 143 -1.19212363 -1.243591043 -1.28829106 -1.33689411 0 1 1 0
## 144 -1.48606839 -1.463999524 -1.68616422 -1.70984776 1 0 0 1
## 145 1.11744233 0.938885083 0.96175025 0.73239710 0 0 0 1
## 146 0.72901533 0.593146291 0.79711308 0.27522812 0 0 0 1
## 147 0.49805873 0.690385326 0.65991544 0.43162803 0 0 0 1
## 148 1.41138709 0.906472072 1.16754671 0.91285855 0 0 0 1
## 149 0.67652519 0.409472558 0.52271780 0.58802795 0 0 0 1
## 150 0.72901533 0.398668220 0.61875615 0.58802795 0 0 0 1
## 151 0.72901533 0.733602675 0.39923992 0.60005871 0 0 0 1
## 152 -1.51756247 -1.448873451 -0.36906687 -1.64969394 1 0 0 1
## 153 0.67652519 0.279820510 0.30320157 0.15492049 0 0 0 1
## 154 0.71851730 0.657972315 0.64619568 0.66021253 0 0 0 1
## 155 0.60303900 0.452689907 0.83827237 0.82864321 0 0 0 1
## 156 0.68702322 0.366255209 0.82455261 1.08128923 0 0 0 1
## 157 0.49805873 0.647167977 0.52271780 0.62412024 0 0 0 1
## 158 0.98096798 0.755211350 1.04406883 0.76848939 0 0 0 1
## 159 0.78150546 0.625559303 0.79711308 0.45568956 0 0 1 0
## 160 -1.17112757 -1.301934465 -1.32945035 -1.31283258 0 1 0 1
## 161 -1.24461376 -1.209017164 -1.41176894 -1.36095563 0 1 0 1
## 162 1.09644628 0.766015687 0.74223402 0.26319735 0 0 0 1
## 163 0.68702322 0.711994001 0.71479450 0.35944346 0 0 0 1
## 164 0.97046995 1.273819539 1.12638742 1.04519694 0 0 0 1
## 165 0.76050941 0.485102918 0.67363520 0.66021253 0 0 0 1
## 166 0.86548968 0.701189664 -0.09467158 0.74442787 0 0 1 0
## 167 -1.11863744 -1.241430176 -1.32945035 -1.27674029 0 1 0 1
## 168 -1.11863744 -1.284647525 -1.38432941 -1.21658648 0 1 0 1
## 169 0.82349757 0.657972315 0.50899803 0.53990490 0 0 1 0
## 170 -1.17112757 -1.276004055 -1.30201082 -1.20455572 0 1 1 0
## 171 -1.17112757 -1.310577934 -1.30201082 -1.31283258 0 1 0 1
## 172 -1.11863744 -1.323543139 -1.31573059 -1.30080182 0 1 0 1
## 173 0.82349757 0.798428699 0.68735497 0.47975108 0 0 0 1
## 174 1.05445417 1.014515444 0.83827237 0.79255092 0 0 0 1
## 175 1.35889695 1.500710621 1.08522813 1.12941228 0 0 0 1
## 176 -1.11863744 -1.299773597 -1.32945035 -1.28877106 0 1 0 1
## 177 0.76050941 0.722798338 0.67363520 0.44365880 0 0 0 1
## 178 0.85499165 0.517515930 0.72851426 0.74442787 0 0 0 1
## 179 0.71851730 0.657972315 0.61875615 0.63615100 0 0 0 1
## 180 0.66602717 0.625559303 0.83827237 0.68427405 0 0 0 1
## 181 0.81299955 0.528320267 0.79711308 0.70833558 0 0 0 1
## 182 0.73951336 0.711994001 0.57759685 0.60005871 0 0 0 1
## 183 0.85499165 0.517515930 0.44039921 0.64818176 0 0 0 1
## 184 0.69752125 0.495907256 0.61875615 0.58802795 0 0 0 1
## 185 0.73951336 0.452689907 0.49527827 0.60005871 0 0 0 1
## 186 1.06495220 1.014515444 0.94803048 0.86473550 0 0 0 1
## 187 0.91797982 1.273819539 0.83827237 0.94895084 0 0 0 1
## 188 -0.80369663 -1.269521453 -0.61602262 -0.72332520 1 0 1 0
## 189 0.89698376 1.371058574 1.00290954 0.84440031 0 0 0 1
## 190 0.64503111 0.614754966 0.71479450 0.46772032 0 0 1 0
## 191 1.22242260 1.943688449 0.72851426 0.92488931 0 0 1 0
## 192 0.78150546 1.036124119 0.60503638 0.63615100 0 0 0 1
## 193 0.68702322 0.560733279 0.48155851 0.56396642 0 0 0 1
## 194 0.91797982 0.582341954 0.68899769 0.56396642 0 0 0 1
## 195 -1.07664533 -1.254395381 -1.31573059 -1.16846343 0 1 0 1
## 196 -1.50706444 -1.438069114 -1.61756540 -1.73390928 1 0 0 1
## 197 0.78150546 0.690385326 0.60503638 0.43162803 0 0 0 1
## 198 -1.17112757 -1.254395381 -1.37060964 -1.36095563 0 1 0 1
## 199 0.73951336 0.603950628 0.90687119 0.50381261 0 0 1 0
## 200 0.90748179 0.733602675 0.59131662 0.57599719 0 0 0 1
## 201 -1.20262166 -1.219821501 -1.32945035 -1.40907869 0 1 0 1
## 202 -1.19212363 -1.243591043 -1.32945035 -1.25267877 0 1 0 1
## 203 0.61353703 0.517515930 0.42667945 0.58802795 0 0 1 0
## 204 0.44556860 0.236603161 0.33064110 0.41959727 0 0 0 1
## 205 0.57154492 0.625559303 0.34436087 0.55193566 0 0 0 1
## 206 0.78150546 0.323037860 0.53643756 0.57599719 0 0 0 1
## 207 0.86548968 0.917276409 0.60503638 0.55193566 0 0 0 1
## 208 0.46656465 0.258211836 0.57759685 0.38350498 0 0 0 1
## 209 0.41407452 0.279820510 0.48155851 0.45568956 0 0 0 1
## 210 0.62403506 0.733602675 0.05624582 0.75645863 0 0 1 0
## 211 -1.21311968 -1.319221404 -1.59012587 -1.44517097 0 1 0 1
## 212 -1.43357825 -1.438069114 -1.60384563 -1.67375547 1 0 0 1
## 213 -1.47557036 -1.451034319 -1.67244445 -1.50532479 1 0 0 1
## 214 -1.18162560 -1.308417067 -1.34317012 -1.30080182 0 1 0 1
## 215 -1.16062955 -1.448873451 -1.34317012 -1.52938631 0 1 0 1
## 216 -1.07664533 -1.394851765 -1.41176894 -1.30080182 0 1 0 1
## 217 0.98096798 0.711994001 0.98918978 0.88879702 0 0 0 1
## 218 -1.19212363 -1.347105790 -1.42396428 -1.31993010 0 1 0 1
## 219 -1.26560982 -1.330025742 -1.35688988 -1.27674029 0 1 0 1
## 220 1.04395614 1.111754480 1.05778860 0.79255092 0 0 0 1
## 221 -0.83519071 -0.822221890 -0.91785743 -0.57895605 1 0 1 0
## 222 0.49805873 0.323037860 0.68735497 0.60005871 0 0 0 1
## 223 0.68702322 0.549928942 0.49527827 0.67224329 0 0 0 1
## 224 0.36158438 0.366255209 0.57759685 0.46772032 0 0 1 0
## 225 0.86548968 1.014515444 0.92059096 0.67224329 0 0 0 1
## 226 1.01246206 0.841646048 0.82455261 0.93692007 0 0 0 1
## 227 -1.18162560 -1.340830079 -1.41176894 -1.36095563 0 1 0 1
## 228 -1.20262166 -1.384047428 -1.38432941 -1.30080182 0 1 0 1
## 229 1.00196403 1.014515444 0.68735497 0.90082778 0 0 0 1
## 230 0.60303900 0.344646534 0.35808063 0.26319735 0 0 0 1
## 231 -1.44407628 -1.470482126 -1.49408752 -1.57750937 1 0 0 1
## 232 1.04395614 1.014515444 0.52271780 0.72036634 0 0 0 1
## 233 0.70801927 0.560733279 0.46783874 0.55193566 0 0 0 1
## 234 -0.97166506 -0.476483098 -0.41022616 -0.47067918 1 0 0 1
## 235 0.78150546 1.036124119 0.64619568 0.81661244 0 0 0 1
## 236 0.78150546 0.493746388 0.48155851 0.55193566 0 0 0 1
## 237 0.51905479 0.755211350 0.64619568 0.67224329 0 0 1 0
## 238 0.30909425 0.495907256 0.63247591 0.58802795 0 0 1 0
## 239 -0.44676371 -0.519700447 -0.35534710 -0.06163324 0 1 0 1
## 240 0.88648573 0.582341954 0.81083284 0.82864321 0 0 0 1
## 241 0.67652519 0.820037374 0.82455261 0.70833558 0 0 0 1
## 242 0.15162384 0.495907256 0.56387709 0.60005871 0 0 0 1
## 243 0.99146601 1.273819539 1.57913963 0.40756651 0 0 0 1
## 244 -0.02684262 0.344646534 0.53643756 0.44365880 0 0 0 1
## 245 0.71851730 0.452689907 0.55015733 0.62412024 0 0 0 1
## 246 0.98096798 1.057732793 0.81083284 0.79255092 0 0 0 1
## 247 0.78150546 0.279820510 0.78339332 0.40756651 0 0 0 1
## 248 1.00196403 1.144167491 0.56387709 0.80458168 0 0 0 1
## 249 -0.59373608 -0.649352494 -0.71206097 -0.21803316 0 1 0 1
## 250 0.67652519 0.582341954 0.63247591 0.68427405 0 0 1 0
## 251 0.57154492 0.387863883 0.75595379 0.63615100 0 0 0 1
## 252 1.04395614 1.187384840 1.04406883 1.04519694 0 0 0 1
## 253 -1.05564928 -1.276004055 -1.05505507 -1.50532479 0 1 0 1
## 254 0.99146601 1.100950142 0.83827237 0.90082778 0 0 0 1
## 255 1.01246206 1.165776166 0.59131662 0.70833558 0 0 0 1
## 256 0.71851730 0.301429185 0.63247591 0.38350498 0 0 1 0
## 257 0.92847784 0.971298095 0.93431072 0.62412024 0 0 0 1
## 258 0.62403506 0.323037860 0.27576205 0.43162803 0 0 0 1
## 259 0.99146601 0.787624362 0.63247591 0.86473550 0 0 0 1
## 260 0.71851730 0.366255209 0.60503638 0.55193566 0 0 0 1
## 261 0.72901533 0.323037860 0.44039921 0.84067397 0 0 0 1
## 262 0.86548968 1.100950142 0.85199214 0.86473550 0 0 0 1
## 263 -0.76712255 -0.627743820 -0.56114356 0.82864321 0 0 1 0
## 264 1.14893641 0.971298095 0.75595379 0.93692007 0 0 0 1
## 265 0.89698376 0.495907256 0.67363520 0.33538193 0 0 0 1
## 266 0.75001138 0.755211350 0.68735497 3.00621129 0 0 0 1
## 267 0.63453308 0.333842197 0.57759685 0.67224329 0 0 0 1
## 268 -1.51756247 -1.470482126 -1.63128516 -1.60157089 1 0 1 0
## 269 1.09644628 1.100950142 0.78339332 0.79255092 0 0 1 0
## 270 0.72901533 0.463494244 0.78339332 0.67224329 0 0 0 1
## 271 0.93897587 1.252210864 0.89315143 0.88879702 0 0 0 1
## 272 0.36158438 -0.087526956 0.38552016 0.05867438 0 0 0 1
## 273 0.76050941 0.258211836 0.82455261 0.72036634 0 0 0 1
## 274 0.86548968 0.539124605 0.64619568 0.70833558 0 0 0 1
## 275 0.99146601 0.495907256 0.72851426 0.64818176 0 0 1 0
## 276 -1.19212363 -1.340830079 -1.38432941 -1.33689411 0 1 0 1
## 277 -1.17112757 -1.276004055 -1.41176894 -1.54141708 0 1 0 1
## 278 0.69752125 0.539124605 0.64619568 0.50381261 0 0 1 0
## 279 -2.14744409 1.230602190 0.69421485 0.80458168 0 0 0 1
## 280 0.84449363 1.144167491 0.75595379 0.63615100 0 0 0 1
## 281 0.49805873 0.528320267 0.50899803 0.58802795 0 0 0 1
## 282 0.46656465 0.279820510 1.19498624 0.43162803 0 0 0 1
## 283 0.78150546 0.495907256 0.59131662 0.52787414 0 0 0 1
## 284 -1.26560982 -1.340830079 -1.30201082 -1.27674029 1 0 0 1
## 285 0.78150546 0.603950628 0.41295969 0.87676626 0 0 1 0
## 286 0.67652519 0.387863883 0.42667945 0.45568956 0 0 0 1
## 287 -0.95066901 -0.908656588 -1.26085153 0.09476667 1 0 0 1
## 288 -0.71971241 -0.854634902 -0.67090168 -0.84363283 1 0 1 0
## 289 1.04395614 0.874059060 0.89315143 0.96098160 0 0 1 0
## 290 0.40357649 0.452689907 0.55015733 0.49178185 0 0 0 1
## 291 1.06495220 1.057732793 0.98918978 0.91285855 0 0 1 0
## 292 0.66602717 0.603950628 0.56387709 0.73239710 0 0 0 1
## 293 1.01246206 1.208993515 1.01662931 0.84067397 0 0 1 0
## 294 0.64503111 0.452689907 0.85199214 0.46772032 0 0 1 0
## 295 0.59254098 0.323037860 0.48155851 0.57599719 0 0 0 1
## 296 1.09644628 1.662775680 1.11266765 1.23768915 0 0 0 1
## 297 0.55054887 0.625559303 0.50899803 0.20304354 0 0 0 1
## 298 0.94947390 1.403471586 1.11266765 0.81661244 0 0 0 1
## 299 -0.95066901 -0.800613216 -0.93157719 -0.62707910 1 0 0 1
## 300 0.80250152 0.802750434 0.74223402 0.93692007 0 0 0 1
## 301 -1.30760193 -1.325704007 -1.34317012 -1.37298640 0 1 0 1
## 302 -1.62254274 -1.453195186 -1.57640611 -1.62563242 1 0 0 1
## 303 0.51905479 0.091825042 0.60503638 0.58802795 0 0 0 1
## 304 -1.67503287 -1.461838656 -1.63128516 -1.66172471 1 0 0 1
## 305 -1.30760193 -1.330025742 -0.72578073 -1.30080182 0 1 0 1
## 306 -1.23411574 -1.273843188 -1.27457130 -1.33689411 0 1 0 1
## 307 -1.63304077 -1.466160391 -1.64500493 -1.70984776 1 0 0 1
## 308 -1.59104866 -1.453195186 -1.60384563 -1.66172471 1 0 0 1
## 309 0.38258043 0.547768075 0.65991544 0.61208948 0 0 0 1
## 310 -0.53074792 -0.662317699 -0.35534710 -0.13381782 0 1 0 1
## 311 -1.60154668 -1.448873451 -1.56268634 -1.68578623 1 0 0 1
## 312 -1.28660587 -1.263038851 -1.23341200 -1.34892487 0 1 0 1
## 313 -1.31809995 -1.310577934 -1.35688988 -1.28877106 0 1 0 1
## 314 -1.58055063 -1.453195186 -1.60384563 -1.66172471 1 0 0 1
## 315 -1.61204471 -1.347105790 -1.42396428 -1.31993010 1 0 0 1
## 316 -1.23411574 -1.323543139 -1.32945035 -1.28877106 0 1 1 0
## 317 0.57154492 0.545607207 0.55015733 0.58802795 0 0 0 1
## 318 -0.89817887 -0.930265263 -0.72578073 0.63615100 0 0 0 1
## 319 -1.27610784 -1.312738802 -1.31573059 -0.62707910 1 0 0 1
## 320 -1.66453485 -1.466160391 -1.64500493 -1.26470953 0 1 0 1
## 321 -0.58323806 -0.476483098 -0.31418781 -1.68578623 1 0 0 1
## 322 0.64503111 0.753050483 0.49527827 -0.15787935 0 1 1 0
## 323 0.50855676 0.316555257 0.57759685 0.52787414 0 0 0 1
## 324 0.54005084 0.379220413 0.67363520 0.44365880 0 0 0 1
## 325 -0.86668479 -0.936747865 -0.83553885 0.80458168 0 0 0 1
## 326 0.21461200 -0.061596547 0.22088299 -0.77144825 1 0 0 1
## 327 -0.59373608 -0.716339385 -0.41022616 -1.20455572 0 1 0 1
## 328 -1.22361771 -1.260877983 -1.31573059 -0.12178706 0 1 0 1
## 329 -1.58055063 -1.466160391 -1.65872469 -1.27674029 0 1 0 1
## 330 0.57154492 0.699028796 0.75595379 -1.64969394 1 0 0 1
## 331 0.48756071 0.132881524 0.27576205 0.88879702 0 0 0 1
## 332 0.55054887 1.023158914 0.78822897 0.71025853 0 0 1 0
## 333 0.55054887 1.023158914 0.67363520 0.60005871 0 0 0 1
## 334 0.54005084 0.439724702 0.46783874 0.52787414 0 0 0 1
## 335 0.88648573 1.120397949 0.93431072 0.82864321 0 0 0 1
## 336 0.66602717 0.493746388 0.89315143 0.81661244 0 0 0 1
## 337 0.46656465 0.482942051 0.64619568 0.62412024 0 0 0 1
## 338 0.48756071 0.504550726 0.71479450 0.74442787 0 0 0 1
## 339 0.65552914 0.705511399 0.97547001 0.98504313 0 0 0 1
## 340 -1.20262166 -1.265199718 -1.19225271 -1.28877106 0 1 0 1
## 341 -1.28660587 -1.273843188 -1.23341200 -1.64969394 1 0 0 1
## 342 0.59254098 0.694707061 0.74223402 0.79255092 0 0 0 1
## 343 0.56104690 0.601789761 1.14010718 0.81661244 0 0 0 1
## 344 0.40357649 0.491585521 0.74223402 0.47975108 0 0 0 1
## 345 0.54005084 0.692546194 1.37334317 1.08128923 0 0 0 1
## 346 0.35108635 0.467815979 0.98918978 0.70833558 0 0 0 1
## 347 0.62403506 0.822198241 1.68889775 1.02113541 0 0 0 1
## 348 0.28809819 0.433242100 0.45411898 0.10679744 0 0 0 1
## 349 0.46656465 0.839485181 1.52426058 1.05722770 0 0 0 1
## 350 0.83399560 1.012354577 0.67363520 0.96098160 0 0 0 1
## 351 0.88648573 0.962654625 0.92059096 0.82864321 0 0 0 1
## 352 -1.52806050 -1.282486658 -1.30201082 -1.30080182 0 1 1 0
## 353 -0.49925384 -0.651513361 -0.24558899 -0.03757172 0 1 0 1
## 354 0.56104690 0.580181086 0.70107473 0.51584337 0 0 0 1
## 355 0.51905479 0.666615784 0.46783874 0.57599719 0 0 0 1
## 356 0.62403506 0.839485181 1.64773845 0.90082778 0 0 1 0
## 357 -0.89817887 -1.314899669 -1.30201082 -1.37298640 1 0 0 1
## 358 -1.07664533 -0.932426130 0.23460275 -1.37298640 1 0 1 0
## 359 0.69752125 1.366736839 1.79865586 1.14144304 0 0 1 0
## 360 -1.54905655 -1.286808392 -1.21969224 -1.34892487 1 0 0 1
## 361 1.70533185 1.517997561 2.38860571 2.34451933 0 0 1 0
## 362 1.61084960 0.498068123 1.11266765 2.16405789 0 0 0 1
## 363 -1.50706444 -1.453195186 -1.79592233 -1.72187852 1 0 0 1
## 364 0.60303900 0.310072655 0.56387709 0.62412024 0 0 0 1
## 365 0.73951336 0.623398435 0.50899803 0.63615100 0 0 1 0
## 366 0.71851730 0.813554771 0.98918978 1.17753533 0 0 0 1
## 367 0.37208241 0.385703016 0.68735497 0.53990490 0 0 0 1
## 368 -1.54905655 -1.444551717 -1.67244445 -1.60157089 1 0 0 1
## 369 0.49805873 0.437563834 0.41295969 0.25116659 0 0 0 1
## 370 -1.22361771 -1.241430176 -1.28829106 -1.20455572 0 1 0 1
## 371 -0.84568873 -0.958356540 -0.72578073 -0.59098681 1 0 0 1
## 372 0.61353703 0.634202773 0.57759685 0.82864321 0 0 1 0
## 373 0.56104690 -0.046470475 0.30320157 0.19101278 0 0 0 1
## 374 -1.19212363 -1.230625839 -1.38432941 -1.24064801 0 1 0 1
## 375 -1.19212363 -1.276004055 -1.28829106 -1.33689411 0 1 0 1
## 376 0.61353703 0.956172023 0.42667945 0.33538193 0 0 0 1
## 377 0.77100744 0.928080746 0.87943166 0.67224329 0 0 0 1
## 378 0.66602717 0.582341954 0.48155851 0.50381261 0 0 0 1
## 379 -1.52806050 -1.420782175 -1.53524681 -1.69781700 1 0 0 1
## 380 0.60303900 0.320876992 0.33064110 0.39553574 0 0 0 1
## 381 0.91797982 1.548249705 0.57759685 0.87676626 0 0 0 1
## 382 0.88648573 1.044767589 0.46783874 0.57599719 0 0 0 1
## 383 -1.16062955 -1.327864874 -1.50780728 -1.33689411 0 1 1 0
## 384 0.93897587 0.904311204 0.81083284 0.73239710 0 0 0 1
## 385 0.69752125 0.450529039 0.41295969 0.32335117 0 0 0 1
## 386 -1.58055063 -1.457516921 -1.52152705 -1.66172471 1 0 1 0
## 387 0.95997192 1.228441322 0.75595379 0.98504313 0 0 0 1
## 388 0.91797982 0.925919879 0.96175025 0.69630482 0 0 0 1
## 389 0.94947390 1.239245659 0.83827237 0.94895084 0 0 0 1
## 390 0.68702322 0.428920365 0.59131662 0.70833558 0 0 0 1
## 391 0.83399560 0.580181086 0.57759685 0.53990490 0 0 0 1
## 392 0.99146601 0.612594098 0.92059096 0.75645863 0 0 0 1
## 393 -0.76170452 -0.943230468 -0.58858309 -0.72332520 0 1 1 0
## 394 -1.52806050 -1.446712584 -1.64500493 -1.70984776 1 0 0 1
## 395 -1.10813941 -1.273843188 -1.31573059 -1.22861724 0 1 1 0
## 396 1.14893641 1.466136742 1.16754671 0.93692007 0 0 1 0
## 397 0.90748179 0.463494244 0.65991544 0.55193566 0 0 0 1
## 398 1.72632790 1.788105992 1.70261751 1.22565838 0 0 1 0
## 399 1.01246206 0.478620316 1.14010718 0.75645863 0 0 0 1
## 400 -0.58323806 -0.435426616 -0.36906687 -0.14584858 0 1 0 1
## 401 0.68702322 1.260854334 0.87943166 0.81661244 0 0 1 0
## 402 0.80250152 0.428920365 0.56387709 0.45568956 0 0 1 0
## 403 0.69752125 0.668776652 0.48155851 0.69630482 0 0 0 1
## 404 -1.25511179 -1.265199718 -1.27457130 -1.34892487 0 1 1 0
## 405 0.79200349 0.705511399 0.83827237 0.91285855 0 0 1 0
## 406 0.85499165 1.444528067 0.96175025 0.74442787 0 0 1 0
## 407 0.47706268 0.661124977 0.35808063 0.32335117 0 0 0 1
## 408 0.63453308 0.536963737 0.55015733 0.51584337 0 0 0 1
## 409 0.99146601 1.012354577 1.05778860 0.79255092 0 0 1 0
## 410 0.68702322 1.358093369 0.79711308 0.73239710 0 0 0 1
## 411 0.84449363 0.861093855 0.78339332 -0.00147943 0 0 0 1
## 412 0.70801927 0.850289518 0.71479450 0.56396642 0 0 0 1
## 413 -1.18162560 -1.284647525 -1.41176894 -1.26470953 0 1 0 1
## 414 -0.46775976 0.661124977 0.76967355 0.93692007 0 0 0 1
## 415 -0.63572819 -0.737948060 -0.38278663 -0.27818698 0 1 0 1
## 416 -1.25511179 -1.319221404 -1.30201082 -1.26470953 0 1 0 1
## 417 -1.54905655 -1.438069114 -1.59012587 -1.70984776 1 0 0 1
## 418 0.80250152 0.258211836 0.31692134 0.47975108 0 0 0 1
## 419 -1.60154668 -1.448873451 -1.65872469 -1.63766318 1 0 0 1
## 420 -1.16062955 -1.347105790 -1.10993413 -1.22861724 0 1 0 1
## 421 0.83399560 0.960493758 0.89315143 0.93692007 0 0 0 1
## 422 -1.60154668 -1.448873451 -1.63128516 -1.67375547 1 0 0 1
## 423 0.57154492 0.560733279 0.79711308 0.74442787 0 0 0 1
## 424 -0.95066901 -0.930265263 -0.83553885 -0.69926368 1 0 1 0
## 425 -1.24461376 -1.308417067 -1.35688988 -1.87827844 0 1 0 1
## 426 0.63453308 0.463494244 0.63247591 0.61208948 0 0 0 1
## 427 0.59254098 0.441885569 0.64619568 0.76848939 0 0 0 1
## 428 0.79200349 0.852450385 0.87943166 0.86473550 0 0 0 1
## 429 -1.58055063 -1.459677789 -1.65872469 -1.68578623 0 0 0 1
## 430 0.50855676 0.590985424 0.23460275 0.45568956 0 0 0 1
## 431 -1.19212363 -1.276004055 -1.21969224 -1.22861724 0 1 1 0
## 432 -1.60154668 -1.394851765 -1.65872469 -1.72187852 1 0 0 1
## 433 0.68702322 0.668776652 0.68899769 0.85270473 1 0 0 1
## 434 0.62403506 0.258211836 0.38552016 0.33538193 0 0 0 1
## 435 0.80250152 0.722798338 0.63247591 1.00910465 0 0 0 1
## 436 0.86548968 1.165776166 0.89315143 1.20159686 0 0 1 0
## 437 0.58204295 0.269016173 0.68735497 0.69630482 0 0 0 1
## 438 0.54005084 0.625559303 0.68735497 0.69630482 0 0 1 0
## 439 -1.28660587 -1.308417067 -1.17853295 -1.27674029 0 1 1 0
## 440 0.62403506 0.409472558 0.97547001 0.49178185 0 0 1 0
## 441 0.97046995 1.079341468 1.04406883 0.93692007 0 0 0 1
## 442 -0.66722227 -0.498091772 -0.24558899 0.43162803 0 1 1 0
## 443 -0.82469268 -0.876243577 -0.61602262 -0.63910986 1 0 1 0
## 444 0.87598771 0.863254723 0.89315143 0.56396642 0 0 0 1
## 445 -0.49925384 -0.390048400 -0.24558899 -0.63910986 0 1 1 0
## 446 0.76050941 0.982102432 0.98918978 0.75645863 0 0 0 1
## 447 -1.21311968 -1.286808392 -1.30201082 -1.15643267 0 1 1 0
## 448 -1.29710390 -1.297612730 -1.28829106 -1.16846343 0 1 0 1
## 449 -1.55955458 -1.448873451 -1.61756540 -1.67375547 1 0 1 0
## 450 0.57154492 0.625559303 0.65991544 0.80458168 0 0 0 1
## 451 -1.61204471 -1.427264777 -1.61756540 -1.61360166 1 0 1 0
## 452 0.49805873 0.171777138 0.50899803 0.57599719 0 0 0 1
## 453 0.58204295 0.809233036 0.50899803 -1.79406310 0 0 0 1
## 454 -1.22361771 -1.308417067 -1.27457130 -1.14440190 0 1 1 0
## 455 0.73951336 0.690385326 0.59131662 0.35944346 0 0 0 1
## 456 0.88648573 1.241406527 1.48310128 1.04519694 0 0 0 1
## 457 0.78150546 0.603950628 0.65991544 0.45568956 0 0 0 1
## 458 -1.22361771 -1.232786706 -1.27457130 -1.24064801 0 1 1 0
## 459 -0.64622622 -0.573722133 -0.30046805 -0.14584858 0 1 1 0
## 460 0.69752125 0.582341954 0.72851426 0.67224329 0 0 1 0
## 461 -1.25511179 -1.330025742 -1.24713177 -1.31283258 0 1 1 0
## 462 0.40357649 0.420276895 0.60503638 0.39553574 0 0 0 1
## 463 0.91797982 0.722798338 0.97547001 0.96098160 0 0 0 1
## 464 -1.27610784 -1.330025742 -1.26085153 -1.38501716 0 1 0 1
## 465 0.62403506 0.593146291 0.74223402 0.57599719 0 0 0 1
## 466 0.56104690 0.279820510 0.35808063 0.25116659 0 0 0 1
## 467 0.55054887 0.528320267 0.53643756 0.61208948 0 0 0 1
## 468 0.81299955 1.327841225 0.83827237 0.88879702 0 0 1 0
## 469 0.57154492 0.852450385 0.57759685 0.75645863 0 0 0 1
## 470 0.65552914 0.290624848 0.85199214 0.85270473 0 0 0 1
## 471 0.56104690 0.463494244 0.57759685 0.70833558 0 0 0 1
## 472 0.50855676 0.063733765 0.50899803 0.40756651 0 0 0 1
## 473 0.75001138 0.485102918 0.70107473 0.74442787 0 0 0 1
## 474 0.99146601 1.489906284 1.04406883 1.00910465 0 0 1 0
## 475 -1.27610784 -1.308417067 -1.35688988 -1.33689411 0 1 0 1
## 476 0.99146601 1.760014715 1.20870600 1.75501195 0 0 1 0
## 477 -1.27610784 -1.265199718 -1.19225271 -1.16846343 0 1 1 0
## 478 0.60303900 0.323037860 0.44039921 0.37147422 0 0 0 1
## 479 0.78150546 1.489906284 1.03034907 1.24971991 0 0 0 1
## 480 0.92847784 1.176580503 1.12638742 0.87676626 0 0 1 0
## 481 0.62403506 0.536963737 0.57759685 0.56396642 0 0 0 1
## 482 0.83399560 0.960493758 1.08522813 0.73239710 0 0 0 1
## 483 0.66602717 0.506711593 0.82455261 0.74442787 0 0 0 1
## 484 0.69752125 1.252210864 0.83827237 0.56396642 0 0 0 1
## 485 0.92847784 0.809233036 0.81083284 0.79255092 0 0 0 1
## 486 -1.16062955 -1.286808392 -1.30887071 -1.16846343 0 1 1 0
## 487 0.64503111 0.517515930 0.49527827 0.45568956 0 0 1 0
## 488 -1.38108812 -1.330025742 -1.34317012 -1.24064801 1 0 0 1
## 489 0.78150546 0.755211350 0.65991544 0.57599719 0 0 0 1
## 490 0.92847784 -1.059917310 0.87943166 0.76247401 0 0 1 0
## 491 0.37208241 0.009712079 0.49527827 0.49178185 0 0 0 1
## 492 0.82349757 0.949689421 1.04406883 0.78052016 0 0 0 1
## 493 -1.47557036 -1.433747379 -1.61756540 -1.66172471 1 0 1 0
## 494 0.59254098 0.299268318 0.35808063 0.02258210 0 0 1 0
## 495 -1.53855852 -1.459677789 -1.61756540 -1.60758627 1 0 0 1
## 496 0.63453308 0.809233036 0.45411898 0.76247401 0 0 0 1
## 497 0.87598771 0.820037374 0.74223402 0.52185875 0 0 0 1
## 498 0.87598771 1.705993029 1.12638742 1.03918156 0 0 0 1
## 499 0.43507057 0.366255209 0.24832252 0.37748960 0 0 0 1
## 500 -1.26560982 -1.351634416 -1.38432941 -1.27674029 0 1 0 1
## 501 0.88648573 0.688224459 0.75595379 0.94895084 0 0 0 1
## 502 0.69752125 0.915115541 1.04406883 1.03316618 0 0 0 1
## 503 -1.62254274 -1.459677789 -1.60384563 -1.67375547 1 0 0 1
## 504 0.78150546 0.528320267 0.85199214 0.58802795 0 0 0 1
## 505 0.66602717 0.441885569 0.31692134 0.46772032 0 0 0 1
## 506 0.63453308 0.571537617 0.68735497 0.63615100 0 0 0 1
## 507 0.16212187 0.614754966 0.71479450 0.62412024 0 0 1 0
## 508 0.58204295 0.377059546 0.59131662 0.60005871 0 0 0 1
## 509 -1.63304077 -1.470482126 -1.48036776 -1.61360166 1 0 0 1
## 510 0.47706268 0.031320753 0.46783874 0.41959727 0 0 0 1
## 511 -0.49925384 -1.543951619 -0.34162734 0.10679744 0 1 1 0
## 512 0.82349757 0.971298095 1.16754671 1.11738152 0 0 0 1
## 513 -1.30760193 -1.286808392 -1.20597248 -1.19252495 0 1 1 0
## 514 0.44556860 0.549928942 0.76967355 0.45568956 0 0 1 0
## 515 0.67652519 0.495907256 0.70107473 0.45568956 0 0 0 1
## 516 -1.33909601 -1.286808392 -1.32945035 -1.32486335 0 1 1 0
## 517 0.85499165 0.949689421 0.89315143 1.05722770 0 0 0 1
## 518 -1.25511179 -1.276004055 -1.19225271 -1.36095563 0 1 1 0
## 519 -1.31809995 -1.286808392 -1.23341200 -1.27674029 0 1 1 0
## 520 -1.62254274 -1.470482126 -1.64500493 -1.69781700 1 0 0 1
## 521 -1.79051117 -0.973482612 -0.72578073 -0.56692529 0 1 1 0
## 522 0.80250152 0.895667734 0.92059096 0.93692007 0 0 0 1
## 523 -1.31809995 -1.347105790 -1.35688988 -1.27674029 0 1 0 1
## 524 -0.89817887 -0.908656588 -0.73950050 -0.47067918 1 0 0 1
## 525 0.94947390 0.844699836 0.71479450 0.70833558 0 0 1 0
## 526 0.49805873 0.387863883 0.38552016 0.61208948 0 0 0 1
## 527 -1.61204471 -1.481286463 -1.60384563 -1.66172471 1 0 0 1
## 528 0.61353703 0.269016173 0.63247591 0.67224329 0 0 0 1
## 529 1.01246206 0.820037374 0.82455261 0.96098160 0 0 0 1
## 530 -0.45726173 -0.444070086 -0.14955064 -0.14584858 0 1 0 1
## 531 0.76050941 0.387863883 0.64619568 0.84067397 0 0 0 1
## 532 0.58204295 0.474298581 0.70107473 0.53990490 0 0 0 1
## 533 -0.95066901 -0.962678275 -0.82181908 -0.78347902 1 0 0 1
## 534 0.79200349 0.755211350 0.98918978 1.04519694 0 0 0 1
## 535 -1.60154668 -1.470482126 -1.64500493 -1.64969394 1 0 0 1
## 536 0.99146601 0.755211350 0.92059096 1.00910465 0 1 0 1
## 537 0.55054887 0.106951114 0.46783874 0.41959727 0 0 0 1
## 538 0.99146601 0.928080746 0.67363520 0.50381261 0 1 0 1
## 539 1.14893641 0.755211350 1.04406883 0.97301236 0 1 1 0
## 540 0.55054887 0.755211350 0.39923992 0.67224329 0 0 0 1
## 541 0.80250152 0.971298095 0.75595379 1.06925847 0 0 0 1
## 542 -0.68821833 -0.649352494 -0.39650639 0.01055133 1 0 0 1
## 543 1.07545022 1.165776166 1.00290954 0.80458168 0 0 0 1
## 544 0.57154492 0.323037860 0.68735497 0.53990490 0 0 0 1
## 545 -1.52806050 -1.448873451 -1.49408752 -1.56547860 1 0 1 0
## 546 -1.18162560 -1.276004055 -1.17853295 -1.15643267 0 1 1 0
## 547 0.57154492 0.398668220 0.64619568 0.63615100 0 0 1 0
## 548 0.97046995 0.982102432 0.96175025 0.90082778 0 0 1 0
## 549 0.81299955 1.360254237 0.83827237 1.21362762 0 0 1 0
## 550 0.51905479 0.549928942 0.38552016 0.58802795 0 0 0 1
## 551 0.93897587 0.798428699 0.87943166 0.80458168 0 0 0 1
## 552 0.68702322 0.668776652 0.59131662 0.76848939 0 0 0 1
## 553 0.78150546 0.787624362 0.79711308 0.70833558 0 0 0 1
## 554 0.71851730 1.425080260 1.09894789 1.17753533 0 0 0 1
## 555 0.78150546 0.603950628 0.52271780 0.56396642 0 0 0 1
## 556 0.68702322 0.323037860 0.71479450 0.52787414 0 0 0 1
## 557 -1.27610784 -1.286808392 -1.28829106 -1.34892487 0 1 1 0
## 558 0.58204295 0.290624848 0.24832252 0.19101278 0 0 0 1
## 559 0.42457254 0.312233522 0.63247591 0.44365880 0 0 0 1
## 560 0.64503111 0.301429185 0.44039921 0.45568956 0 0 0 1
## 561 0.48756071 0.387863883 0.49527827 0.53990490 0 0 0 1
## 562 -1.58055063 -1.438069114 -1.60384563 -1.61360166 1 0 1 0
## 563 -1.68553090 -1.448873451 -1.71360375 -1.61360166 1 0 1 0
## 564 0.88648573 0.982102432 0.75595379 1.08128923 0 0 0 1
## 565 -1.62254274 -1.438069114 -1.56268634 -1.58954013 1 0 1 0
## 566 0.75001138 0.690385326 0.83827237 0.86473550 0 0 0 1
## 567 0.98096798 1.252210864 1.12638742 0.90082778 0 0 0 1
## 568 -1.26560982 -1.232786706 -1.20597248 -1.42110945 0 1 1 0
## 569 -1.25511179 -1.232786706 -1.13737365 -1.18049419 0 1 1 0
## 570 -1.53855852 -1.448873451 -1.61756540 -1.62563242 1 0 1 0
## 571 0.72901533 0.366255209 0.60503638 0.63615100 0 0 0 1
## 572 0.64503111 0.323037860 0.39923992 0.49178185 0 0 0 1
## 573 0.88648573 0.906472072 1.04406883 0.97301236 0 0 0 1
## 574 -1.59104866 -1.470482126 -1.69988398 -1.74594005 1 0 0 1
## 575 -1.58055063 -1.459677789 -1.56268634 -1.66172471 1 0 1 0
## 576 0.49805873 0.312233522 0.44039921 0.37147422 0 0 0 1
## 577 -0.52024989 -0.508896110 -0.41022616 0.02258210 0 1 1 0
## 578 0.91797982 1.165776166 1.00290954 0.97301236 0 0 0 1
## 579 0.62403506 0.387863883 0.70107473 0.58802795 0 0 0 1
## 580 -1.57005260 -1.405656102 -1.60384563 -1.62563242 1 0 1 0
## 581 0.60303900 0.441885569 0.59131662 0.32335117 0 0 0 1
## 582 0.60303900 0.474298581 0.83827237 0.69630482 0 0 0 1
## 583 -1.52806050 -1.427264777 -1.42548870 -0.99462762 1 0 1 0
## 584 0.60303900 1.079341468 0.64619568 0.52787414 0 0 1 0
## 585 0.40357649 0.409472558 0.57759685 0.69630482 0 0 0 1
## 586 0.82349757 1.122558817 0.96175025 0.66021253 0 0 0 1
## 587 -1.58055063 -1.459677789 -1.59012587 -1.63766318 1 0 0 1
## 588 -0.57274003 -0.573722133 -0.35534710 -0.01351019 0 1 1 0
## 589 0.64503111 0.593146291 0.70107473 0.75645863 0 0 0 1
## 590 0.50855676 0.690385326 0.72851426 0.61208948 0 0 0 1
## 591 0.72901533 0.884863397 0.93431072 0.57599719 0 0 0 1
## 592 0.78150546 0.917276409 0.79711308 1.14144304 0 0 0 1
## 593 0.70801927 0.614754966 0.81083284 0.90082778 0 0 1 0
## 594 0.51905479 0.549928942 0.59131662 0.61208948 0 0 0 1
## 595 -1.20262166 -1.286808392 -1.34317012 -1.25267877 0 1 0 1
## 596 0.63453308 0.366255209 0.45411898 0.78052016 0 0 0 1
## 597 0.90748179 1.219797852 0.89315143 0.97301236 0 0 1 0
## 598 0.82349757 0.679580989 1.04406883 0.90082778 0 0 0 1
## 599 -0.97166506 -0.854634902 -0.76694002 -0.54286376 1 0 0 1
## 600 0.65552914 0.690385326 0.85199214 0.68427405 0 0 1 0
## 601 0.56104690 0.485102918 0.57759685 0.35944346 0 0 0 1
## 602 0.65552914 0.690385326 0.85199214 0.66021253 0 0 1 0
## 603 -0.56224200 0.539124605 0.85199214 0.72036634 0 0 1 0
## 604 -1.58055063 -1.448873451 -1.53524681 -1.57750937 1 0 0 1
## 605 0.66602717 0.495907256 0.93431072 0.84067397 0 0 1 0
## 606 0.67652519 0.679580989 0.76967355 0.97301236 0 0 0 1
## 607 0.67652519 0.593146291 0.42667945 0.21507430 0 0 1 0
## 608 0.81299955 0.625559303 0.81083284 0.86473550 0 0 0 1
## 609 0.77100744 0.787624362 0.72851426 0.82864321 0 0 1 0
## 610 0.83399560 0.949689421 0.92059096 0.39553574 0 0 0 1
## 611 -1.13963349 -1.265199718 -1.20597248 -1.31283258 0 1 0 1
## 612 0.54005084 0.420276895 0.41295969 -0.13381782 0 0 0 1
## 613 0.55054887 0.290624848 0.68735497 0.21507430 0 0 1 0
## 614 0.64503111 0.766015687 0.48155851 0.51584337 0 0 0 1
## 615 0.61353703 0.387863883 0.74223402 0.55193566 0 0 0 1
## 616 0.72901533 0.917276409 0.75595379 0.68427405 0 0 1 0
## 617 0.49805873 0.506711593 0.44039921 0.76848939 0 0 0 1
## 618 -1.59104866 -1.459677789 -1.42548870 -1.31993010 1 0 0 1
## 619 -1.22361771 -1.286808392 -1.30201082 -1.22861724 0 1 1 0
## 620 0.65552914 0.485102918 0.60503638 0.57599719 0 0 0 1
## 621 -1.21311968 -1.308417067 -1.32945035 -1.32486335 0 1 0 1
## 622 0.93897587 0.863254723 1.02348919 1.75501195 0 0 0 1
## 623 -1.27610784 -1.351634416 -1.34317012 -1.27674029 0 1 0 1
## 624 -1.31809995 -1.286808392 -1.28829106 -1.20455572 0 1 0 1
## 625 -1.26560982 -1.297612730 -1.19225271 -1.25267877 0 1 0 1
## 626 -1.62254274 -1.438069114 -1.57640611 -1.68578623 1 0 0 1
## 627 -1.54905655 -1.459677789 -1.61756540 -1.66172471 1 0 0 1
## 628 -1.63304077 -1.459677789 -1.64500493 -1.73390928 1 0 0 1
## 629 0.80250152 0.679580989 1.29102459 1.12941228 0 0 0 1
## 630 -1.20262166 -1.308417067 -1.30201082 -1.25267877 0 1 0 1
## 631 0.83399560 0.744407013 0.76967355 0.90082778 0 0 0 1
## 632 0.78150546 0.917276409 0.79711308 0.93692007 0 0 0 1
## 633 -1.62254274 -1.448873451 -1.64500493 -1.60157089 1 0 0 1
## 634 -0.89817887 -0.876243577 -0.67090168 -0.19998702 1 0 1 0
## 635 -1.29710390 -1.297612730 -1.35688988 -1.89030920 0 1 0 1
## 636 -1.67503287 -1.470482126 -1.64500493 -1.67375547 1 0 0 1
## 637 -1.65403682 -1.459677789 -1.52152705 -1.69781700 1 0 0 1
## 638 -1.55955458 -1.416460440 -1.64500493 -1.66172471 1 0 0 1
## 639 -1.22361771 -1.330025742 -1.35688988 -1.28877106 0 1 0 1
## 640 0.04664357 -1.170121550 -0.65718191 -0.50677147 0 1 0 1
## 641 0.77100744 0.852450385 0.98918978 0.94895084 0 0 1 0
## 642 -0.92967295 -1.330025742 -0.64346215 -0.50677147 1 0 0 1
## 643 -0.89817887 -0.930265263 -0.78065979 -0.60301757 1 0 1 0
## 644 -1.22361771 -1.276004055 -1.34317012 -1.16846343 0 1 1 0
## 645 0.65552914 -1.157156345 0.49527827 0.66021253 0 0 0 1
## 646 -1.59104866 -1.438069114 -1.59012587 -1.68578623 1 0 0 1
## 647 0.72901533 0.679580989 0.78339332 0.67224329 0 0 1 0
## 648 0.56104690 0.431081232 0.59131662 0.62412024 0 0 0 1
## 649 0.65552914 0.560733279 0.92059096 0.80458168 0 0 0 1
## 650 0.60303900 0.528320267 0.50899803 0.52787414 0 0 0 1
## 651 1.08594825 0.560733279 1.01662931 0.75645863 0 0 1 0
## 652 1.03345811 0.960493758 0.63247591 0.47975108 0 0 0 1
## 653 -1.18162560 -1.265199718 -1.13737365 -1.32486335 0 1 1 0
## 654 -1.61204471 -1.459677789 -1.59012587 -1.70984776 1 0 1 0
## 655 -1.58055063 -1.459677789 -1.61756540 -1.70984776 1 0 0 1
## 656 -1.62254274 -1.459677789 -1.65872469 -1.70984776 1 0 1 0
## 657 -1.62254274 -1.427264777 -1.60384563 -1.61360166 1 0 0 1
## 658 0.92847784 0.863254723 0.90687119 0.91285855 0 0 0 1
## 659 -1.58055063 -1.438069114 -1.56268634 -1.68578623 1 0 0 1
## 660 -1.22361771 -1.286808392 -1.23341200 -1.28877106 0 1 1 0
## 661 -1.51756247 -1.459677789 -1.49408752 -1.62563242 1 0 0 1
## 662 -1.07664533 -1.254395381 -1.10993413 -1.20455572 0 1 1 0
## 663 -1.53855852 -1.438069114 -1.59012587 -1.61360166 1 0 1 0
## 664 0.66602717 1.435884597 0.76967355 0.90082778 0 0 0 1
## 665 0.95997192 1.003711107 1.14010718 1.27378143 0 0 0 1
## 666 0.63453308 0.614754966 1.05778860 0.84067397 0 0 0 1
## 667 0.67652519 0.722798338 0.02880629 0.67224329 0 0 0 1
## 668 -1.50706444 -1.405656102 -1.64500493 -1.61360166 1 0 1 0
## 669 0.97046995 1.338645562 0.90687119 0.90082778 0 0 0 1
## 670 -1.55955458 -1.438069114 -1.57640611 -1.73390928 1 0 1 0
## 671 0.61353703 0.668776652 0.64619568 0.73239710 0 0 1 0
## 672 0.63453308 0.301429185 0.59131662 0.84067397 0 0 0 1
## 673 -0.60423411 -0.606135145 -0.51998427 -0.12178706 0 1 0 1
## 674 0.57154492 0.160972801 0.44039921 0.26319735 0 0 0 1
## 675 -1.19212363 -1.286808392 -1.16481318 -1.24064801 0 1 1 0
## 676 0.49805873 0.204190150 0.52271780 0.25116659 0 0 0 1
## 677 -1.21311968 -1.276004055 -1.35688988 -1.40907869 0 1 1 0
## 678 0.59254098 2.721600732 0.60503638 0.60005871 0 0 0 1
## 679 0.65552914 0.409472558 0.38552016 0.57599719 0 0 1 0
## 680 -0.64622622 -0.552113459 -0.31418781 -0.16991011 0 1 1 0
## 681 0.47706268 0.431081232 0.61875615 0.66021253 0 0 0 1
## 682 0.77100744 1.068537131 0.65991544 0.64818176 0 0 1 0
## 683 0.92847784 1.144167491 1.04406883 0.91285855 0 0 1 0
## 684 -1.26560982 -1.297612730 -1.21969224 -1.26470953 0 1 0 1
## 685 -1.18162560 -1.252234513 -1.13737365 -1.16846343 0 1 0 1
## 686 -0.65672425 -0.498091772 -0.36906687 -0.31427927 0 1 1 0
## 687 -1.22361771 -1.265199718 -1.34317012 -1.24064801 0 1 0 1
## 688 -1.27610784 -1.308417067 -1.35688988 -1.30080182 0 1 0 1
## 689 -1.25511179 -1.221982369 -1.31573059 -1.34892487 0 1 1 0
## 690 -1.54905655 -1.459677789 -1.56268634 -1.57750937 1 0 0 1
## 691 0.83399560 0.863254723 0.55015733 0.63615100 0 0 1 0
## 692 0.55054887 0.657972315 0.81083284 0.78052016 0 0 0 1
## 693 -1.10813941 -1.232786706 -1.32945035 -1.19252495 0 1 0 1
## 694 0.89698376 0.420276895 0.55015733 0.46772032 0 0 0 1
## 695 0.41407452 0.031320753 0.12484464 -0.02554096 0 0 0 1
## 696 0.64503111 0.701189664 0.52271780 0.78052016 0 0 1 0
## 697 -1.24461376 -1.319221404 -1.34317012 -1.26470953 0 1 0 1
## 698 -1.51756247 -1.459677789 -1.74104327 -1.64969394 1 0 0 1
## 699 -0.40477160 1.576340982 1.08522813 0.82864321 0 0 1 0
## 700 1.25391668 1.781623390 0.76967355 1.11738152 0 0 1 0
## 701 0.59254098 0.463494244 0.49527827 0.69630482 0 0 0 1
## 702 -0.58323806 -0.444070086 -0.24558899 -0.12178706 0 1 1 0
## 703 0.78150546 -1.146352008 0.46783874 0.49178185 0 0 0 1
## 704 0.45606662 0.225798824 0.57759685 0.70833558 0 0 0 1
## 705 0.81299955 0.982102432 0.98918978 0.98504313 0 0 0 1
## 706 0.90748179 1.046928456 1.20870600 1.12941228 0 0 0 1
## 707 0.48756071 0.387863883 0.68735497 0.66021253 0 0 0 1
## 708 -0.92967295 -0.951873937 -0.79437955 -0.80754054 1 0 0 1
## 709 0.45606662 0.269016173 0.78339332 0.58802795 0 0 1 0
## 710 -1.68553090 -1.448873451 -1.64500493 -1.58954013 1 0 0 1
## 711 -0.57274003 -0.681765506 -0.64346215 0.19101278 0 1 0 1
## 712 -1.63304077 -1.470482126 -1.57640611 -1.64969394 1 0 0 1
## 713 -1.57005260 -1.438069114 -1.43920846 -1.66172471 1 0 0 1
## 714 0.48756071 1.154971829 0.87943166 1.09331999 0 0 0 1
## 715 0.62403506 0.441885569 0.74223402 0.79255092 0 0 0 1
## 716 0.76050941 0.895667734 0.97547001 1.09331999 0 0 0 1
## 717 0.80250152 0.560733279 0.59131662 0.63615100 0 0 0 1
## 718 1.01246206 0.960493758 0.94803048 1.06925847 0 0 0 1
## 719 0.58204295 0.657972315 0.70107473 0.91285855 0 0 0 1
## 720 -0.63572819 0.409472558 -0.28674828 2.11593483 0 1 1 0
## 721 0.79200349 0.052929428 0.34436087 0.28725888 0 0 0 1
## 722 -1.31809995 -1.276004055 -1.31573059 -1.32486335 0 1 0 1
## 723 0.72901533 0.982102432 0.82455261 0.81661244 0 0 0 1
## 724 -1.57005260 -1.427264777 -1.61756540 -1.60157089 1 0 0 1
## 725 -1.24461376 -1.308417067 -1.31573059 -1.24064801 0 1 1 0
## 726 0.57154492 0.323037860 0.61875615 0.81661244 0 0 0 1
## 727 -1.31809995 -1.297612730 -1.34317012 -1.22861724 0 1 0 1
## 728 0.88648573 1.176580503 1.07150836 1.05722770 0 0 0 1
## 729 -1.61204471 -1.448873451 -1.69988398 -1.69781700 1 0 0 1
## 730 -1.27610784 -1.330025742 -1.27457130 -1.28877106 0 1 0 1
## 731 0.83399560 0.830841711 1.11266765 1.10535075 0 0 0 1
## 732 0.91797982 0.841646048 0.98918978 0.85270473 0 0 0 1
## 733 0.73951336 0.398668220 0.83827237 0.62412024 0 0 0 1
## 734 -1.28660587 -1.254395381 -1.19225271 -1.24064801 0 1 1 0
## 735 -1.18162560 -1.276004055 -1.09621436 -1.26470953 0 1 1 0
## 736 -1.64353879 -1.470482126 -1.61756540 -1.64969394 1 0 1 0
## 737 -1.60154668 -1.448873451 -1.64500493 -1.62563242 1 0 0 1
## 738 -1.30760193 -1.254395381 -1.28829106 -1.25267877 1 0 1 0
## 739 -1.57005260 -1.438069114 -1.57640611 -1.58954013 1 0 0 1
## 740 0.47706268 0.560733279 0.71479450 0.63615100 0 0 0 1
## 741 -0.58323806 -0.444070086 -0.28674828 3.52353409 0 1 1 0
## 742 -0.85618676 -0.843830565 -1.28829106 -0.39849461 1 0 1 0
## 743 0.64503111 0.582341954 0.86571190 0.68427405 0 0 0 1
## 744 0.47706268 0.301429185 0.34436087 0.27522812 0 0 0 1
## 745 0.62403506 0.506711593 0.57759685 0.87676626 0 0 0 1
## 746 -1.28660587 -1.276004055 -1.35688988 -1.31283258 0 1 0 1
## 747 -1.25511179 -1.286808392 -1.28829106 -1.15643267 0 1 0 1
## 748 -1.64353879 -1.438069114 -1.64500493 -1.70984776 1 0 0 1
## 749 -1.29710390 -1.254395381 -1.37060964 -1.32486335 0 1 0 1
## 750 0.89698376 1.036124119 0.87943166 1.21362762 0 0 0 1
## 751 -1.23411574 -1.265199718 -1.26085153 -1.20455572 0 1 0 1
## 752 0.95997192 1.090145805 0.78339332 1.02113541 0 0 0 1
## 753 -1.61204471 -1.438069114 -1.64500493 -1.52938631 1 0 0 1
## 754 -1.53855852 -0.282005027 -0.69834120 -0.19397164 0 1 1 0
## 755 -1.54905655 -1.448873451 -1.54896658 -1.74594005 1 0 0 1
## 756 -1.54905655 -1.438069114 -1.52152705 -1.63766318 1 0 1 0
## 757 -0.97166506 -0.822221890 -0.80809932 -0.55489452 1 0 1 0
## 758 0.62403506 0.560733279 0.70107473 0.73239710 0 0 0 1
## 759 0.94947390 1.122558817 1.03034907 0.97301236 0 0 1 0
## 760 0.73951336 0.539124605 0.70107473 0.76848939 0 0 0 1
## 761 -1.63304077 -1.438069114 -1.63128516 -1.66172471 1 0 1 0
## 762 0.65552914 0.614754966 0.64619568 0.56396642 0 0 0 1
## 763 -1.28660587 -1.265199718 -1.30201082 -1.25267877 0 1 1 0
## 764 0.66602717 0.517515930 0.44039921 0.49178185 0 0 0 1
## 765 0.50855676 0.528320267 0.42667945 0.51584337 0 0 0 1
## 766 0.36158438 0.744407013 1.05778860 0.61208948 0 0 1 0
## 767 0.67652519 1.187384840 0.67363520 0.76848939 0 0 0 1
## 768 0.83399560 0.884863397 1.16754671 0.98504313 0 0 1 0
## 769 0.59254098 0.809233036 0.56387709 0.84067397 0 0 0 1
## 770 0.63453308 0.485102918 0.85199214 0.60005871 0 0 0 1
## 771 0.54005084 0.593146291 0.59131662 0.63615100 0 0 0 1
## 772 -0.89817887 -0.930265263 -0.79437955 -0.68723291 1 0 0 1
## 773 0.52955281 0.355450871 0.53643756 0.22710506 0 0 0 1
## 774 0.73951336 0.636363640 0.59131662 0.69630482 0 0 0 1
## 775 0.62403506 0.733602675 0.81083284 0.73239710 0 0 0 1
## 776 -1.22361771 -1.254395381 -1.34317012 -1.20455572 0 1 0 1
## 777 0.93897587 1.046928456 0.83827237 0.79255092 0 0 1 0
## 778 0.58204295 0.528320267 0.42667945 0.38350498 0 0 1 0
## 779 -1.28660587 -1.254395381 -1.31573059 -1.20455572 0 1 0 1
## 780 0.36158438 0.409472558 0.65991544 0.56396642 0 0 0 1
## 781 -1.28660587 -1.232786706 -1.43920846 -1.40907869 0 1 0 1
## 782 0.55054887 0.690385326 0.75595379 0.62412024 0 0 1 0
## 783 -1.37059009 -1.297612730 -1.34317012 -1.26470953 1 0 0 1
## 784 0.59254098 0.679580989 0.49527827 0.55193566 0 0 0 1
## 785 0.84449363 0.636363640 0.81083284 0.57599719 0 0 0 1
## 786 0.51905479 0.766015687 0.70107473 0.49178185 0 0 0 1
## 787 0.61353703 0.603950628 0.50899803 0.61208948 0 0 0 1
## 788 -0.65672425 -0.530504784 -0.31418781 -0.20600240 0 1 0 1
## 789 0.59254098 0.452689907 0.63247591 0.45568956 0 0 0 1
## 790 0.63453308 0.884863397 0.35808063 0.66021253 0 0 0 1
## 791 -1.57005260 -1.416460440 -1.63128516 -1.63766318 1 0 0 1
## 792 0.56104690 0.701189664 0.65991544 0.38350498 0 0 0 1
## 793 0.79200349 1.208993515 0.68735497 0.58802795 0 0 1 0
## 794 -1.28660587 -1.265199718 -1.32945035 -1.24064801 0 1 0 1
## 795 0.85499165 0.711994001 0.04252606 0.43162803 0 0 1 0
## 796 0.52955281 0.744407013 0.72851426 -0.50677147 0 0 0 1
## 797 0.72901533 1.360254237 1.16754671 0.97301236 0 0 1 0
## 798 0.88648573 0.874059060 0.79711308 0.88879702 0 0 0 1
## 799 -1.23411574 -1.265199718 -1.37060964 -1.21658648 0 1 0 1
## 800 0.51905479 0.431081232 0.56387709 0.76848939 0 0 1 0
## 801 -1.27610784 -1.297612730 -1.39804917 -1.34892487 0 1 0 1
## 802 -1.26560982 -1.286808392 -1.34317012 -1.15643267 0 1 0 1
## 803 -1.21311968 -1.308417067 -1.41176894 -1.28877106 0 1 0 1
## 804 0.71851730 1.057732793 0.93431072 0.87676626 0 0 0 1
## 805 -1.64353879 -1.427264777 -1.63128516 -1.69781700 1 0 0 1
## 806 -1.62254274 -1.448873451 -1.71360375 -1.64969394 1 0 0 1
## 807 -1.30760193 -1.254395381 -1.30201082 -1.25267877 0 1 0 1
## 808 -1.04515125 -1.005895624 -0.79437955 -0.57895605 1 0 0 1
## 809 -0.62523017 -0.562917796 -0.41022616 -0.23006392 0 1 0 1
## 810 -1.62254274 -1.470482126 -1.68616422 -1.67375547 1 0 0 1
## 811 0.84449363 0.917276409 0.71479450 -0.16991011 0 0 1 0
## 812 0.79200349 0.571537617 0.83827237 0.94895084 0 0 0 1
## 813 -1.63304077 -1.470482126 -1.78220257 -1.66172471 1 0 0 1
## 814 -1.39158614 -1.319221404 -1.24713177 -1.27674029 1 0 0 1
## 815 -1.67503287 -1.481286463 -1.65872469 -1.70984776 1 0 0 1
## 816 0.81299955 0.830841711 0.89315143 0.68427405 0 0 0 1
## 817 0.85499165 1.057732793 0.82455261 0.92488931 0 0 0 1
## 818 -1.64353879 -1.459677789 -1.76848280 -1.78203234 1 0 0 1
## 819 -0.63572819 -0.714178518 -0.43766569 -0.29021774 0 1 0 1
## 820 -1.24461376 -1.286808392 -1.61756540 -1.24064801 1 0 0 1
## 821 -1.02415519 -1.027504298 -0.78065979 -0.69926368 1 0 0 1
## 822 -1.25511179 -1.319221404 -1.26085153 -1.28877106 0 1 0 1
## 823 0.71851730 0.517515930 0.68735497 0.70833558 0 0 0 1
## 824 0.72901533 0.474298581 0.57759685 0.52787414 0 0 0 1
## 825 -1.41258220 -1.340830079 -1.42548870 -1.31283258 1 0 0 1
## 826 -0.95066901 -1.016699961 -0.79437955 -0.61504834 1 0 0 1
## 827 0.66602717 0.377059546 0.37180039 0.73239710 0 0 0 1
## 828 -1.20262166 -1.258717116 -1.38432941 -1.24064801 0 1 0 1
## 829 -1.62254274 -1.459677789 -1.53524681 -1.64969394 1 0 0 1
## 830 -0.89817887 -0.951873937 -0.83553885 -0.69926368 1 0 1 0
## 831 -1.64353879 -1.459677789 -1.63128516 -1.68578623 1 0 0 1
## 832 0.54005084 0.431081232 0.63247591 0.63615100 0 0 0 1
## 833 0.84449363 1.014515444 0.97547001 0.91285855 0 0 0 1
## 834 -1.66453485 -1.438069114 -1.61756540 -1.64969394 1 0 0 1
## 835 -1.30760193 -1.308417067 -1.41176894 -1.24064801 0 1 0 1
## 836 -1.30760193 -1.297612730 -1.32945035 -1.21658648 0 1 0 1
## 837 -1.54905655 -1.448873451 -1.59012587 -1.60157089 1 0 0 1
## 838 1.18043049 1.122558817 0.90687119 1.04519694 0 0 0 1
## 839 -0.66722227 -0.649352494 -0.31418781 0.38350498 0 1 1 0
## 840 -1.29710390 -1.286808392 -1.38432941 -1.32486335 0 1 1 0
## 841 -1.26560982 -1.243591043 -1.12365389 -1.34892487 0 1 1 0
## 842 -0.86668479 -0.941069600 -0.75322026 -0.47067918 1 0 1 0
## 843 0.50855676 0.820037374 0.59131662 0.35944346 0 0 1 0
## 844 0.57154492 0.409472558 0.49527827 0.62412024 0 0 0 1
## 845 0.88648573 0.776820025 0.89315143 0.50381261 0 0 0 1
## 846 0.62403506 0.333842197 0.49527827 0.40756651 0 0 0 1
## 847 0.86548968 0.938885083 0.79711308 0.98504313 0 0 0 1
## 848 0.72901533 0.582341954 0.74223402 0.75645863 0 0 0 1
## 849 -1.67503287 -1.448873451 -1.63128516 -1.68578623 1 0 0 1
## 850 -0.89817887 -0.941069600 -0.75322026 -0.66317139 1 0 0 1
## 851 -1.00315914 -0.941069600 -0.76694002 -0.62707910 1 0 0 1
## 852 -1.60154668 -1.438069114 -1.57640611 -1.62563242 1 0 0 1
## 853 0.63453308 0.193385812 0.52271780 0.57599719 0 0 0 1
## 854 0.46656465 0.355450871 0.55015733 0.57599719 0 0 0 1
## 855 0.59254098 0.517515930 0.34436087 0.45568956 0 0 1 0
## 856 0.88648573 1.111754480 1.08522813 0.99707389 0 0 0 1
## 857 -1.27610784 -1.211178032 -1.20597248 -1.28877106 0 1 1 0
## 858 0.57154492 0.128559789 0.24832252 0.31132040 0 0 0 1
## 859 -1.63304077 -1.459677789 -1.59012587 -1.68578623 1 0 0 1
## 860 0.91797982 1.252210864 0.85199214 0.91285855 0 0 0 1
## 861 0.62403506 0.517515930 0.44039921 0.67224329 0 0 0 1
## 862 0.60303900 0.409472558 0.81083284 0.87676626 0 0 0 1
## 863 0.72901533 1.295428213 0.63247591 0.47975108 0 0 0 1
## 864 -1.81150723 -1.297612730 -1.23341200 -1.36095563 0 1 0 1
## 865 -1.61204471 -1.448873451 -1.79592233 -1.66172471 1 0 0 1
## 866 0.80250152 1.036124119 0.93431072 0.92488931 0 0 0 1
## 867 0.59254098 0.312233522 0.39923992 0.35944346 0 0 0 1
## 868 0.62403506 0.171777138 0.44039921 0.33538193 0 0 0 1
## 869 1.04395614 1.111754480 1.04406883 1.05722770 0 0 0 1
## 870 -1.62254274 -1.459677789 -1.64500493 -1.62563242 1 0 1 0
## 871 0.67652519 0.506711593 0.71479450 0.76848939 0 0 1 0
## 872 1.00196403 0.971298095 0.86571190 0.90082778 0 0 1 0
## 873 -1.62254274 -1.459677789 -1.67244445 -1.54141708 1 0 1 0
## 874 -1.58055063 -1.448873451 -1.64500493 -1.58954013 1 0 0 1
## 875 0.81299955 1.068537131 0.89315143 0.90082778 0 0 0 1
## 876 0.57154492 0.539124605 0.38552016 0.57599719 0 0 0 1
## 877 -0.89817887 -0.887047914 -0.79437955 -0.37443308 1 0 1 0
## 878 0.51905479 0.269016173 0.37180039 0.44365880 0 0 0 1
## 879 0.58204295 0.841646048 0.53643756 0.38350498 0 0 0 1
## 880 0.88648573 1.760014715 0.98918978 1.03316618 0 0 0 1
## 881 0.69752125 0.798428699 0.42667945 0.76848939 0 0 1 0
## 882 0.58204295 0.744407013 0.48155851 0.47975108 0 0 1 0
## 883 0.57154492 0.809233036 0.49527827 0.60005871 0 0 1 0
## 884 -1.27610784 -1.265199718 -1.23341200 -1.25267877 0 1 1 0
## 885 0.33009030 0.474298581 0.48155851 0.55193566 0 0 1 0
## 886 0.49805873 0.377059546 0.37180039 0.84440031 0 0 0 1
## 887 -1.26560982 -1.308417067 -1.38432941 -1.28877106 0 1 0 1
## 888 0.80250152 0.560733279 0.61875615 0.34741269 0 0 1 0
## 889 -1.00315914 -0.973482612 -0.86297837 -0.68723291 1 0 0 1
## 890 -1.28660587 -1.438069114 -1.20597248 -1.15643267 0 1 0 1
## 891 0.51905479 0.474298581 0.63247591 0.57599719 0 0 0 1
## 892 0.75001138 0.636363640 0.85199214 0.90082778 0 0 1 0
## 893 0.88648573 0.603950628 0.59131662 0.53990490 0 0 0 1
## 894 0.48756071 0.150168463 0.19344346 0.10679744 0 0 0 1
## 895 -1.23411574 -1.254395381 -1.31573059 -1.13237114 0 1 0 1
## 896 -1.31809995 -1.232786706 -1.24713177 -1.22861724 0 1 0 1
## 897 -1.24461376 -1.265199718 -1.23341200 -1.15643267 0 1 0 1
## 898 0.57154492 0.495907256 0.70107473 0.74442787 0 0 1 0
## 899 -1.21311968 -1.265199718 -1.23341200 -1.20455572 0 1 0 1
## 900 0.46656465 1.198189178 0.60503638 0.64818176 0 0 1 0
## 901 0.52955281 0.377059546 0.48155851 0.23913583 0 0 1 0
## 902 0.90748179 1.252210864 0.94803048 0.69630482 0 0 1 0
## 903 0.52955281 0.074538103 0.23460275 0.05867438 0 0 0 1
## 904 0.67652519 1.630362668 0.57759685 0.28725888 0 0 0 1
## 905 -1.31809995 -1.286808392 -1.24713177 -1.18049419 0 1 0 1
## 906 0.46656465 0.042125091 0.01508653 0.28725888 0 0 0 1
## 907 0.56104690 0.193385812 0.46783874 0.33538193 0 0 0 1
## 908 -1.22361771 1.122558817 0.94803048 0.82864321 0 0 1 0
We have prepared our dataset for the K-Means clustering study by following a series of steps:
With the cleaned and prepared dataset, we now proceed with the K-Means analysis.
To do this, we will conduct three tests using 2, 3, and 5 clusters.
This approach will allow us to evaluate how the data clusters under different scenarios and help determine the optimal number of clusters for our analysis.
set.seed(123)
dos_grupos <- 2
kmeans2_result <- kmeans(hawks_scaled, centers = dos_grupos)
tres_grupos <- 3
kmeans3_result <- kmeans(hawks_scaled, centers = tres_grupos)
cinco_grupos <- 5
kmeans5_result <- kmeans(hawks_scaled, centers = cinco_grupos)
hawks_limpio2$Cluster2 <- as.factor(kmeans2_result$cluster)
hawks_limpio2$Cluster3 <- as.factor(kmeans3_result$cluster)
hawks_limpio2$Cluster5 <- as.factor(kmeans5_result$cluster)
Now, we will visualize the clusters and draw conclusions based on the results.
ggplot(hawks_limpio2, aes(x = Wing, y = Weight, color = Cluster2)) +
geom_point() +
labs(title = "K-Means Clustering (2 Groups)",
x = "Wing Size (mm)",
y = "Weight (g)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Culmen, color = Cluster2)) +
geom_point() +
labs(title = "K-Means Clustering (2 Groups)",
x = "Wing Size (mm)",
y = "Beak Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Hallux, color = Cluster2)) +
geom_point() +
labs(title = "K-Means Clustering (2 Groups)",
x = "Wing Size (mm)",
y = "Spur Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Cluster2, fill = Cluster2)) +
geom_bar() +
labs(title = "Cluster Distribution (2 Groups)",
x = "Cluster",
y = "Count") +
theme_minimal()
Our 2-cluster option seems like a good choice, as the distribution appears well-defined, clearly showing two groups.
However, we will continue our analysis with 3 clusters to further evaluate the data.
ggplot(hawks_limpio2, aes(x = Wing, y = Weight, color = Cluster3)) +
geom_point() +
labs(title = "K-Means Clustering (3 Groups)",
x = "Wing Size (mm)",
y = "Weight (g)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Culmen, color = Cluster3)) +
geom_point() +
labs(title = "K-Means Clustering (3 Groups)",
x = "Wing Size (mm)",
y = "Beak Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Hallux, color = Cluster3)) +
geom_point() +
labs(title = "K-Means Clustering (3 Groups)",
x = "Wing Size (mm)",
y = "Spur Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Cluster3, fill = Cluster3)) +
geom_bar() +
labs(title = "Cluster Distribution (3 Groups)",
x = "Cluster",
y = "Count") +
theme_minimal()
Comparing with the 2-cluster model, the
3-cluster approach seems to make more
sense.
Additionally, considering that we have 3 species, this is likely the most logical reason to use 3 clusters.
However, as we are conducting multiple tests, we will continue to evaluate whether more clusters are a viable option.
Next, we test with 5 clusters to determine if further segmentation improves the analysis or if it becomes less meaningful.
ggplot(hawks_limpio2, aes(x = Wing, y = Weight, color = Cluster5)) +
geom_point() +
labs(title = "K-Means Clustering (5 Groups)",
x = "Wing Size (mm)",
y = "Weight (g)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Culmen, color = Cluster5)) +
geom_point() +
labs(title = "K-Means Clustering (5 Groups)",
x = "Wing Size (mm)",
y = "Beak Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Wing, y = Hallux, color = Cluster5)) +
geom_point() +
labs(title = "K-Means Clustering (5 Groups)",
x = "Wing Size (mm)",
y = "Spur Size (mm)") +
theme_minimal()
ggplot(hawks_limpio2, aes(x = Cluster5, fill = Cluster5)) +
geom_bar() +
labs(title = "Cluster Distribution (5 Groups)",
x = "Cluster",
y = "Count") +
theme_minimal()
We clearly observe that 5 clusters is too many.
Although there is no exact definition of the optimal number of clusters to distinguish significant differences among the selected variables, we will apply several methods taught in the Multivariate Analysis course from previous semesters.
These methods include:
- Elbow Method
- Silhouette Method
- Gap Statistic
From our observations, the optimal number of clusters is between 2 and 3, but the best choice is 3, as we have three species.
dfnumeric <- hawks_limpio2 %>%
select(Wing, Weight, Culmen, Hallux, Sex_M, Sex_F, Age_A, Age_I)
# Elbow Method
wss <- sapply(1:10, function(k) {
kmeans(dfnumeric, k, nstart = 10)$tot.withinss
})
plot(1:10, wss, type = "b", pch = 19, frame = FALSE,
xlab = "Number of Clusters K", ylab = "Total Within-Cluster Sum of Squares")
# Silhouette Method
avg_sil <- sapply(2:10, function(k) {
km <- kmeans(dfnumeric, centers = k, nstart = 10)
ss <- silhouette(km$cluster, dist(dfnumeric))
mean(ss[, 3])
})
plot(2:10, avg_sil, type = "b", pch = 19, frame = FALSE,
xlab = "Number of Clusters K", ylab = "Average Silhouette Width")
# Gap Statistic Method
gap_stat <- clusGap(dfnumeric, FUN = kmeans, nstart = 25, K.max = 10, B = 50)
## Warning: did not converge in 10 iterations
fviz_gap_stat(gap_stat)
Finally, we create a hierarchical clustering plot using
the selected number of clusters: 3.
dj <- dist(dfnumeric)
cc <- hclust(dj, method = "complete")
plot(cc, main = "Hierarchical Clustering of Birds")
rect.hclust(cc, k = 3, border = "red")
## Final Conclusions
The measurements of wing length and beak size allow for clear species separation, whereas weight does not.
When analyzing the weight variable, we observe that observations overlap, making it less effective for clustering.
As noted in our initial exploratory analysis, we have more juvenile hawks compared to adults, which may be a key factor influencing the cluster distribution.
The number of species (3) serves as a key indicator for selecting 3 clusters.
However, much of our analysis also suggests that 2 clusters would not be an incorrect choice.
After thoroughly analyzing the data and obtaining strong results, we conclude that the lack of clear separation in the dataset implies that K-Means may not be the most suitable clustering method for this dataset.
Before proceeding, we need to understand both clustering algorithms.
We found the following information:
We chose MinPts = 10, based on the example exercise and the following reference:
How to Determine Epsilon and MinPts for DBSCAN
We will use the normalized dataset, excluding dummy variables.
After the initial analysis, we will assess whether repeating the experiment with dummy variables is necessary.
hawks_scaled2 <- hawks_scaled %>%
select(Wing, Weight, Culmen, Hallux)
hawks_scaled2
## Wing Weight Culmen Hallux
## 1 0.72901533 0.323037860 0.53643756 0.58802795
## 2 0.63453308 0.344646534 0.68899769 0.84440031
## 3 0.68702322 0.474298581 0.67363520 0.73239710
## 4 -0.53074792 -0.649352494 -0.42394592 -0.20600240
## 5 -1.16062955 -1.297612730 -1.27457130 -1.31283258
## 6 1.01246206 0.690385326 0.92059096 0.84067397
## 7 0.57154492 0.409472558 0.48155851 0.58802795
## 8 0.62403506 0.182581475 0.74223402 0.57599719
## 9 1.01246206 0.949689421 1.03034907 0.73239710
## 10 0.93897587 0.755211350 0.57759685 0.60005871
## 11 0.81299955 0.517515930 0.61875615 0.67224329
## 12 0.58204295 0.517515930 0.49527827 0.53990490
## 13 0.78150546 0.755211350 0.97547001 0.68427405
## 14 0.81299955 0.844699836 0.87943166 0.64818176
## 15 1.05445417 0.863254723 0.64619568 1.05722770
## 16 1.26441471 1.338645562 1.19498624 1.05722770
## 17 1.07545022 0.820037374 0.72851426 0.69630482
## 18 0.68702322 0.387863883 0.97547001 0.44365880
## 19 0.65552914 0.301429185 0.53643756 0.35944346
## 20 0.84449363 0.517515930 0.30320157 0.20304354
## 21 0.87598771 0.647167977 0.63247591 0.72036634
## 22 1.05445417 0.906472072 0.96175025 0.76848939
## 23 1.04395614 -1.446712584 0.42667945 0.66021253
## 24 0.80250152 1.208993515 0.71479450 0.61208948
## 25 0.67652519 0.474298581 0.57759685 0.57599719
## 26 -1.49656641 -1.448873451 -1.42396428 -1.31993010
## 27 0.87598771 0.711994001 0.60503638 0.87676626
## 28 0.89698376 0.906472072 0.93431072 0.76848939
## 29 -1.16062955 -1.276004055 -1.38432941 -1.22861724
## 30 1.16993247 1.554732307 1.14010718 0.86473550
## 31 0.83399560 0.582341954 0.72851426 0.74442787
## 32 0.48756071 0.106951114 0.42667945 0.32335117
## 33 0.84449363 0.560733279 0.57759685 0.53990490
## 34 0.79200349 1.144167491 0.50899803 0.86473550
## 35 1.02296009 1.576340982 0.64619568 0.73239710
## 36 0.58204295 0.668776652 0.48155851 0.23913583
## 37 0.72901533 1.187384840 0.75595379 0.58802795
## 38 0.65552914 1.554732307 0.49527827 0.73239710
## 39 1.05445417 1.576340982 1.00290954 0.67224329
## 40 -1.28660587 -1.448873451 -1.71360375 -1.31993010
## 41 -1.51756247 -1.474803861 -1.65872469 -1.64969394
## 42 -0.86668479 -0.964839142 -0.79437955 -0.71129444
## 43 0.71851730 0.625559303 0.59131662 0.72036634
## 44 0.69752125 0.798428699 0.45411898 0.50381261
## 45 0.78150546 0.560733279 0.79711308 0.61208948
## 46 0.78150546 0.495907256 0.45411898 0.37147422
## 47 0.81299955 0.603950628 0.94803048 0.55193566
## 48 0.65552914 0.582341954 0.60503638 0.72036634
## 49 0.86548968 0.733602675 0.64619568 0.68427405
## 50 1.01246206 1.144167491 0.83827237 0.76247401
## 51 0.88648573 0.452689907 0.53643756 0.49178185
## 52 1.11744233 0.755211350 0.63247591 0.37147422
## 53 -1.19212363 -1.375403958 -1.28829106 -1.38501716
## 54 0.82349757 1.079341468 0.82455261 0.76848939
## 55 0.56104690 0.236603161 0.44039921 0.15492049
## 56 -0.66722227 -0.930265263 -0.79437955 -0.53083300
## 57 -0.79319860 -0.930265263 -0.78065979 -0.71129444
## 58 0.99146601 1.046928456 1.08522813 0.74442787
## 59 -0.78270057 1.187384840 0.93431072 1.34596601
## 60 0.97046995 1.187384840 1.12638742 0.98504313
## 61 -2.92219849 0.884863397 -0.21814946 0.17296663
## 62 0.67652519 -0.022700933 0.37180039 0.10679744
## 63 0.84449363 1.036124119 0.65991544 0.87676626
## 64 0.10963173 0.661124977 0.46783874 0.29928964
## 65 -1.65403682 -1.448873451 -1.50780728 -1.77000157
## 66 1.05445417 1.144167491 0.75595379 0.90082778
## 67 -0.46775976 -0.638548157 -0.49254474 -0.05561786
## 68 -1.46507233 -1.448873451 -1.64500493 -1.69781700
## 69 -1.27610784 -1.340003865 -1.42548870 -1.32486335
## 70 0.78150546 0.668776652 1.15382695 0.46772032
## 71 0.79200349 0.776820025 0.63247591 0.50381261
## 72 0.75001138 0.841646048 0.68735497 0.69630482
## 73 1.09644628 1.241406527 1.05778860 1.09331999
## 74 1.25391668 1.327841225 1.48310128 0.64818176
## 75 0.88648573 0.949689421 0.50899803 0.40756651
## 76 0.86548968 1.479101947 0.85199214 0.75645863
## 77 0.83399560 0.884863397 0.44039921 0.44365880
## 78 0.99146601 1.576340982 0.72851426 0.96098160
## 79 0.56104690 0.549928942 0.72851426 0.75645863
## 80 0.59254098 0.344646534 0.59131662 0.70833558
## 81 1.04395614 1.273819539 0.93431072 0.99707389
## 82 1.01246206 1.046928456 0.81083284 0.88879702
## 83 -1.16062955 -1.245751911 -1.26085153 -1.30080182
## 84 -1.17112757 -1.321382272 -1.27457130 -1.25267877
## 85 -1.52806050 -1.470482126 -1.68616422 -1.67375547
## 86 -0.86668479 -0.930265263 -0.54742380 -0.69926368
## 87 0.62403506 0.636363640 0.56387709 0.57599719
## 88 0.72901533 0.766015687 -0.30046805 0.74442787
## 89 1.11744233 1.230602190 0.94803048 0.81661244
## 90 0.79200349 0.603950628 0.65991544 0.84067397
## 91 0.99146601 0.949689421 0.78339332 0.84440031
## 92 0.72901533 0.452689907 0.68735497 0.31132040
## 93 0.68702322 0.495907256 0.50899803 0.55193566
## 94 1.05445417 1.338645562 0.86571190 0.73239710
## 95 0.94947390 1.090145805 0.98918978 1.02113541
## 96 1.07545022 0.884863397 1.14010718 0.84440031
## 97 1.01246206 0.949689421 1.03034907 1.03316618
## 98 -1.12913547 -1.301934465 -1.24713177 -1.25267877
## 99 -1.12913547 -1.349473549 -1.37060964 -1.24064801
## 100 -1.47557036 -1.431586512 -1.61756540 -1.64969394
## 101 -1.57005260 -1.461838656 -1.68616422 -1.67375547
## 102 0.93897587 0.679580989 0.81083284 0.56396642
## 103 -1.23411574 -1.258717116 -1.31573059 -0.99462762
## 104 -1.21311968 -1.332186609 -1.28829106 -1.30080182
## 105 0.67652519 0.085342440 0.56387709 0.41959727
## 106 0.68702322 0.290624848 0.83827237 0.46772032
## 107 -1.53855852 -1.461838656 -1.75476304 -1.80609386
## 108 -0.58323806 -0.757395867 -0.30046805 -0.15787935
## 109 1.18043049 1.014515444 1.00290954 1.14144304
## 110 0.88648573 0.474298581 0.70107473 0.74442787
## 111 -0.53074792 -0.876243577 -0.68462144 -0.32631003
## 112 -1.45457431 -1.468321258 -1.59012587 -1.67375547
## 113 0.68702322 0.517515930 0.55015733 0.78052016
## 114 0.91797982 0.452689907 0.61875615 0.53990490
## 115 0.69752125 0.193385812 0.64619568 0.45568956
## 116 0.69752125 0.431081232 0.55015733 0.45568956
## 117 0.87598771 0.452689907 0.78339332 0.56396642
## 118 0.67652519 0.463494244 0.28948181 0.45568956
## 119 0.62403506 0.474298581 0.52271780 0.64818176
## 120 1.09644628 0.949689421 0.82455261 0.88879702
## 121 -1.52806050 -1.472642993 -1.80964209 -1.70984776
## 122 -1.45457431 -1.455356054 -1.61756540 -1.67375547
## 123 0.62403506 0.474298581 0.85199214 0.51584337
## 124 0.83399560 0.863254723 0.86571190 0.78052016
## 125 -1.52806050 -1.463999524 -1.60384563 -1.68578623
## 126 0.94947390 1.252210864 1.19498624 0.81661244
## 127 1.03345811 1.295428213 1.03034907 0.93692007
## 128 -1.49656641 -1.442390849 -1.65872469 -0.69926368
## 129 -1.11863744 -1.338669211 -1.31573059 -1.36095563
## 130 -1.45457431 -1.446712584 -1.57640611 -1.57750937
## 131 0.76050941 0.463494244 0.70107473 0.55193566
## 132 -0.40477160 0.366255209 0.64619568 0.62412024
## 133 1.12794036 1.165776166 0.76967355 1.06925847
## 134 0.51905479 0.571537617 0.59131662 0.67224329
## 135 0.70801927 0.420276895 0.59131662 0.79255092
## 136 0.79200349 0.766015687 0.49527827 0.68427405
## 137 0.77100744 0.441885569 0.63247591 0.61208948
## 138 0.80250152 0.798428699 0.60503638 0.55193566
## 139 0.62403506 0.387863883 0.48155851 0.56396642
## 140 0.99146601 0.949689421 0.86571190 0.44365880
## 141 -1.43357825 -1.459677789 -1.50780728 -1.63766318
## 142 -1.50706444 -1.472642993 -1.69988398 -1.73390928
## 143 -1.19212363 -1.243591043 -1.28829106 -1.33689411
## 144 -1.48606839 -1.463999524 -1.68616422 -1.70984776
## 145 1.11744233 0.938885083 0.96175025 0.73239710
## 146 0.72901533 0.593146291 0.79711308 0.27522812
## 147 0.49805873 0.690385326 0.65991544 0.43162803
## 148 1.41138709 0.906472072 1.16754671 0.91285855
## 149 0.67652519 0.409472558 0.52271780 0.58802795
## 150 0.72901533 0.398668220 0.61875615 0.58802795
## 151 0.72901533 0.733602675 0.39923992 0.60005871
## 152 -1.51756247 -1.448873451 -0.36906687 -1.64969394
## 153 0.67652519 0.279820510 0.30320157 0.15492049
## 154 0.71851730 0.657972315 0.64619568 0.66021253
## 155 0.60303900 0.452689907 0.83827237 0.82864321
## 156 0.68702322 0.366255209 0.82455261 1.08128923
## 157 0.49805873 0.647167977 0.52271780 0.62412024
## 158 0.98096798 0.755211350 1.04406883 0.76848939
## 159 0.78150546 0.625559303 0.79711308 0.45568956
## 160 -1.17112757 -1.301934465 -1.32945035 -1.31283258
## 161 -1.24461376 -1.209017164 -1.41176894 -1.36095563
## 162 1.09644628 0.766015687 0.74223402 0.26319735
## 163 0.68702322 0.711994001 0.71479450 0.35944346
## 164 0.97046995 1.273819539 1.12638742 1.04519694
## 165 0.76050941 0.485102918 0.67363520 0.66021253
## 166 0.86548968 0.701189664 -0.09467158 0.74442787
## 167 -1.11863744 -1.241430176 -1.32945035 -1.27674029
## 168 -1.11863744 -1.284647525 -1.38432941 -1.21658648
## 169 0.82349757 0.657972315 0.50899803 0.53990490
## 170 -1.17112757 -1.276004055 -1.30201082 -1.20455572
## 171 -1.17112757 -1.310577934 -1.30201082 -1.31283258
## 172 -1.11863744 -1.323543139 -1.31573059 -1.30080182
## 173 0.82349757 0.798428699 0.68735497 0.47975108
## 174 1.05445417 1.014515444 0.83827237 0.79255092
## 175 1.35889695 1.500710621 1.08522813 1.12941228
## 176 -1.11863744 -1.299773597 -1.32945035 -1.28877106
## 177 0.76050941 0.722798338 0.67363520 0.44365880
## 178 0.85499165 0.517515930 0.72851426 0.74442787
## 179 0.71851730 0.657972315 0.61875615 0.63615100
## 180 0.66602717 0.625559303 0.83827237 0.68427405
## 181 0.81299955 0.528320267 0.79711308 0.70833558
## 182 0.73951336 0.711994001 0.57759685 0.60005871
## 183 0.85499165 0.517515930 0.44039921 0.64818176
## 184 0.69752125 0.495907256 0.61875615 0.58802795
## 185 0.73951336 0.452689907 0.49527827 0.60005871
## 186 1.06495220 1.014515444 0.94803048 0.86473550
## 187 0.91797982 1.273819539 0.83827237 0.94895084
## 188 -0.80369663 -1.269521453 -0.61602262 -0.72332520
## 189 0.89698376 1.371058574 1.00290954 0.84440031
## 190 0.64503111 0.614754966 0.71479450 0.46772032
## 191 1.22242260 1.943688449 0.72851426 0.92488931
## 192 0.78150546 1.036124119 0.60503638 0.63615100
## 193 0.68702322 0.560733279 0.48155851 0.56396642
## 194 0.91797982 0.582341954 0.68899769 0.56396642
## 195 -1.07664533 -1.254395381 -1.31573059 -1.16846343
## 196 -1.50706444 -1.438069114 -1.61756540 -1.73390928
## 197 0.78150546 0.690385326 0.60503638 0.43162803
## 198 -1.17112757 -1.254395381 -1.37060964 -1.36095563
## 199 0.73951336 0.603950628 0.90687119 0.50381261
## 200 0.90748179 0.733602675 0.59131662 0.57599719
## 201 -1.20262166 -1.219821501 -1.32945035 -1.40907869
## 202 -1.19212363 -1.243591043 -1.32945035 -1.25267877
## 203 0.61353703 0.517515930 0.42667945 0.58802795
## 204 0.44556860 0.236603161 0.33064110 0.41959727
## 205 0.57154492 0.625559303 0.34436087 0.55193566
## 206 0.78150546 0.323037860 0.53643756 0.57599719
## 207 0.86548968 0.917276409 0.60503638 0.55193566
## 208 0.46656465 0.258211836 0.57759685 0.38350498
## 209 0.41407452 0.279820510 0.48155851 0.45568956
## 210 0.62403506 0.733602675 0.05624582 0.75645863
## 211 -1.21311968 -1.319221404 -1.59012587 -1.44517097
## 212 -1.43357825 -1.438069114 -1.60384563 -1.67375547
## 213 -1.47557036 -1.451034319 -1.67244445 -1.50532479
## 214 -1.18162560 -1.308417067 -1.34317012 -1.30080182
## 215 -1.16062955 -1.448873451 -1.34317012 -1.52938631
## 216 -1.07664533 -1.394851765 -1.41176894 -1.30080182
## 217 0.98096798 0.711994001 0.98918978 0.88879702
## 218 -1.19212363 -1.347105790 -1.42396428 -1.31993010
## 219 -1.26560982 -1.330025742 -1.35688988 -1.27674029
## 220 1.04395614 1.111754480 1.05778860 0.79255092
## 221 -0.83519071 -0.822221890 -0.91785743 -0.57895605
## 222 0.49805873 0.323037860 0.68735497 0.60005871
## 223 0.68702322 0.549928942 0.49527827 0.67224329
## 224 0.36158438 0.366255209 0.57759685 0.46772032
## 225 0.86548968 1.014515444 0.92059096 0.67224329
## 226 1.01246206 0.841646048 0.82455261 0.93692007
## 227 -1.18162560 -1.340830079 -1.41176894 -1.36095563
## 228 -1.20262166 -1.384047428 -1.38432941 -1.30080182
## 229 1.00196403 1.014515444 0.68735497 0.90082778
## 230 0.60303900 0.344646534 0.35808063 0.26319735
## 231 -1.44407628 -1.470482126 -1.49408752 -1.57750937
## 232 1.04395614 1.014515444 0.52271780 0.72036634
## 233 0.70801927 0.560733279 0.46783874 0.55193566
## 234 -0.97166506 -0.476483098 -0.41022616 -0.47067918
## 235 0.78150546 1.036124119 0.64619568 0.81661244
## 236 0.78150546 0.493746388 0.48155851 0.55193566
## 237 0.51905479 0.755211350 0.64619568 0.67224329
## 238 0.30909425 0.495907256 0.63247591 0.58802795
## 239 -0.44676371 -0.519700447 -0.35534710 -0.06163324
## 240 0.88648573 0.582341954 0.81083284 0.82864321
## 241 0.67652519 0.820037374 0.82455261 0.70833558
## 242 0.15162384 0.495907256 0.56387709 0.60005871
## 243 0.99146601 1.273819539 1.57913963 0.40756651
## 244 -0.02684262 0.344646534 0.53643756 0.44365880
## 245 0.71851730 0.452689907 0.55015733 0.62412024
## 246 0.98096798 1.057732793 0.81083284 0.79255092
## 247 0.78150546 0.279820510 0.78339332 0.40756651
## 248 1.00196403 1.144167491 0.56387709 0.80458168
## 249 -0.59373608 -0.649352494 -0.71206097 -0.21803316
## 250 0.67652519 0.582341954 0.63247591 0.68427405
## 251 0.57154492 0.387863883 0.75595379 0.63615100
## 252 1.04395614 1.187384840 1.04406883 1.04519694
## 253 -1.05564928 -1.276004055 -1.05505507 -1.50532479
## 254 0.99146601 1.100950142 0.83827237 0.90082778
## 255 1.01246206 1.165776166 0.59131662 0.70833558
## 256 0.71851730 0.301429185 0.63247591 0.38350498
## 257 0.92847784 0.971298095 0.93431072 0.62412024
## 258 0.62403506 0.323037860 0.27576205 0.43162803
## 259 0.99146601 0.787624362 0.63247591 0.86473550
## 260 0.71851730 0.366255209 0.60503638 0.55193566
## 261 0.72901533 0.323037860 0.44039921 0.84067397
## 262 0.86548968 1.100950142 0.85199214 0.86473550
## 263 -0.76712255 -0.627743820 -0.56114356 0.82864321
## 264 1.14893641 0.971298095 0.75595379 0.93692007
## 265 0.89698376 0.495907256 0.67363520 0.33538193
## 266 0.75001138 0.755211350 0.68735497 3.00621129
## 267 0.63453308 0.333842197 0.57759685 0.67224329
## 268 -1.51756247 -1.470482126 -1.63128516 -1.60157089
## 269 1.09644628 1.100950142 0.78339332 0.79255092
## 270 0.72901533 0.463494244 0.78339332 0.67224329
## 271 0.93897587 1.252210864 0.89315143 0.88879702
## 272 0.36158438 -0.087526956 0.38552016 0.05867438
## 273 0.76050941 0.258211836 0.82455261 0.72036634
## 274 0.86548968 0.539124605 0.64619568 0.70833558
## 275 0.99146601 0.495907256 0.72851426 0.64818176
## 276 -1.19212363 -1.340830079 -1.38432941 -1.33689411
## 277 -1.17112757 -1.276004055 -1.41176894 -1.54141708
## 278 0.69752125 0.539124605 0.64619568 0.50381261
## 279 -2.14744409 1.230602190 0.69421485 0.80458168
## 280 0.84449363 1.144167491 0.75595379 0.63615100
## 281 0.49805873 0.528320267 0.50899803 0.58802795
## 282 0.46656465 0.279820510 1.19498624 0.43162803
## 283 0.78150546 0.495907256 0.59131662 0.52787414
## 284 -1.26560982 -1.340830079 -1.30201082 -1.27674029
## 285 0.78150546 0.603950628 0.41295969 0.87676626
## 286 0.67652519 0.387863883 0.42667945 0.45568956
## 287 -0.95066901 -0.908656588 -1.26085153 0.09476667
## 288 -0.71971241 -0.854634902 -0.67090168 -0.84363283
## 289 1.04395614 0.874059060 0.89315143 0.96098160
## 290 0.40357649 0.452689907 0.55015733 0.49178185
## 291 1.06495220 1.057732793 0.98918978 0.91285855
## 292 0.66602717 0.603950628 0.56387709 0.73239710
## 293 1.01246206 1.208993515 1.01662931 0.84067397
## 294 0.64503111 0.452689907 0.85199214 0.46772032
## 295 0.59254098 0.323037860 0.48155851 0.57599719
## 296 1.09644628 1.662775680 1.11266765 1.23768915
## 297 0.55054887 0.625559303 0.50899803 0.20304354
## 298 0.94947390 1.403471586 1.11266765 0.81661244
## 299 -0.95066901 -0.800613216 -0.93157719 -0.62707910
## 300 0.80250152 0.802750434 0.74223402 0.93692007
## 301 -1.30760193 -1.325704007 -1.34317012 -1.37298640
## 302 -1.62254274 -1.453195186 -1.57640611 -1.62563242
## 303 0.51905479 0.091825042 0.60503638 0.58802795
## 304 -1.67503287 -1.461838656 -1.63128516 -1.66172471
## 305 -1.30760193 -1.330025742 -0.72578073 -1.30080182
## 306 -1.23411574 -1.273843188 -1.27457130 -1.33689411
## 307 -1.63304077 -1.466160391 -1.64500493 -1.70984776
## 308 -1.59104866 -1.453195186 -1.60384563 -1.66172471
## 309 0.38258043 0.547768075 0.65991544 0.61208948
## 310 -0.53074792 -0.662317699 -0.35534710 -0.13381782
## 311 -1.60154668 -1.448873451 -1.56268634 -1.68578623
## 312 -1.28660587 -1.263038851 -1.23341200 -1.34892487
## 313 -1.31809995 -1.310577934 -1.35688988 -1.28877106
## 314 -1.58055063 -1.453195186 -1.60384563 -1.66172471
## 315 -1.61204471 -1.347105790 -1.42396428 -1.31993010
## 316 -1.23411574 -1.323543139 -1.32945035 -1.28877106
## 317 0.57154492 0.545607207 0.55015733 0.58802795
## 318 -0.89817887 -0.930265263 -0.72578073 0.63615100
## 319 -1.27610784 -1.312738802 -1.31573059 -0.62707910
## 320 -1.66453485 -1.466160391 -1.64500493 -1.26470953
## 321 -0.58323806 -0.476483098 -0.31418781 -1.68578623
## 322 0.64503111 0.753050483 0.49527827 -0.15787935
## 323 0.50855676 0.316555257 0.57759685 0.52787414
## 324 0.54005084 0.379220413 0.67363520 0.44365880
## 325 -0.86668479 -0.936747865 -0.83553885 0.80458168
## 326 0.21461200 -0.061596547 0.22088299 -0.77144825
## 327 -0.59373608 -0.716339385 -0.41022616 -1.20455572
## 328 -1.22361771 -1.260877983 -1.31573059 -0.12178706
## 329 -1.58055063 -1.466160391 -1.65872469 -1.27674029
## 330 0.57154492 0.699028796 0.75595379 -1.64969394
## 331 0.48756071 0.132881524 0.27576205 0.88879702
## 332 0.55054887 1.023158914 0.78822897 0.71025853
## 333 0.55054887 1.023158914 0.67363520 0.60005871
## 334 0.54005084 0.439724702 0.46783874 0.52787414
## 335 0.88648573 1.120397949 0.93431072 0.82864321
## 336 0.66602717 0.493746388 0.89315143 0.81661244
## 337 0.46656465 0.482942051 0.64619568 0.62412024
## 338 0.48756071 0.504550726 0.71479450 0.74442787
## 339 0.65552914 0.705511399 0.97547001 0.98504313
## 340 -1.20262166 -1.265199718 -1.19225271 -1.28877106
## 341 -1.28660587 -1.273843188 -1.23341200 -1.64969394
## 342 0.59254098 0.694707061 0.74223402 0.79255092
## 343 0.56104690 0.601789761 1.14010718 0.81661244
## 344 0.40357649 0.491585521 0.74223402 0.47975108
## 345 0.54005084 0.692546194 1.37334317 1.08128923
## 346 0.35108635 0.467815979 0.98918978 0.70833558
## 347 0.62403506 0.822198241 1.68889775 1.02113541
## 348 0.28809819 0.433242100 0.45411898 0.10679744
## 349 0.46656465 0.839485181 1.52426058 1.05722770
## 350 0.83399560 1.012354577 0.67363520 0.96098160
## 351 0.88648573 0.962654625 0.92059096 0.82864321
## 352 -1.52806050 -1.282486658 -1.30201082 -1.30080182
## 353 -0.49925384 -0.651513361 -0.24558899 -0.03757172
## 354 0.56104690 0.580181086 0.70107473 0.51584337
## 355 0.51905479 0.666615784 0.46783874 0.57599719
## 356 0.62403506 0.839485181 1.64773845 0.90082778
## 357 -0.89817887 -1.314899669 -1.30201082 -1.37298640
## 358 -1.07664533 -0.932426130 0.23460275 -1.37298640
## 359 0.69752125 1.366736839 1.79865586 1.14144304
## 360 -1.54905655 -1.286808392 -1.21969224 -1.34892487
## 361 1.70533185 1.517997561 2.38860571 2.34451933
## 362 1.61084960 0.498068123 1.11266765 2.16405789
## 363 -1.50706444 -1.453195186 -1.79592233 -1.72187852
## 364 0.60303900 0.310072655 0.56387709 0.62412024
## 365 0.73951336 0.623398435 0.50899803 0.63615100
## 366 0.71851730 0.813554771 0.98918978 1.17753533
## 367 0.37208241 0.385703016 0.68735497 0.53990490
## 368 -1.54905655 -1.444551717 -1.67244445 -1.60157089
## 369 0.49805873 0.437563834 0.41295969 0.25116659
## 370 -1.22361771 -1.241430176 -1.28829106 -1.20455572
## 371 -0.84568873 -0.958356540 -0.72578073 -0.59098681
## 372 0.61353703 0.634202773 0.57759685 0.82864321
## 373 0.56104690 -0.046470475 0.30320157 0.19101278
## 374 -1.19212363 -1.230625839 -1.38432941 -1.24064801
## 375 -1.19212363 -1.276004055 -1.28829106 -1.33689411
## 376 0.61353703 0.956172023 0.42667945 0.33538193
## 377 0.77100744 0.928080746 0.87943166 0.67224329
## 378 0.66602717 0.582341954 0.48155851 0.50381261
## 379 -1.52806050 -1.420782175 -1.53524681 -1.69781700
## 380 0.60303900 0.320876992 0.33064110 0.39553574
## 381 0.91797982 1.548249705 0.57759685 0.87676626
## 382 0.88648573 1.044767589 0.46783874 0.57599719
## 383 -1.16062955 -1.327864874 -1.50780728 -1.33689411
## 384 0.93897587 0.904311204 0.81083284 0.73239710
## 385 0.69752125 0.450529039 0.41295969 0.32335117
## 386 -1.58055063 -1.457516921 -1.52152705 -1.66172471
## 387 0.95997192 1.228441322 0.75595379 0.98504313
## 388 0.91797982 0.925919879 0.96175025 0.69630482
## 389 0.94947390 1.239245659 0.83827237 0.94895084
## 390 0.68702322 0.428920365 0.59131662 0.70833558
## 391 0.83399560 0.580181086 0.57759685 0.53990490
## 392 0.99146601 0.612594098 0.92059096 0.75645863
## 393 -0.76170452 -0.943230468 -0.58858309 -0.72332520
## 394 -1.52806050 -1.446712584 -1.64500493 -1.70984776
## 395 -1.10813941 -1.273843188 -1.31573059 -1.22861724
## 396 1.14893641 1.466136742 1.16754671 0.93692007
## 397 0.90748179 0.463494244 0.65991544 0.55193566
## 398 1.72632790 1.788105992 1.70261751 1.22565838
## 399 1.01246206 0.478620316 1.14010718 0.75645863
## 400 -0.58323806 -0.435426616 -0.36906687 -0.14584858
## 401 0.68702322 1.260854334 0.87943166 0.81661244
## 402 0.80250152 0.428920365 0.56387709 0.45568956
## 403 0.69752125 0.668776652 0.48155851 0.69630482
## 404 -1.25511179 -1.265199718 -1.27457130 -1.34892487
## 405 0.79200349 0.705511399 0.83827237 0.91285855
## 406 0.85499165 1.444528067 0.96175025 0.74442787
## 407 0.47706268 0.661124977 0.35808063 0.32335117
## 408 0.63453308 0.536963737 0.55015733 0.51584337
## 409 0.99146601 1.012354577 1.05778860 0.79255092
## 410 0.68702322 1.358093369 0.79711308 0.73239710
## 411 0.84449363 0.861093855 0.78339332 -0.00147943
## 412 0.70801927 0.850289518 0.71479450 0.56396642
## 413 -1.18162560 -1.284647525 -1.41176894 -1.26470953
## 414 -0.46775976 0.661124977 0.76967355 0.93692007
## 415 -0.63572819 -0.737948060 -0.38278663 -0.27818698
## 416 -1.25511179 -1.319221404 -1.30201082 -1.26470953
## 417 -1.54905655 -1.438069114 -1.59012587 -1.70984776
## 418 0.80250152 0.258211836 0.31692134 0.47975108
## 419 -1.60154668 -1.448873451 -1.65872469 -1.63766318
## 420 -1.16062955 -1.347105790 -1.10993413 -1.22861724
## 421 0.83399560 0.960493758 0.89315143 0.93692007
## 422 -1.60154668 -1.448873451 -1.63128516 -1.67375547
## 423 0.57154492 0.560733279 0.79711308 0.74442787
## 424 -0.95066901 -0.930265263 -0.83553885 -0.69926368
## 425 -1.24461376 -1.308417067 -1.35688988 -1.87827844
## 426 0.63453308 0.463494244 0.63247591 0.61208948
## 427 0.59254098 0.441885569 0.64619568 0.76848939
## 428 0.79200349 0.852450385 0.87943166 0.86473550
## 429 -1.58055063 -1.459677789 -1.65872469 -1.68578623
## 430 0.50855676 0.590985424 0.23460275 0.45568956
## 431 -1.19212363 -1.276004055 -1.21969224 -1.22861724
## 432 -1.60154668 -1.394851765 -1.65872469 -1.72187852
## 433 0.68702322 0.668776652 0.68899769 0.85270473
## 434 0.62403506 0.258211836 0.38552016 0.33538193
## 435 0.80250152 0.722798338 0.63247591 1.00910465
## 436 0.86548968 1.165776166 0.89315143 1.20159686
## 437 0.58204295 0.269016173 0.68735497 0.69630482
## 438 0.54005084 0.625559303 0.68735497 0.69630482
## 439 -1.28660587 -1.308417067 -1.17853295 -1.27674029
## 440 0.62403506 0.409472558 0.97547001 0.49178185
## 441 0.97046995 1.079341468 1.04406883 0.93692007
## 442 -0.66722227 -0.498091772 -0.24558899 0.43162803
## 443 -0.82469268 -0.876243577 -0.61602262 -0.63910986
## 444 0.87598771 0.863254723 0.89315143 0.56396642
## 445 -0.49925384 -0.390048400 -0.24558899 -0.63910986
## 446 0.76050941 0.982102432 0.98918978 0.75645863
## 447 -1.21311968 -1.286808392 -1.30201082 -1.15643267
## 448 -1.29710390 -1.297612730 -1.28829106 -1.16846343
## 449 -1.55955458 -1.448873451 -1.61756540 -1.67375547
## 450 0.57154492 0.625559303 0.65991544 0.80458168
## 451 -1.61204471 -1.427264777 -1.61756540 -1.61360166
## 452 0.49805873 0.171777138 0.50899803 0.57599719
## 453 0.58204295 0.809233036 0.50899803 -1.79406310
## 454 -1.22361771 -1.308417067 -1.27457130 -1.14440190
## 455 0.73951336 0.690385326 0.59131662 0.35944346
## 456 0.88648573 1.241406527 1.48310128 1.04519694
## 457 0.78150546 0.603950628 0.65991544 0.45568956
## 458 -1.22361771 -1.232786706 -1.27457130 -1.24064801
## 459 -0.64622622 -0.573722133 -0.30046805 -0.14584858
## 460 0.69752125 0.582341954 0.72851426 0.67224329
## 461 -1.25511179 -1.330025742 -1.24713177 -1.31283258
## 462 0.40357649 0.420276895 0.60503638 0.39553574
## 463 0.91797982 0.722798338 0.97547001 0.96098160
## 464 -1.27610784 -1.330025742 -1.26085153 -1.38501716
## 465 0.62403506 0.593146291 0.74223402 0.57599719
## 466 0.56104690 0.279820510 0.35808063 0.25116659
## 467 0.55054887 0.528320267 0.53643756 0.61208948
## 468 0.81299955 1.327841225 0.83827237 0.88879702
## 469 0.57154492 0.852450385 0.57759685 0.75645863
## 470 0.65552914 0.290624848 0.85199214 0.85270473
## 471 0.56104690 0.463494244 0.57759685 0.70833558
## 472 0.50855676 0.063733765 0.50899803 0.40756651
## 473 0.75001138 0.485102918 0.70107473 0.74442787
## 474 0.99146601 1.489906284 1.04406883 1.00910465
## 475 -1.27610784 -1.308417067 -1.35688988 -1.33689411
## 476 0.99146601 1.760014715 1.20870600 1.75501195
## 477 -1.27610784 -1.265199718 -1.19225271 -1.16846343
## 478 0.60303900 0.323037860 0.44039921 0.37147422
## 479 0.78150546 1.489906284 1.03034907 1.24971991
## 480 0.92847784 1.176580503 1.12638742 0.87676626
## 481 0.62403506 0.536963737 0.57759685 0.56396642
## 482 0.83399560 0.960493758 1.08522813 0.73239710
## 483 0.66602717 0.506711593 0.82455261 0.74442787
## 484 0.69752125 1.252210864 0.83827237 0.56396642
## 485 0.92847784 0.809233036 0.81083284 0.79255092
## 486 -1.16062955 -1.286808392 -1.30887071 -1.16846343
## 487 0.64503111 0.517515930 0.49527827 0.45568956
## 488 -1.38108812 -1.330025742 -1.34317012 -1.24064801
## 489 0.78150546 0.755211350 0.65991544 0.57599719
## 490 0.92847784 -1.059917310 0.87943166 0.76247401
## 491 0.37208241 0.009712079 0.49527827 0.49178185
## 492 0.82349757 0.949689421 1.04406883 0.78052016
## 493 -1.47557036 -1.433747379 -1.61756540 -1.66172471
## 494 0.59254098 0.299268318 0.35808063 0.02258210
## 495 -1.53855852 -1.459677789 -1.61756540 -1.60758627
## 496 0.63453308 0.809233036 0.45411898 0.76247401
## 497 0.87598771 0.820037374 0.74223402 0.52185875
## 498 0.87598771 1.705993029 1.12638742 1.03918156
## 499 0.43507057 0.366255209 0.24832252 0.37748960
## 500 -1.26560982 -1.351634416 -1.38432941 -1.27674029
## 501 0.88648573 0.688224459 0.75595379 0.94895084
## 502 0.69752125 0.915115541 1.04406883 1.03316618
## 503 -1.62254274 -1.459677789 -1.60384563 -1.67375547
## 504 0.78150546 0.528320267 0.85199214 0.58802795
## 505 0.66602717 0.441885569 0.31692134 0.46772032
## 506 0.63453308 0.571537617 0.68735497 0.63615100
## 507 0.16212187 0.614754966 0.71479450 0.62412024
## 508 0.58204295 0.377059546 0.59131662 0.60005871
## 509 -1.63304077 -1.470482126 -1.48036776 -1.61360166
## 510 0.47706268 0.031320753 0.46783874 0.41959727
## 511 -0.49925384 -1.543951619 -0.34162734 0.10679744
## 512 0.82349757 0.971298095 1.16754671 1.11738152
## 513 -1.30760193 -1.286808392 -1.20597248 -1.19252495
## 514 0.44556860 0.549928942 0.76967355 0.45568956
## 515 0.67652519 0.495907256 0.70107473 0.45568956
## 516 -1.33909601 -1.286808392 -1.32945035 -1.32486335
## 517 0.85499165 0.949689421 0.89315143 1.05722770
## 518 -1.25511179 -1.276004055 -1.19225271 -1.36095563
## 519 -1.31809995 -1.286808392 -1.23341200 -1.27674029
## 520 -1.62254274 -1.470482126 -1.64500493 -1.69781700
## 521 -1.79051117 -0.973482612 -0.72578073 -0.56692529
## 522 0.80250152 0.895667734 0.92059096 0.93692007
## 523 -1.31809995 -1.347105790 -1.35688988 -1.27674029
## 524 -0.89817887 -0.908656588 -0.73950050 -0.47067918
## 525 0.94947390 0.844699836 0.71479450 0.70833558
## 526 0.49805873 0.387863883 0.38552016 0.61208948
## 527 -1.61204471 -1.481286463 -1.60384563 -1.66172471
## 528 0.61353703 0.269016173 0.63247591 0.67224329
## 529 1.01246206 0.820037374 0.82455261 0.96098160
## 530 -0.45726173 -0.444070086 -0.14955064 -0.14584858
## 531 0.76050941 0.387863883 0.64619568 0.84067397
## 532 0.58204295 0.474298581 0.70107473 0.53990490
## 533 -0.95066901 -0.962678275 -0.82181908 -0.78347902
## 534 0.79200349 0.755211350 0.98918978 1.04519694
## 535 -1.60154668 -1.470482126 -1.64500493 -1.64969394
## 536 0.99146601 0.755211350 0.92059096 1.00910465
## 537 0.55054887 0.106951114 0.46783874 0.41959727
## 538 0.99146601 0.928080746 0.67363520 0.50381261
## 539 1.14893641 0.755211350 1.04406883 0.97301236
## 540 0.55054887 0.755211350 0.39923992 0.67224329
## 541 0.80250152 0.971298095 0.75595379 1.06925847
## 542 -0.68821833 -0.649352494 -0.39650639 0.01055133
## 543 1.07545022 1.165776166 1.00290954 0.80458168
## 544 0.57154492 0.323037860 0.68735497 0.53990490
## 545 -1.52806050 -1.448873451 -1.49408752 -1.56547860
## 546 -1.18162560 -1.276004055 -1.17853295 -1.15643267
## 547 0.57154492 0.398668220 0.64619568 0.63615100
## 548 0.97046995 0.982102432 0.96175025 0.90082778
## 549 0.81299955 1.360254237 0.83827237 1.21362762
## 550 0.51905479 0.549928942 0.38552016 0.58802795
## 551 0.93897587 0.798428699 0.87943166 0.80458168
## 552 0.68702322 0.668776652 0.59131662 0.76848939
## 553 0.78150546 0.787624362 0.79711308 0.70833558
## 554 0.71851730 1.425080260 1.09894789 1.17753533
## 555 0.78150546 0.603950628 0.52271780 0.56396642
## 556 0.68702322 0.323037860 0.71479450 0.52787414
## 557 -1.27610784 -1.286808392 -1.28829106 -1.34892487
## 558 0.58204295 0.290624848 0.24832252 0.19101278
## 559 0.42457254 0.312233522 0.63247591 0.44365880
## 560 0.64503111 0.301429185 0.44039921 0.45568956
## 561 0.48756071 0.387863883 0.49527827 0.53990490
## 562 -1.58055063 -1.438069114 -1.60384563 -1.61360166
## 563 -1.68553090 -1.448873451 -1.71360375 -1.61360166
## 564 0.88648573 0.982102432 0.75595379 1.08128923
## 565 -1.62254274 -1.438069114 -1.56268634 -1.58954013
## 566 0.75001138 0.690385326 0.83827237 0.86473550
## 567 0.98096798 1.252210864 1.12638742 0.90082778
## 568 -1.26560982 -1.232786706 -1.20597248 -1.42110945
## 569 -1.25511179 -1.232786706 -1.13737365 -1.18049419
## 570 -1.53855852 -1.448873451 -1.61756540 -1.62563242
## 571 0.72901533 0.366255209 0.60503638 0.63615100
## 572 0.64503111 0.323037860 0.39923992 0.49178185
## 573 0.88648573 0.906472072 1.04406883 0.97301236
## 574 -1.59104866 -1.470482126 -1.69988398 -1.74594005
## 575 -1.58055063 -1.459677789 -1.56268634 -1.66172471
## 576 0.49805873 0.312233522 0.44039921 0.37147422
## 577 -0.52024989 -0.508896110 -0.41022616 0.02258210
## 578 0.91797982 1.165776166 1.00290954 0.97301236
## 579 0.62403506 0.387863883 0.70107473 0.58802795
## 580 -1.57005260 -1.405656102 -1.60384563 -1.62563242
## 581 0.60303900 0.441885569 0.59131662 0.32335117
## 582 0.60303900 0.474298581 0.83827237 0.69630482
## 583 -1.52806050 -1.427264777 -1.42548870 -0.99462762
## 584 0.60303900 1.079341468 0.64619568 0.52787414
## 585 0.40357649 0.409472558 0.57759685 0.69630482
## 586 0.82349757 1.122558817 0.96175025 0.66021253
## 587 -1.58055063 -1.459677789 -1.59012587 -1.63766318
## 588 -0.57274003 -0.573722133 -0.35534710 -0.01351019
## 589 0.64503111 0.593146291 0.70107473 0.75645863
## 590 0.50855676 0.690385326 0.72851426 0.61208948
## 591 0.72901533 0.884863397 0.93431072 0.57599719
## 592 0.78150546 0.917276409 0.79711308 1.14144304
## 593 0.70801927 0.614754966 0.81083284 0.90082778
## 594 0.51905479 0.549928942 0.59131662 0.61208948
## 595 -1.20262166 -1.286808392 -1.34317012 -1.25267877
## 596 0.63453308 0.366255209 0.45411898 0.78052016
## 597 0.90748179 1.219797852 0.89315143 0.97301236
## 598 0.82349757 0.679580989 1.04406883 0.90082778
## 599 -0.97166506 -0.854634902 -0.76694002 -0.54286376
## 600 0.65552914 0.690385326 0.85199214 0.68427405
## 601 0.56104690 0.485102918 0.57759685 0.35944346
## 602 0.65552914 0.690385326 0.85199214 0.66021253
## 603 -0.56224200 0.539124605 0.85199214 0.72036634
## 604 -1.58055063 -1.448873451 -1.53524681 -1.57750937
## 605 0.66602717 0.495907256 0.93431072 0.84067397
## 606 0.67652519 0.679580989 0.76967355 0.97301236
## 607 0.67652519 0.593146291 0.42667945 0.21507430
## 608 0.81299955 0.625559303 0.81083284 0.86473550
## 609 0.77100744 0.787624362 0.72851426 0.82864321
## 610 0.83399560 0.949689421 0.92059096 0.39553574
## 611 -1.13963349 -1.265199718 -1.20597248 -1.31283258
## 612 0.54005084 0.420276895 0.41295969 -0.13381782
## 613 0.55054887 0.290624848 0.68735497 0.21507430
## 614 0.64503111 0.766015687 0.48155851 0.51584337
## 615 0.61353703 0.387863883 0.74223402 0.55193566
## 616 0.72901533 0.917276409 0.75595379 0.68427405
## 617 0.49805873 0.506711593 0.44039921 0.76848939
## 618 -1.59104866 -1.459677789 -1.42548870 -1.31993010
## 619 -1.22361771 -1.286808392 -1.30201082 -1.22861724
## 620 0.65552914 0.485102918 0.60503638 0.57599719
## 621 -1.21311968 -1.308417067 -1.32945035 -1.32486335
## 622 0.93897587 0.863254723 1.02348919 1.75501195
## 623 -1.27610784 -1.351634416 -1.34317012 -1.27674029
## 624 -1.31809995 -1.286808392 -1.28829106 -1.20455572
## 625 -1.26560982 -1.297612730 -1.19225271 -1.25267877
## 626 -1.62254274 -1.438069114 -1.57640611 -1.68578623
## 627 -1.54905655 -1.459677789 -1.61756540 -1.66172471
## 628 -1.63304077 -1.459677789 -1.64500493 -1.73390928
## 629 0.80250152 0.679580989 1.29102459 1.12941228
## 630 -1.20262166 -1.308417067 -1.30201082 -1.25267877
## 631 0.83399560 0.744407013 0.76967355 0.90082778
## 632 0.78150546 0.917276409 0.79711308 0.93692007
## 633 -1.62254274 -1.448873451 -1.64500493 -1.60157089
## 634 -0.89817887 -0.876243577 -0.67090168 -0.19998702
## 635 -1.29710390 -1.297612730 -1.35688988 -1.89030920
## 636 -1.67503287 -1.470482126 -1.64500493 -1.67375547
## 637 -1.65403682 -1.459677789 -1.52152705 -1.69781700
## 638 -1.55955458 -1.416460440 -1.64500493 -1.66172471
## 639 -1.22361771 -1.330025742 -1.35688988 -1.28877106
## 640 0.04664357 -1.170121550 -0.65718191 -0.50677147
## 641 0.77100744 0.852450385 0.98918978 0.94895084
## 642 -0.92967295 -1.330025742 -0.64346215 -0.50677147
## 643 -0.89817887 -0.930265263 -0.78065979 -0.60301757
## 644 -1.22361771 -1.276004055 -1.34317012 -1.16846343
## 645 0.65552914 -1.157156345 0.49527827 0.66021253
## 646 -1.59104866 -1.438069114 -1.59012587 -1.68578623
## 647 0.72901533 0.679580989 0.78339332 0.67224329
## 648 0.56104690 0.431081232 0.59131662 0.62412024
## 649 0.65552914 0.560733279 0.92059096 0.80458168
## 650 0.60303900 0.528320267 0.50899803 0.52787414
## 651 1.08594825 0.560733279 1.01662931 0.75645863
## 652 1.03345811 0.960493758 0.63247591 0.47975108
## 653 -1.18162560 -1.265199718 -1.13737365 -1.32486335
## 654 -1.61204471 -1.459677789 -1.59012587 -1.70984776
## 655 -1.58055063 -1.459677789 -1.61756540 -1.70984776
## 656 -1.62254274 -1.459677789 -1.65872469 -1.70984776
## 657 -1.62254274 -1.427264777 -1.60384563 -1.61360166
## 658 0.92847784 0.863254723 0.90687119 0.91285855
## 659 -1.58055063 -1.438069114 -1.56268634 -1.68578623
## 660 -1.22361771 -1.286808392 -1.23341200 -1.28877106
## 661 -1.51756247 -1.459677789 -1.49408752 -1.62563242
## 662 -1.07664533 -1.254395381 -1.10993413 -1.20455572
## 663 -1.53855852 -1.438069114 -1.59012587 -1.61360166
## 664 0.66602717 1.435884597 0.76967355 0.90082778
## 665 0.95997192 1.003711107 1.14010718 1.27378143
## 666 0.63453308 0.614754966 1.05778860 0.84067397
## 667 0.67652519 0.722798338 0.02880629 0.67224329
## 668 -1.50706444 -1.405656102 -1.64500493 -1.61360166
## 669 0.97046995 1.338645562 0.90687119 0.90082778
## 670 -1.55955458 -1.438069114 -1.57640611 -1.73390928
## 671 0.61353703 0.668776652 0.64619568 0.73239710
## 672 0.63453308 0.301429185 0.59131662 0.84067397
## 673 -0.60423411 -0.606135145 -0.51998427 -0.12178706
## 674 0.57154492 0.160972801 0.44039921 0.26319735
## 675 -1.19212363 -1.286808392 -1.16481318 -1.24064801
## 676 0.49805873 0.204190150 0.52271780 0.25116659
## 677 -1.21311968 -1.276004055 -1.35688988 -1.40907869
## 678 0.59254098 2.721600732 0.60503638 0.60005871
## 679 0.65552914 0.409472558 0.38552016 0.57599719
## 680 -0.64622622 -0.552113459 -0.31418781 -0.16991011
## 681 0.47706268 0.431081232 0.61875615 0.66021253
## 682 0.77100744 1.068537131 0.65991544 0.64818176
## 683 0.92847784 1.144167491 1.04406883 0.91285855
## 684 -1.26560982 -1.297612730 -1.21969224 -1.26470953
## 685 -1.18162560 -1.252234513 -1.13737365 -1.16846343
## 686 -0.65672425 -0.498091772 -0.36906687 -0.31427927
## 687 -1.22361771 -1.265199718 -1.34317012 -1.24064801
## 688 -1.27610784 -1.308417067 -1.35688988 -1.30080182
## 689 -1.25511179 -1.221982369 -1.31573059 -1.34892487
## 690 -1.54905655 -1.459677789 -1.56268634 -1.57750937
## 691 0.83399560 0.863254723 0.55015733 0.63615100
## 692 0.55054887 0.657972315 0.81083284 0.78052016
## 693 -1.10813941 -1.232786706 -1.32945035 -1.19252495
## 694 0.89698376 0.420276895 0.55015733 0.46772032
## 695 0.41407452 0.031320753 0.12484464 -0.02554096
## 696 0.64503111 0.701189664 0.52271780 0.78052016
## 697 -1.24461376 -1.319221404 -1.34317012 -1.26470953
## 698 -1.51756247 -1.459677789 -1.74104327 -1.64969394
## 699 -0.40477160 1.576340982 1.08522813 0.82864321
## 700 1.25391668 1.781623390 0.76967355 1.11738152
## 701 0.59254098 0.463494244 0.49527827 0.69630482
## 702 -0.58323806 -0.444070086 -0.24558899 -0.12178706
## 703 0.78150546 -1.146352008 0.46783874 0.49178185
## 704 0.45606662 0.225798824 0.57759685 0.70833558
## 705 0.81299955 0.982102432 0.98918978 0.98504313
## 706 0.90748179 1.046928456 1.20870600 1.12941228
## 707 0.48756071 0.387863883 0.68735497 0.66021253
## 708 -0.92967295 -0.951873937 -0.79437955 -0.80754054
## 709 0.45606662 0.269016173 0.78339332 0.58802795
## 710 -1.68553090 -1.448873451 -1.64500493 -1.58954013
## 711 -0.57274003 -0.681765506 -0.64346215 0.19101278
## 712 -1.63304077 -1.470482126 -1.57640611 -1.64969394
## 713 -1.57005260 -1.438069114 -1.43920846 -1.66172471
## 714 0.48756071 1.154971829 0.87943166 1.09331999
## 715 0.62403506 0.441885569 0.74223402 0.79255092
## 716 0.76050941 0.895667734 0.97547001 1.09331999
## 717 0.80250152 0.560733279 0.59131662 0.63615100
## 718 1.01246206 0.960493758 0.94803048 1.06925847
## 719 0.58204295 0.657972315 0.70107473 0.91285855
## 720 -0.63572819 0.409472558 -0.28674828 2.11593483
## 721 0.79200349 0.052929428 0.34436087 0.28725888
## 722 -1.31809995 -1.276004055 -1.31573059 -1.32486335
## 723 0.72901533 0.982102432 0.82455261 0.81661244
## 724 -1.57005260 -1.427264777 -1.61756540 -1.60157089
## 725 -1.24461376 -1.308417067 -1.31573059 -1.24064801
## 726 0.57154492 0.323037860 0.61875615 0.81661244
## 727 -1.31809995 -1.297612730 -1.34317012 -1.22861724
## 728 0.88648573 1.176580503 1.07150836 1.05722770
## 729 -1.61204471 -1.448873451 -1.69988398 -1.69781700
## 730 -1.27610784 -1.330025742 -1.27457130 -1.28877106
## 731 0.83399560 0.830841711 1.11266765 1.10535075
## 732 0.91797982 0.841646048 0.98918978 0.85270473
## 733 0.73951336 0.398668220 0.83827237 0.62412024
## 734 -1.28660587 -1.254395381 -1.19225271 -1.24064801
## 735 -1.18162560 -1.276004055 -1.09621436 -1.26470953
## 736 -1.64353879 -1.470482126 -1.61756540 -1.64969394
## 737 -1.60154668 -1.448873451 -1.64500493 -1.62563242
## 738 -1.30760193 -1.254395381 -1.28829106 -1.25267877
## 739 -1.57005260 -1.438069114 -1.57640611 -1.58954013
## 740 0.47706268 0.560733279 0.71479450 0.63615100
## 741 -0.58323806 -0.444070086 -0.28674828 3.52353409
## 742 -0.85618676 -0.843830565 -1.28829106 -0.39849461
## 743 0.64503111 0.582341954 0.86571190 0.68427405
## 744 0.47706268 0.301429185 0.34436087 0.27522812
## 745 0.62403506 0.506711593 0.57759685 0.87676626
## 746 -1.28660587 -1.276004055 -1.35688988 -1.31283258
## 747 -1.25511179 -1.286808392 -1.28829106 -1.15643267
## 748 -1.64353879 -1.438069114 -1.64500493 -1.70984776
## 749 -1.29710390 -1.254395381 -1.37060964 -1.32486335
## 750 0.89698376 1.036124119 0.87943166 1.21362762
## 751 -1.23411574 -1.265199718 -1.26085153 -1.20455572
## 752 0.95997192 1.090145805 0.78339332 1.02113541
## 753 -1.61204471 -1.438069114 -1.64500493 -1.52938631
## 754 -1.53855852 -0.282005027 -0.69834120 -0.19397164
## 755 -1.54905655 -1.448873451 -1.54896658 -1.74594005
## 756 -1.54905655 -1.438069114 -1.52152705 -1.63766318
## 757 -0.97166506 -0.822221890 -0.80809932 -0.55489452
## 758 0.62403506 0.560733279 0.70107473 0.73239710
## 759 0.94947390 1.122558817 1.03034907 0.97301236
## 760 0.73951336 0.539124605 0.70107473 0.76848939
## 761 -1.63304077 -1.438069114 -1.63128516 -1.66172471
## 762 0.65552914 0.614754966 0.64619568 0.56396642
## 763 -1.28660587 -1.265199718 -1.30201082 -1.25267877
## 764 0.66602717 0.517515930 0.44039921 0.49178185
## 765 0.50855676 0.528320267 0.42667945 0.51584337
## 766 0.36158438 0.744407013 1.05778860 0.61208948
## 767 0.67652519 1.187384840 0.67363520 0.76848939
## 768 0.83399560 0.884863397 1.16754671 0.98504313
## 769 0.59254098 0.809233036 0.56387709 0.84067397
## 770 0.63453308 0.485102918 0.85199214 0.60005871
## 771 0.54005084 0.593146291 0.59131662 0.63615100
## 772 -0.89817887 -0.930265263 -0.79437955 -0.68723291
## 773 0.52955281 0.355450871 0.53643756 0.22710506
## 774 0.73951336 0.636363640 0.59131662 0.69630482
## 775 0.62403506 0.733602675 0.81083284 0.73239710
## 776 -1.22361771 -1.254395381 -1.34317012 -1.20455572
## 777 0.93897587 1.046928456 0.83827237 0.79255092
## 778 0.58204295 0.528320267 0.42667945 0.38350498
## 779 -1.28660587 -1.254395381 -1.31573059 -1.20455572
## 780 0.36158438 0.409472558 0.65991544 0.56396642
## 781 -1.28660587 -1.232786706 -1.43920846 -1.40907869
## 782 0.55054887 0.690385326 0.75595379 0.62412024
## 783 -1.37059009 -1.297612730 -1.34317012 -1.26470953
## 784 0.59254098 0.679580989 0.49527827 0.55193566
## 785 0.84449363 0.636363640 0.81083284 0.57599719
## 786 0.51905479 0.766015687 0.70107473 0.49178185
## 787 0.61353703 0.603950628 0.50899803 0.61208948
## 788 -0.65672425 -0.530504784 -0.31418781 -0.20600240
## 789 0.59254098 0.452689907 0.63247591 0.45568956
## 790 0.63453308 0.884863397 0.35808063 0.66021253
## 791 -1.57005260 -1.416460440 -1.63128516 -1.63766318
## 792 0.56104690 0.701189664 0.65991544 0.38350498
## 793 0.79200349 1.208993515 0.68735497 0.58802795
## 794 -1.28660587 -1.265199718 -1.32945035 -1.24064801
## 795 0.85499165 0.711994001 0.04252606 0.43162803
## 796 0.52955281 0.744407013 0.72851426 -0.50677147
## 797 0.72901533 1.360254237 1.16754671 0.97301236
## 798 0.88648573 0.874059060 0.79711308 0.88879702
## 799 -1.23411574 -1.265199718 -1.37060964 -1.21658648
## 800 0.51905479 0.431081232 0.56387709 0.76848939
## 801 -1.27610784 -1.297612730 -1.39804917 -1.34892487
## 802 -1.26560982 -1.286808392 -1.34317012 -1.15643267
## 803 -1.21311968 -1.308417067 -1.41176894 -1.28877106
## 804 0.71851730 1.057732793 0.93431072 0.87676626
## 805 -1.64353879 -1.427264777 -1.63128516 -1.69781700
## 806 -1.62254274 -1.448873451 -1.71360375 -1.64969394
## 807 -1.30760193 -1.254395381 -1.30201082 -1.25267877
## 808 -1.04515125 -1.005895624 -0.79437955 -0.57895605
## 809 -0.62523017 -0.562917796 -0.41022616 -0.23006392
## 810 -1.62254274 -1.470482126 -1.68616422 -1.67375547
## 811 0.84449363 0.917276409 0.71479450 -0.16991011
## 812 0.79200349 0.571537617 0.83827237 0.94895084
## 813 -1.63304077 -1.470482126 -1.78220257 -1.66172471
## 814 -1.39158614 -1.319221404 -1.24713177 -1.27674029
## 815 -1.67503287 -1.481286463 -1.65872469 -1.70984776
## 816 0.81299955 0.830841711 0.89315143 0.68427405
## 817 0.85499165 1.057732793 0.82455261 0.92488931
## 818 -1.64353879 -1.459677789 -1.76848280 -1.78203234
## 819 -0.63572819 -0.714178518 -0.43766569 -0.29021774
## 820 -1.24461376 -1.286808392 -1.61756540 -1.24064801
## 821 -1.02415519 -1.027504298 -0.78065979 -0.69926368
## 822 -1.25511179 -1.319221404 -1.26085153 -1.28877106
## 823 0.71851730 0.517515930 0.68735497 0.70833558
## 824 0.72901533 0.474298581 0.57759685 0.52787414
## 825 -1.41258220 -1.340830079 -1.42548870 -1.31283258
## 826 -0.95066901 -1.016699961 -0.79437955 -0.61504834
## 827 0.66602717 0.377059546 0.37180039 0.73239710
## 828 -1.20262166 -1.258717116 -1.38432941 -1.24064801
## 829 -1.62254274 -1.459677789 -1.53524681 -1.64969394
## 830 -0.89817887 -0.951873937 -0.83553885 -0.69926368
## 831 -1.64353879 -1.459677789 -1.63128516 -1.68578623
## 832 0.54005084 0.431081232 0.63247591 0.63615100
## 833 0.84449363 1.014515444 0.97547001 0.91285855
## 834 -1.66453485 -1.438069114 -1.61756540 -1.64969394
## 835 -1.30760193 -1.308417067 -1.41176894 -1.24064801
## 836 -1.30760193 -1.297612730 -1.32945035 -1.21658648
## 837 -1.54905655 -1.448873451 -1.59012587 -1.60157089
## 838 1.18043049 1.122558817 0.90687119 1.04519694
## 839 -0.66722227 -0.649352494 -0.31418781 0.38350498
## 840 -1.29710390 -1.286808392 -1.38432941 -1.32486335
## 841 -1.26560982 -1.243591043 -1.12365389 -1.34892487
## 842 -0.86668479 -0.941069600 -0.75322026 -0.47067918
## 843 0.50855676 0.820037374 0.59131662 0.35944346
## 844 0.57154492 0.409472558 0.49527827 0.62412024
## 845 0.88648573 0.776820025 0.89315143 0.50381261
## 846 0.62403506 0.333842197 0.49527827 0.40756651
## 847 0.86548968 0.938885083 0.79711308 0.98504313
## 848 0.72901533 0.582341954 0.74223402 0.75645863
## 849 -1.67503287 -1.448873451 -1.63128516 -1.68578623
## 850 -0.89817887 -0.941069600 -0.75322026 -0.66317139
## 851 -1.00315914 -0.941069600 -0.76694002 -0.62707910
## 852 -1.60154668 -1.438069114 -1.57640611 -1.62563242
## 853 0.63453308 0.193385812 0.52271780 0.57599719
## 854 0.46656465 0.355450871 0.55015733 0.57599719
## 855 0.59254098 0.517515930 0.34436087 0.45568956
## 856 0.88648573 1.111754480 1.08522813 0.99707389
## 857 -1.27610784 -1.211178032 -1.20597248 -1.28877106
## 858 0.57154492 0.128559789 0.24832252 0.31132040
## 859 -1.63304077 -1.459677789 -1.59012587 -1.68578623
## 860 0.91797982 1.252210864 0.85199214 0.91285855
## 861 0.62403506 0.517515930 0.44039921 0.67224329
## 862 0.60303900 0.409472558 0.81083284 0.87676626
## 863 0.72901533 1.295428213 0.63247591 0.47975108
## 864 -1.81150723 -1.297612730 -1.23341200 -1.36095563
## 865 -1.61204471 -1.448873451 -1.79592233 -1.66172471
## 866 0.80250152 1.036124119 0.93431072 0.92488931
## 867 0.59254098 0.312233522 0.39923992 0.35944346
## 868 0.62403506 0.171777138 0.44039921 0.33538193
## 869 1.04395614 1.111754480 1.04406883 1.05722770
## 870 -1.62254274 -1.459677789 -1.64500493 -1.62563242
## 871 0.67652519 0.506711593 0.71479450 0.76848939
## 872 1.00196403 0.971298095 0.86571190 0.90082778
## 873 -1.62254274 -1.459677789 -1.67244445 -1.54141708
## 874 -1.58055063 -1.448873451 -1.64500493 -1.58954013
## 875 0.81299955 1.068537131 0.89315143 0.90082778
## 876 0.57154492 0.539124605 0.38552016 0.57599719
## 877 -0.89817887 -0.887047914 -0.79437955 -0.37443308
## 878 0.51905479 0.269016173 0.37180039 0.44365880
## 879 0.58204295 0.841646048 0.53643756 0.38350498
## 880 0.88648573 1.760014715 0.98918978 1.03316618
## 881 0.69752125 0.798428699 0.42667945 0.76848939
## 882 0.58204295 0.744407013 0.48155851 0.47975108
## 883 0.57154492 0.809233036 0.49527827 0.60005871
## 884 -1.27610784 -1.265199718 -1.23341200 -1.25267877
## 885 0.33009030 0.474298581 0.48155851 0.55193566
## 886 0.49805873 0.377059546 0.37180039 0.84440031
## 887 -1.26560982 -1.308417067 -1.38432941 -1.28877106
## 888 0.80250152 0.560733279 0.61875615 0.34741269
## 889 -1.00315914 -0.973482612 -0.86297837 -0.68723291
## 890 -1.28660587 -1.438069114 -1.20597248 -1.15643267
## 891 0.51905479 0.474298581 0.63247591 0.57599719
## 892 0.75001138 0.636363640 0.85199214 0.90082778
## 893 0.88648573 0.603950628 0.59131662 0.53990490
## 894 0.48756071 0.150168463 0.19344346 0.10679744
## 895 -1.23411574 -1.254395381 -1.31573059 -1.13237114
## 896 -1.31809995 -1.232786706 -1.24713177 -1.22861724
## 897 -1.24461376 -1.265199718 -1.23341200 -1.15643267
## 898 0.57154492 0.495907256 0.70107473 0.74442787
## 899 -1.21311968 -1.265199718 -1.23341200 -1.20455572
## 900 0.46656465 1.198189178 0.60503638 0.64818176
## 901 0.52955281 0.377059546 0.48155851 0.23913583
## 902 0.90748179 1.252210864 0.94803048 0.69630482
## 903 0.52955281 0.074538103 0.23460275 0.05867438
## 904 0.67652519 1.630362668 0.57759685 0.28725888
## 905 -1.31809995 -1.286808392 -1.24713177 -1.18049419
## 906 0.46656465 0.042125091 0.01508653 0.28725888
## 907 0.56104690 0.193385812 0.46783874 0.33538193
## 908 -1.22361771 1.122558817 0.94803048 0.82864321
res <- optics(hawks_scaled2, minPts = 10)
res
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.07488223798005, eps_cl = NA, xi = NA
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi
The data indicates that 3.07488223798005 is the maximum neighborhood size to consider when determining proximity between data points.
res$order
## [1] 1 571 390 267 260 245 620 185 184 150 149 137 93 824 764 650 408 233
## [19] 193 25 236 487 481 426 378 317 787 771 594 467 281 12 87 134 119 278
## [37] 203 765 334 861 844 701 471 223 283 116 648 891 832 707 681 547 508 337
## [55] 762 579 139 251 80 7 165 555 365 532 131 11 402 784 295 364 206 515
## [73] 457 876 561 550 391 33 222 774 717 552 292 403 372 250 823 506 460 179
## [91] 154 48 43 758 589 871 848 671 450 79 898 760 473 3 113 715 423 483
## [109] 438 427 270 647 135 90 31 696 782 740 590 182 323 190 157 342 800 465
## [127] 338 180 178 679 181 354 556 778 726 528 437 526 45 355 743 649 582 336
## [145] 155 544 855 309 615 854 893 169 274 585 240 110 21 572 433 183 692 862
## [163] 2 51 286 789 733 324 719 846 560 505 478 867 878 576 466 434 380 230
## [181] 19 853 489 504 114 194 617 136 138 71 709 258 770 290 205 237 596 780
## [199] 775 602 600 601 581 397 745 117 907 868 674 676 537 32 553 412 177 173
## [217] 49 200 672 606 593 151 559 605 881 769 496 531 888 197 159 123 385 883
## [235] 882 614 540 901 744 558 369 497 209 208 204 455 694 275 609 514 367 608
## [253] 892 812 631 566 501 405 300 785 199 47 224 72 691 207 10 294 46 153
## [271] 118 430 147 55 27 163 241 816 591 444 377 124 551 485 428 384 351 28
## [289] 14 798 847 658 872 548 289 254 186 174 120 91 777 262 246 82 229 66
## [307] 54 50 335 732 529 522 226 421 875 866 833 817 705 632 517 269 641 752
## [325] 388 492 804 573 225 716 502 389 564 541 350 13 441 869 856 759 728 683
## [343] 578 252 95 60 567 480 164 291 293 597 127 81 73 126 409 718 482 257
## [361] 22 9 97 536 271 860 669 468 187 616 92 792 827 723 463 217 158 344
## [379] 238 768 446 145 472 8 543 220 885 462 115 106 280 666 525 786 102 256
## [397] 586 6 435 592 452 89 499 387 264 773 44 58 886 261 189 470 704 247
## [415] 63 845 538 879 273 731 392 534 469 298 440 18 105 607 242 96 598 790
## [433] 303 17 750 133 192 75 494 366 682 902 418 140 652 339 382 146 77 613
## [451] 109 407 510 94 706 235 843 838 265 664 401 610 651 858 259 406 491 539
## [469] 248 512 34 894 410 793 24 767 584 37 76 36 507 285 15 332 474 484
## [487] 297 373 665 376 863 156 20 333 436 721 70 255 629 16 343 396 232 900
## [505] 39 52 399 348 903 549 498 30 331 797 612 906 62 695 35 272 244 78
## [523] 346 880 175 554 162 282 381 296 479 766 148 714 38 456 64 210 345 667
## [541] 700 411 322 795 166 88 904 359 356 349 347 191 132 74 811 796 622 476
## [559] 243 414 603 398 326 362 908 59 699 445 819 809 788 686 680 673 459 400
## [577] 310 4 588 353 239 108 67 415 702 577 542 249 530 711 111 234 634 839
## [595] 877 842 851 889 850 830 826 772 643 424 371 57 42 708 533 599 821 808
## [613] 524 757 443 299 221 393 288 56 86 188 642 742 442 327 263 287 662 735
## [631] 841 685 899 897 884 896 763 836 807 794 779 738 727 725 697 887 688 639
## [649] 623 416 316 284 219 621 104 840 746 475 313 595 523 500 630 214 822 730
## [667] 619 776 751 687 370 170 803 828 799 202 801 749 722 516 783 458 374 69
## [685] 84 29 276 301 228 461 171 5 624 176 160 905 448 375 172 644 802 306
## [703] 734 684 660 625 519 439 835 447 404 143 83 895 747 486 454 431 689 557
## [721] 312 857 395 488 413 340 98 513 477 464 167 129 611 198 218 675 546 814
## [739] 168 99 693 518 227 568 195 201 161 420 653 569 383 677 53 781 216 825
## [757] 26 103 211 277 352 890 820 215 360 315 618 357 40 341 253 329 545 837
## [775] 739 724 874 791 663 580 570 562 852 657 587 451 495 737 575 565 308 646
## [793] 659 655 654 626 503 859 831 761 736 712 527 422 849 805 748 636 520 307
## [811] 304 656 314 311 627 449 535 429 419 870 834 638 417 125 810 729 628 302
## [829] 633 829 386 268 815 690 101 670 394 41 604 806 368 755 196 756 144 85
## [847] 668 379 432 574 710 68 637 493 873 509 142 753 100 212 122 112 813 563
## [865] 698 661 865 713 130 65 231 141 818 107 363 121 213 864 320 635 425 583
## [883] 319 128 305 328 152 318 640 754 321 521 325 511 358 678 330 703 645 490
## [901] 23 453 266 361 279 720 741 61
The OPTICS point ordering arranges data based on density, revealing the cluster structure.
To better visualize the valleys, we will plot the reachability plot, making it clearer to determine the optimal number of clusters.
We observe two large valleys (first indication, similar to K-Means) and three smaller ones, with one being more prominent, leading to a preliminary conclusion of 3 clusters.
If we consider all valleys, we might identify 5 clusters.
plot(res, main= "Diagram reachability plot")
Now, we will visualize the clusters using the
variables from our normalized dataset.
hawks_plot <- data.frame(
Wing = hawks_scaled2$Wing,
Weight = hawks_scaled2$Weight,
Culmen = hawks_scaled2$Culmen,
Hallux = hawks_scaled2$Hallux,
Order = res$order
)
ggplot(hawks_plot, aes(x = Wing, y = Weight)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Wing[Order], y = Weight[Order]), fill = NA, color = "blue") +
ggtitle("Wing-Weight Traces") +
xlab("Wing Size") +
ylab("Weight") +
theme_minimal()
ggplot(hawks_plot, aes(x = Wing, y = Culmen)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Wing[Order], y = Culmen[Order]), fill = NA, color = "green") +
ggtitle("Wing-Beak Traces") +
xlab("Wing Size") +
ylab("Beak Size") +
theme_minimal()
ggplot(hawks_plot, aes(x = Wing, y = Hallux)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Wing[Order], y = Hallux[Order]), fill = NA, color = "red") +
ggtitle("Wing-Spur Traces") +
xlab("Wing Size") +
ylab("Spur Size") +
theme_minimal()
ggplot(hawks_plot, aes(x = Weight, y = Culmen)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Weight[Order], y = Culmen[Order]), fill = NA, color = "purple") +
ggtitle("Weight-Beak Traces") +
xlab("Weight") +
ylab("Beak Size") +
theme_minimal()
ggplot(hawks_plot, aes(x = Weight, y = Hallux)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Weight[Order], y = Hallux[Order]), fill = NA, color = "orange") +
ggtitle("Weight-Spur Traces") +
xlab("Weight") +
ylab("Spur Size") +
theme_minimal()
ggplot(hawks_plot, aes(x = Culmen, y = Hallux)) +
geom_point(color = "grey") +
geom_polygon(aes(x = Culmen[Order], y = Hallux[Order]), fill = NA, color = "pink") +
ggtitle("Beak-Spur Traces") +
xlab("Beak Size") +
ylab("Spur Size") +
theme_minimal()
This type of chart is complex to interpret, so we created another one where we grouped everything to observe clearer patterns.
hawks_long <- hawks_plot %>%
pivot_longer(cols = c(Wing, Weight, Culmen, Hallux), names_to = "variable", values_to = "value")
ggplot(hawks_long, aes(x = Order, y = value, color = variable)) +
geom_point() +
geom_line(aes(group = variable)) +
facet_wrap(~ variable, scales = "free_y") +
ggtitle("Variables by Density Order (OPTICS)") +
theme_minimal()
Wing vs. Weight Relationship
We can see clear groupings in the Wing vs. Weight plots. This
suggests that wing size and weight are characteristics that may help
distinguish between hawk species. For example, larger and heavier hawks
might belong to a specific species, while smaller and lighter ones may
belong to another.
Wing vs. Culmen Relationship
The Wing vs. Culmen plot also shows groupings, indicating that
wing size and beak size are correlated. This can be particularly useful
for identifying species with specific beak and wing characteristics,
such as cooperative hawks.
Wing vs. Hallux Relationship
Although less obvious, the Wing vs. Hallux plot still shows
some grouping patterns. The length of the spur, along with wing size,
may differentiate certain species or ages within the same species.
Weight vs. Culmen and Weight vs. Hallux
Relationships
These plots show less clear differentiation, suggesting that weight is
not as strong of an independent predictor for beak and spur
characteristics. However, when combined with other variables, it can
still provide valuable insights.
Species and Clusters
Finally, by including these measurements in the clustering analysis, we
can infer that there are three main clusters corresponding to the three
hawk species. The grouping observed in the plots confirms that physical
characteristics have a significant impact on species classification.
Now, let’s move on to the second algorithm, DBSCAN.
We are not sure what epsilon value to use, so we referred to this
reference: How
to find optimal epsilon value
Looking at the k-distance graph (we used 9 as indicated by
minPts - 1 = k), we can see that the curve remains
relatively flat for most of the points but starts to increase sharply
towards the end. The point where the slope of the graph changes sharply
is between 0.4 and 0.7 on the axis. This suggests that the mean should
be around 0.55.
k <- 9
kNNdistplot(hawks_scaled2, k = k)
The clusters contain 559, 60, and
258 points respectively, highlighting the structure of
the data in specific densities and confirming the effectiveness of this
epsilon value.
res <- extractDBSCAN(res, eps_cl = 0.55)
res
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.07488223798005, eps_cl = 0.55, xi = NA
## The clustering contains 3 cluster(s) and 31 noise points.
##
## 0 1 2 3
## 31 559 60 258
##
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi, cluster
We plotted the data and can clearly see the 3 clusters and the corresponding noise.
plot(res)
We also plotted it additionally, where it is even clearer.
hullplot(hawks_scaled2, res)
We will perform the same process but including our dummy variables for sex and age.
hawks_scaled
## Wing Weight Culmen Hallux Sex_M Sex_F Age_A Age_I
## 1 0.72901533 0.323037860 0.53643756 0.58802795 0 0 0 1
## 2 0.63453308 0.344646534 0.68899769 0.84440031 0 0 0 1
## 3 0.68702322 0.474298581 0.67363520 0.73239710 0 0 0 1
## 4 -0.53074792 -0.649352494 -0.42394592 -0.20600240 0 1 0 1
## 5 -1.16062955 -1.297612730 -1.27457130 -1.31283258 0 1 0 1
## 6 1.01246206 0.690385326 0.92059096 0.84067397 0 0 0 1
## 7 0.57154492 0.409472558 0.48155851 0.58802795 0 0 0 1
## 8 0.62403506 0.182581475 0.74223402 0.57599719 0 0 1 0
## 9 1.01246206 0.949689421 1.03034907 0.73239710 0 0 1 0
## 10 0.93897587 0.755211350 0.57759685 0.60005871 0 0 0 1
## 11 0.81299955 0.517515930 0.61875615 0.67224329 0 0 0 1
## 12 0.58204295 0.517515930 0.49527827 0.53990490 0 0 0 1
## 13 0.78150546 0.755211350 0.97547001 0.68427405 0 0 1 0
## 14 0.81299955 0.844699836 0.87943166 0.64818176 0 0 1 0
## 15 1.05445417 0.863254723 0.64619568 1.05722770 0 0 0 1
## 16 1.26441471 1.338645562 1.19498624 1.05722770 0 0 1 0
## 17 1.07545022 0.820037374 0.72851426 0.69630482 0 0 0 1
## 18 0.68702322 0.387863883 0.97547001 0.44365880 0 0 1 0
## 19 0.65552914 0.301429185 0.53643756 0.35944346 0 0 0 1
## 20 0.84449363 0.517515930 0.30320157 0.20304354 0 0 0 1
## 21 0.87598771 0.647167977 0.63247591 0.72036634 0 0 0 1
## 22 1.05445417 0.906472072 0.96175025 0.76848939 0 0 0 1
## 23 1.04395614 -1.446712584 0.42667945 0.66021253 0 0 0 1
## 24 0.80250152 1.208993515 0.71479450 0.61208948 0 0 1 0
## 25 0.67652519 0.474298581 0.57759685 0.57599719 0 0 0 1
## 26 -1.49656641 -1.448873451 -1.42396428 -1.31993010 1 0 0 1
## 27 0.87598771 0.711994001 0.60503638 0.87676626 0 0 0 1
## 28 0.89698376 0.906472072 0.93431072 0.76848939 0 0 1 0
## 29 -1.16062955 -1.276004055 -1.38432941 -1.22861724 0 1 0 1
## 30 1.16993247 1.554732307 1.14010718 0.86473550 0 0 0 1
## 31 0.83399560 0.582341954 0.72851426 0.74442787 0 0 1 0
## 32 0.48756071 0.106951114 0.42667945 0.32335117 0 0 0 1
## 33 0.84449363 0.560733279 0.57759685 0.53990490 0 0 1 0
## 34 0.79200349 1.144167491 0.50899803 0.86473550 0 0 1 0
## 35 1.02296009 1.576340982 0.64619568 0.73239710 0 0 1 0
## 36 0.58204295 0.668776652 0.48155851 0.23913583 0 0 1 0
## 37 0.72901533 1.187384840 0.75595379 0.58802795 0 0 1 0
## 38 0.65552914 1.554732307 0.49527827 0.73239710 0 0 1 0
## 39 1.05445417 1.576340982 1.00290954 0.67224329 0 0 1 0
## 40 -1.28660587 -1.448873451 -1.71360375 -1.31993010 1 0 0 1
## 41 -1.51756247 -1.474803861 -1.65872469 -1.64969394 1 0 0 1
## 42 -0.86668479 -0.964839142 -0.79437955 -0.71129444 0 0 0 1
## 43 0.71851730 0.625559303 0.59131662 0.72036634 0 0 0 1
## 44 0.69752125 0.798428699 0.45411898 0.50381261 0 0 0 1
## 45 0.78150546 0.560733279 0.79711308 0.61208948 0 0 0 1
## 46 0.78150546 0.495907256 0.45411898 0.37147422 0 0 0 1
## 47 0.81299955 0.603950628 0.94803048 0.55193566 0 0 0 1
## 48 0.65552914 0.582341954 0.60503638 0.72036634 0 0 0 1
## 49 0.86548968 0.733602675 0.64619568 0.68427405 0 0 0 1
## 50 1.01246206 1.144167491 0.83827237 0.76247401 0 0 0 1
## 51 0.88648573 0.452689907 0.53643756 0.49178185 0 0 0 1
## 52 1.11744233 0.755211350 0.63247591 0.37147422 0 0 0 1
## 53 -1.19212363 -1.375403958 -1.28829106 -1.38501716 0 1 0 1
## 54 0.82349757 1.079341468 0.82455261 0.76848939 0 0 0 1
## 55 0.56104690 0.236603161 0.44039921 0.15492049 0 0 0 1
## 56 -0.66722227 -0.930265263 -0.79437955 -0.53083300 0 1 0 1
## 57 -0.79319860 -0.930265263 -0.78065979 -0.71129444 1 0 1 0
## 58 0.99146601 1.046928456 1.08522813 0.74442787 0 0 0 1
## 59 -0.78270057 1.187384840 0.93431072 1.34596601 0 0 0 1
## 60 0.97046995 1.187384840 1.12638742 0.98504313 0 0 0 1
## 61 -2.92219849 0.884863397 -0.21814946 0.17296663 0 0 0 1
## 62 0.67652519 -0.022700933 0.37180039 0.10679744 0 0 0 1
## 63 0.84449363 1.036124119 0.65991544 0.87676626 0 0 0 1
## 64 0.10963173 0.661124977 0.46783874 0.29928964 0 0 0 1
## 65 -1.65403682 -1.448873451 -1.50780728 -1.77000157 1 0 0 1
## 66 1.05445417 1.144167491 0.75595379 0.90082778 0 0 0 1
## 67 -0.46775976 -0.638548157 -0.49254474 -0.05561786 0 1 0 1
## 68 -1.46507233 -1.448873451 -1.64500493 -1.69781700 1 0 1 0
## 69 -1.27610784 -1.340003865 -1.42548870 -1.32486335 0 1 1 0
## 70 0.78150546 0.668776652 1.15382695 0.46772032 0 0 1 0
## 71 0.79200349 0.776820025 0.63247591 0.50381261 0 0 1 0
## 72 0.75001138 0.841646048 0.68735497 0.69630482 0 0 1 0
## 73 1.09644628 1.241406527 1.05778860 1.09331999 0 0 0 1
## 74 1.25391668 1.327841225 1.48310128 0.64818176 0 0 1 0
## 75 0.88648573 0.949689421 0.50899803 0.40756651 0 0 1 0
## 76 0.86548968 1.479101947 0.85199214 0.75645863 0 0 0 1
## 77 0.83399560 0.884863397 0.44039921 0.44365880 0 0 0 1
## 78 0.99146601 1.576340982 0.72851426 0.96098160 0 0 0 1
## 79 0.56104690 0.549928942 0.72851426 0.75645863 0 0 0 1
## 80 0.59254098 0.344646534 0.59131662 0.70833558 0 0 0 1
## 81 1.04395614 1.273819539 0.93431072 0.99707389 0 0 0 1
## 82 1.01246206 1.046928456 0.81083284 0.88879702 0 0 0 1
## 83 -1.16062955 -1.245751911 -1.26085153 -1.30080182 0 1 0 1
## 84 -1.17112757 -1.321382272 -1.27457130 -1.25267877 0 1 0 1
## 85 -1.52806050 -1.470482126 -1.68616422 -1.67375547 1 0 0 1
## 86 -0.86668479 -0.930265263 -0.54742380 -0.69926368 1 0 1 0
## 87 0.62403506 0.636363640 0.56387709 0.57599719 0 0 0 1
## 88 0.72901533 0.766015687 -0.30046805 0.74442787 0 0 0 1
## 89 1.11744233 1.230602190 0.94803048 0.81661244 0 0 0 1
## 90 0.79200349 0.603950628 0.65991544 0.84067397 0 0 0 1
## 91 0.99146601 0.949689421 0.78339332 0.84440031 0 0 0 1
## 92 0.72901533 0.452689907 0.68735497 0.31132040 0 0 0 1
## 93 0.68702322 0.495907256 0.50899803 0.55193566 0 0 0 1
## 94 1.05445417 1.338645562 0.86571190 0.73239710 0 0 1 0
## 95 0.94947390 1.090145805 0.98918978 1.02113541 0 0 0 1
## 96 1.07545022 0.884863397 1.14010718 0.84440031 0 0 0 1
## 97 1.01246206 0.949689421 1.03034907 1.03316618 0 0 0 1
## 98 -1.12913547 -1.301934465 -1.24713177 -1.25267877 0 1 1 0
## 99 -1.12913547 -1.349473549 -1.37060964 -1.24064801 0 1 0 1
## 100 -1.47557036 -1.431586512 -1.61756540 -1.64969394 1 0 0 1
## 101 -1.57005260 -1.461838656 -1.68616422 -1.67375547 1 0 0 1
## 102 0.93897587 0.679580989 0.81083284 0.56396642 0 0 0 1
## 103 -1.23411574 -1.258717116 -1.31573059 -0.99462762 0 1 1 0
## 104 -1.21311968 -1.332186609 -1.28829106 -1.30080182 0 1 0 1
## 105 0.67652519 0.085342440 0.56387709 0.41959727 0 0 0 1
## 106 0.68702322 0.290624848 0.83827237 0.46772032 0 0 0 1
## 107 -1.53855852 -1.461838656 -1.75476304 -1.80609386 1 0 0 1
## 108 -0.58323806 -0.757395867 -0.30046805 -0.15787935 0 1 0 1
## 109 1.18043049 1.014515444 1.00290954 1.14144304 0 0 0 1
## 110 0.88648573 0.474298581 0.70107473 0.74442787 0 0 0 1
## 111 -0.53074792 -0.876243577 -0.68462144 -0.32631003 0 1 0 1
## 112 -1.45457431 -1.468321258 -1.59012587 -1.67375547 1 0 0 1
## 113 0.68702322 0.517515930 0.55015733 0.78052016 0 0 0 1
## 114 0.91797982 0.452689907 0.61875615 0.53990490 0 0 0 1
## 115 0.69752125 0.193385812 0.64619568 0.45568956 0 0 0 1
## 116 0.69752125 0.431081232 0.55015733 0.45568956 0 0 0 1
## 117 0.87598771 0.452689907 0.78339332 0.56396642 0 0 0 1
## 118 0.67652519 0.463494244 0.28948181 0.45568956 0 0 0 1
## 119 0.62403506 0.474298581 0.52271780 0.64818176 0 0 0 1
## 120 1.09644628 0.949689421 0.82455261 0.88879702 0 0 0 1
## 121 -1.52806050 -1.472642993 -1.80964209 -1.70984776 1 0 0 1
## 122 -1.45457431 -1.455356054 -1.61756540 -1.67375547 1 0 1 0
## 123 0.62403506 0.474298581 0.85199214 0.51584337 0 0 0 1
## 124 0.83399560 0.863254723 0.86571190 0.78052016 0 0 0 1
## 125 -1.52806050 -1.463999524 -1.60384563 -1.68578623 1 0 1 0
## 126 0.94947390 1.252210864 1.19498624 0.81661244 0 0 0 1
## 127 1.03345811 1.295428213 1.03034907 0.93692007 0 0 0 1
## 128 -1.49656641 -1.442390849 -1.65872469 -0.69926368 1 0 0 1
## 129 -1.11863744 -1.338669211 -1.31573059 -1.36095563 0 1 0 1
## 130 -1.45457431 -1.446712584 -1.57640611 -1.57750937 1 0 0 1
## 131 0.76050941 0.463494244 0.70107473 0.55193566 0 0 0 1
## 132 -0.40477160 0.366255209 0.64619568 0.62412024 0 0 0 1
## 133 1.12794036 1.165776166 0.76967355 1.06925847 0 0 0 1
## 134 0.51905479 0.571537617 0.59131662 0.67224329 0 0 0 1
## 135 0.70801927 0.420276895 0.59131662 0.79255092 0 0 0 1
## 136 0.79200349 0.766015687 0.49527827 0.68427405 0 0 0 1
## 137 0.77100744 0.441885569 0.63247591 0.61208948 0 0 0 1
## 138 0.80250152 0.798428699 0.60503638 0.55193566 0 0 0 1
## 139 0.62403506 0.387863883 0.48155851 0.56396642 0 0 0 1
## 140 0.99146601 0.949689421 0.86571190 0.44365880 0 0 0 1
## 141 -1.43357825 -1.459677789 -1.50780728 -1.63766318 1 0 0 1
## 142 -1.50706444 -1.472642993 -1.69988398 -1.73390928 1 0 0 1
## 143 -1.19212363 -1.243591043 -1.28829106 -1.33689411 0 1 1 0
## 144 -1.48606839 -1.463999524 -1.68616422 -1.70984776 1 0 0 1
## 145 1.11744233 0.938885083 0.96175025 0.73239710 0 0 0 1
## 146 0.72901533 0.593146291 0.79711308 0.27522812 0 0 0 1
## 147 0.49805873 0.690385326 0.65991544 0.43162803 0 0 0 1
## 148 1.41138709 0.906472072 1.16754671 0.91285855 0 0 0 1
## 149 0.67652519 0.409472558 0.52271780 0.58802795 0 0 0 1
## 150 0.72901533 0.398668220 0.61875615 0.58802795 0 0 0 1
## 151 0.72901533 0.733602675 0.39923992 0.60005871 0 0 0 1
## 152 -1.51756247 -1.448873451 -0.36906687 -1.64969394 1 0 0 1
## 153 0.67652519 0.279820510 0.30320157 0.15492049 0 0 0 1
## 154 0.71851730 0.657972315 0.64619568 0.66021253 0 0 0 1
## 155 0.60303900 0.452689907 0.83827237 0.82864321 0 0 0 1
## 156 0.68702322 0.366255209 0.82455261 1.08128923 0 0 0 1
## 157 0.49805873 0.647167977 0.52271780 0.62412024 0 0 0 1
## 158 0.98096798 0.755211350 1.04406883 0.76848939 0 0 0 1
## 159 0.78150546 0.625559303 0.79711308 0.45568956 0 0 1 0
## 160 -1.17112757 -1.301934465 -1.32945035 -1.31283258 0 1 0 1
## 161 -1.24461376 -1.209017164 -1.41176894 -1.36095563 0 1 0 1
## 162 1.09644628 0.766015687 0.74223402 0.26319735 0 0 0 1
## 163 0.68702322 0.711994001 0.71479450 0.35944346 0 0 0 1
## 164 0.97046995 1.273819539 1.12638742 1.04519694 0 0 0 1
## 165 0.76050941 0.485102918 0.67363520 0.66021253 0 0 0 1
## 166 0.86548968 0.701189664 -0.09467158 0.74442787 0 0 1 0
## 167 -1.11863744 -1.241430176 -1.32945035 -1.27674029 0 1 0 1
## 168 -1.11863744 -1.284647525 -1.38432941 -1.21658648 0 1 0 1
## 169 0.82349757 0.657972315 0.50899803 0.53990490 0 0 1 0
## 170 -1.17112757 -1.276004055 -1.30201082 -1.20455572 0 1 1 0
## 171 -1.17112757 -1.310577934 -1.30201082 -1.31283258 0 1 0 1
## 172 -1.11863744 -1.323543139 -1.31573059 -1.30080182 0 1 0 1
## 173 0.82349757 0.798428699 0.68735497 0.47975108 0 0 0 1
## 174 1.05445417 1.014515444 0.83827237 0.79255092 0 0 0 1
## 175 1.35889695 1.500710621 1.08522813 1.12941228 0 0 0 1
## 176 -1.11863744 -1.299773597 -1.32945035 -1.28877106 0 1 0 1
## 177 0.76050941 0.722798338 0.67363520 0.44365880 0 0 0 1
## 178 0.85499165 0.517515930 0.72851426 0.74442787 0 0 0 1
## 179 0.71851730 0.657972315 0.61875615 0.63615100 0 0 0 1
## 180 0.66602717 0.625559303 0.83827237 0.68427405 0 0 0 1
## 181 0.81299955 0.528320267 0.79711308 0.70833558 0 0 0 1
## 182 0.73951336 0.711994001 0.57759685 0.60005871 0 0 0 1
## 183 0.85499165 0.517515930 0.44039921 0.64818176 0 0 0 1
## 184 0.69752125 0.495907256 0.61875615 0.58802795 0 0 0 1
## 185 0.73951336 0.452689907 0.49527827 0.60005871 0 0 0 1
## 186 1.06495220 1.014515444 0.94803048 0.86473550 0 0 0 1
## 187 0.91797982 1.273819539 0.83827237 0.94895084 0 0 0 1
## 188 -0.80369663 -1.269521453 -0.61602262 -0.72332520 1 0 1 0
## 189 0.89698376 1.371058574 1.00290954 0.84440031 0 0 0 1
## 190 0.64503111 0.614754966 0.71479450 0.46772032 0 0 1 0
## 191 1.22242260 1.943688449 0.72851426 0.92488931 0 0 1 0
## 192 0.78150546 1.036124119 0.60503638 0.63615100 0 0 0 1
## 193 0.68702322 0.560733279 0.48155851 0.56396642 0 0 0 1
## 194 0.91797982 0.582341954 0.68899769 0.56396642 0 0 0 1
## 195 -1.07664533 -1.254395381 -1.31573059 -1.16846343 0 1 0 1
## 196 -1.50706444 -1.438069114 -1.61756540 -1.73390928 1 0 0 1
## 197 0.78150546 0.690385326 0.60503638 0.43162803 0 0 0 1
## 198 -1.17112757 -1.254395381 -1.37060964 -1.36095563 0 1 0 1
## 199 0.73951336 0.603950628 0.90687119 0.50381261 0 0 1 0
## 200 0.90748179 0.733602675 0.59131662 0.57599719 0 0 0 1
## 201 -1.20262166 -1.219821501 -1.32945035 -1.40907869 0 1 0 1
## 202 -1.19212363 -1.243591043 -1.32945035 -1.25267877 0 1 0 1
## 203 0.61353703 0.517515930 0.42667945 0.58802795 0 0 1 0
## 204 0.44556860 0.236603161 0.33064110 0.41959727 0 0 0 1
## 205 0.57154492 0.625559303 0.34436087 0.55193566 0 0 0 1
## 206 0.78150546 0.323037860 0.53643756 0.57599719 0 0 0 1
## 207 0.86548968 0.917276409 0.60503638 0.55193566 0 0 0 1
## 208 0.46656465 0.258211836 0.57759685 0.38350498 0 0 0 1
## 209 0.41407452 0.279820510 0.48155851 0.45568956 0 0 0 1
## 210 0.62403506 0.733602675 0.05624582 0.75645863 0 0 1 0
## 211 -1.21311968 -1.319221404 -1.59012587 -1.44517097 0 1 0 1
## 212 -1.43357825 -1.438069114 -1.60384563 -1.67375547 1 0 0 1
## 213 -1.47557036 -1.451034319 -1.67244445 -1.50532479 1 0 0 1
## 214 -1.18162560 -1.308417067 -1.34317012 -1.30080182 0 1 0 1
## 215 -1.16062955 -1.448873451 -1.34317012 -1.52938631 0 1 0 1
## 216 -1.07664533 -1.394851765 -1.41176894 -1.30080182 0 1 0 1
## 217 0.98096798 0.711994001 0.98918978 0.88879702 0 0 0 1
## 218 -1.19212363 -1.347105790 -1.42396428 -1.31993010 0 1 0 1
## 219 -1.26560982 -1.330025742 -1.35688988 -1.27674029 0 1 0 1
## 220 1.04395614 1.111754480 1.05778860 0.79255092 0 0 0 1
## 221 -0.83519071 -0.822221890 -0.91785743 -0.57895605 1 0 1 0
## 222 0.49805873 0.323037860 0.68735497 0.60005871 0 0 0 1
## 223 0.68702322 0.549928942 0.49527827 0.67224329 0 0 0 1
## 224 0.36158438 0.366255209 0.57759685 0.46772032 0 0 1 0
## 225 0.86548968 1.014515444 0.92059096 0.67224329 0 0 0 1
## 226 1.01246206 0.841646048 0.82455261 0.93692007 0 0 0 1
## 227 -1.18162560 -1.340830079 -1.41176894 -1.36095563 0 1 0 1
## 228 -1.20262166 -1.384047428 -1.38432941 -1.30080182 0 1 0 1
## 229 1.00196403 1.014515444 0.68735497 0.90082778 0 0 0 1
## 230 0.60303900 0.344646534 0.35808063 0.26319735 0 0 0 1
## 231 -1.44407628 -1.470482126 -1.49408752 -1.57750937 1 0 0 1
## 232 1.04395614 1.014515444 0.52271780 0.72036634 0 0 0 1
## 233 0.70801927 0.560733279 0.46783874 0.55193566 0 0 0 1
## 234 -0.97166506 -0.476483098 -0.41022616 -0.47067918 1 0 0 1
## 235 0.78150546 1.036124119 0.64619568 0.81661244 0 0 0 1
## 236 0.78150546 0.493746388 0.48155851 0.55193566 0 0 0 1
## 237 0.51905479 0.755211350 0.64619568 0.67224329 0 0 1 0
## 238 0.30909425 0.495907256 0.63247591 0.58802795 0 0 1 0
## 239 -0.44676371 -0.519700447 -0.35534710 -0.06163324 0 1 0 1
## 240 0.88648573 0.582341954 0.81083284 0.82864321 0 0 0 1
## 241 0.67652519 0.820037374 0.82455261 0.70833558 0 0 0 1
## 242 0.15162384 0.495907256 0.56387709 0.60005871 0 0 0 1
## 243 0.99146601 1.273819539 1.57913963 0.40756651 0 0 0 1
## 244 -0.02684262 0.344646534 0.53643756 0.44365880 0 0 0 1
## 245 0.71851730 0.452689907 0.55015733 0.62412024 0 0 0 1
## 246 0.98096798 1.057732793 0.81083284 0.79255092 0 0 0 1
## 247 0.78150546 0.279820510 0.78339332 0.40756651 0 0 0 1
## 248 1.00196403 1.144167491 0.56387709 0.80458168 0 0 0 1
## 249 -0.59373608 -0.649352494 -0.71206097 -0.21803316 0 1 0 1
## 250 0.67652519 0.582341954 0.63247591 0.68427405 0 0 1 0
## 251 0.57154492 0.387863883 0.75595379 0.63615100 0 0 0 1
## 252 1.04395614 1.187384840 1.04406883 1.04519694 0 0 0 1
## 253 -1.05564928 -1.276004055 -1.05505507 -1.50532479 0 1 0 1
## 254 0.99146601 1.100950142 0.83827237 0.90082778 0 0 0 1
## 255 1.01246206 1.165776166 0.59131662 0.70833558 0 0 0 1
## 256 0.71851730 0.301429185 0.63247591 0.38350498 0 0 1 0
## 257 0.92847784 0.971298095 0.93431072 0.62412024 0 0 0 1
## 258 0.62403506 0.323037860 0.27576205 0.43162803 0 0 0 1
## 259 0.99146601 0.787624362 0.63247591 0.86473550 0 0 0 1
## 260 0.71851730 0.366255209 0.60503638 0.55193566 0 0 0 1
## 261 0.72901533 0.323037860 0.44039921 0.84067397 0 0 0 1
## 262 0.86548968 1.100950142 0.85199214 0.86473550 0 0 0 1
## 263 -0.76712255 -0.627743820 -0.56114356 0.82864321 0 0 1 0
## 264 1.14893641 0.971298095 0.75595379 0.93692007 0 0 0 1
## 265 0.89698376 0.495907256 0.67363520 0.33538193 0 0 0 1
## 266 0.75001138 0.755211350 0.68735497 3.00621129 0 0 0 1
## 267 0.63453308 0.333842197 0.57759685 0.67224329 0 0 0 1
## 268 -1.51756247 -1.470482126 -1.63128516 -1.60157089 1 0 1 0
## 269 1.09644628 1.100950142 0.78339332 0.79255092 0 0 1 0
## 270 0.72901533 0.463494244 0.78339332 0.67224329 0 0 0 1
## 271 0.93897587 1.252210864 0.89315143 0.88879702 0 0 0 1
## 272 0.36158438 -0.087526956 0.38552016 0.05867438 0 0 0 1
## 273 0.76050941 0.258211836 0.82455261 0.72036634 0 0 0 1
## 274 0.86548968 0.539124605 0.64619568 0.70833558 0 0 0 1
## 275 0.99146601 0.495907256 0.72851426 0.64818176 0 0 1 0
## 276 -1.19212363 -1.340830079 -1.38432941 -1.33689411 0 1 0 1
## 277 -1.17112757 -1.276004055 -1.41176894 -1.54141708 0 1 0 1
## 278 0.69752125 0.539124605 0.64619568 0.50381261 0 0 1 0
## 279 -2.14744409 1.230602190 0.69421485 0.80458168 0 0 0 1
## 280 0.84449363 1.144167491 0.75595379 0.63615100 0 0 0 1
## 281 0.49805873 0.528320267 0.50899803 0.58802795 0 0 0 1
## 282 0.46656465 0.279820510 1.19498624 0.43162803 0 0 0 1
## 283 0.78150546 0.495907256 0.59131662 0.52787414 0 0 0 1
## 284 -1.26560982 -1.340830079 -1.30201082 -1.27674029 1 0 0 1
## 285 0.78150546 0.603950628 0.41295969 0.87676626 0 0 1 0
## 286 0.67652519 0.387863883 0.42667945 0.45568956 0 0 0 1
## 287 -0.95066901 -0.908656588 -1.26085153 0.09476667 1 0 0 1
## 288 -0.71971241 -0.854634902 -0.67090168 -0.84363283 1 0 1 0
## 289 1.04395614 0.874059060 0.89315143 0.96098160 0 0 1 0
## 290 0.40357649 0.452689907 0.55015733 0.49178185 0 0 0 1
## 291 1.06495220 1.057732793 0.98918978 0.91285855 0 0 1 0
## 292 0.66602717 0.603950628 0.56387709 0.73239710 0 0 0 1
## 293 1.01246206 1.208993515 1.01662931 0.84067397 0 0 1 0
## 294 0.64503111 0.452689907 0.85199214 0.46772032 0 0 1 0
## 295 0.59254098 0.323037860 0.48155851 0.57599719 0 0 0 1
## 296 1.09644628 1.662775680 1.11266765 1.23768915 0 0 0 1
## 297 0.55054887 0.625559303 0.50899803 0.20304354 0 0 0 1
## 298 0.94947390 1.403471586 1.11266765 0.81661244 0 0 0 1
## 299 -0.95066901 -0.800613216 -0.93157719 -0.62707910 1 0 0 1
## 300 0.80250152 0.802750434 0.74223402 0.93692007 0 0 0 1
## 301 -1.30760193 -1.325704007 -1.34317012 -1.37298640 0 1 0 1
## 302 -1.62254274 -1.453195186 -1.57640611 -1.62563242 1 0 0 1
## 303 0.51905479 0.091825042 0.60503638 0.58802795 0 0 0 1
## 304 -1.67503287 -1.461838656 -1.63128516 -1.66172471 1 0 0 1
## 305 -1.30760193 -1.330025742 -0.72578073 -1.30080182 0 1 0 1
## 306 -1.23411574 -1.273843188 -1.27457130 -1.33689411 0 1 0 1
## 307 -1.63304077 -1.466160391 -1.64500493 -1.70984776 1 0 0 1
## 308 -1.59104866 -1.453195186 -1.60384563 -1.66172471 1 0 0 1
## 309 0.38258043 0.547768075 0.65991544 0.61208948 0 0 0 1
## 310 -0.53074792 -0.662317699 -0.35534710 -0.13381782 0 1 0 1
## 311 -1.60154668 -1.448873451 -1.56268634 -1.68578623 1 0 0 1
## 312 -1.28660587 -1.263038851 -1.23341200 -1.34892487 0 1 0 1
## 313 -1.31809995 -1.310577934 -1.35688988 -1.28877106 0 1 0 1
## 314 -1.58055063 -1.453195186 -1.60384563 -1.66172471 1 0 0 1
## 315 -1.61204471 -1.347105790 -1.42396428 -1.31993010 1 0 0 1
## 316 -1.23411574 -1.323543139 -1.32945035 -1.28877106 0 1 1 0
## 317 0.57154492 0.545607207 0.55015733 0.58802795 0 0 0 1
## 318 -0.89817887 -0.930265263 -0.72578073 0.63615100 0 0 0 1
## 319 -1.27610784 -1.312738802 -1.31573059 -0.62707910 1 0 0 1
## 320 -1.66453485 -1.466160391 -1.64500493 -1.26470953 0 1 0 1
## 321 -0.58323806 -0.476483098 -0.31418781 -1.68578623 1 0 0 1
## 322 0.64503111 0.753050483 0.49527827 -0.15787935 0 1 1 0
## 323 0.50855676 0.316555257 0.57759685 0.52787414 0 0 0 1
## 324 0.54005084 0.379220413 0.67363520 0.44365880 0 0 0 1
## 325 -0.86668479 -0.936747865 -0.83553885 0.80458168 0 0 0 1
## 326 0.21461200 -0.061596547 0.22088299 -0.77144825 1 0 0 1
## 327 -0.59373608 -0.716339385 -0.41022616 -1.20455572 0 1 0 1
## 328 -1.22361771 -1.260877983 -1.31573059 -0.12178706 0 1 0 1
## 329 -1.58055063 -1.466160391 -1.65872469 -1.27674029 0 1 0 1
## 330 0.57154492 0.699028796 0.75595379 -1.64969394 1 0 0 1
## 331 0.48756071 0.132881524 0.27576205 0.88879702 0 0 0 1
## 332 0.55054887 1.023158914 0.78822897 0.71025853 0 0 1 0
## 333 0.55054887 1.023158914 0.67363520 0.60005871 0 0 0 1
## 334 0.54005084 0.439724702 0.46783874 0.52787414 0 0 0 1
## 335 0.88648573 1.120397949 0.93431072 0.82864321 0 0 0 1
## 336 0.66602717 0.493746388 0.89315143 0.81661244 0 0 0 1
## 337 0.46656465 0.482942051 0.64619568 0.62412024 0 0 0 1
## 338 0.48756071 0.504550726 0.71479450 0.74442787 0 0 0 1
## 339 0.65552914 0.705511399 0.97547001 0.98504313 0 0 0 1
## 340 -1.20262166 -1.265199718 -1.19225271 -1.28877106 0 1 0 1
## 341 -1.28660587 -1.273843188 -1.23341200 -1.64969394 1 0 0 1
## 342 0.59254098 0.694707061 0.74223402 0.79255092 0 0 0 1
## 343 0.56104690 0.601789761 1.14010718 0.81661244 0 0 0 1
## 344 0.40357649 0.491585521 0.74223402 0.47975108 0 0 0 1
## 345 0.54005084 0.692546194 1.37334317 1.08128923 0 0 0 1
## 346 0.35108635 0.467815979 0.98918978 0.70833558 0 0 0 1
## 347 0.62403506 0.822198241 1.68889775 1.02113541 0 0 0 1
## 348 0.28809819 0.433242100 0.45411898 0.10679744 0 0 0 1
## 349 0.46656465 0.839485181 1.52426058 1.05722770 0 0 0 1
## 350 0.83399560 1.012354577 0.67363520 0.96098160 0 0 0 1
## 351 0.88648573 0.962654625 0.92059096 0.82864321 0 0 0 1
## 352 -1.52806050 -1.282486658 -1.30201082 -1.30080182 0 1 1 0
## 353 -0.49925384 -0.651513361 -0.24558899 -0.03757172 0 1 0 1
## 354 0.56104690 0.580181086 0.70107473 0.51584337 0 0 0 1
## 355 0.51905479 0.666615784 0.46783874 0.57599719 0 0 0 1
## 356 0.62403506 0.839485181 1.64773845 0.90082778 0 0 1 0
## 357 -0.89817887 -1.314899669 -1.30201082 -1.37298640 1 0 0 1
## 358 -1.07664533 -0.932426130 0.23460275 -1.37298640 1 0 1 0
## 359 0.69752125 1.366736839 1.79865586 1.14144304 0 0 1 0
## 360 -1.54905655 -1.286808392 -1.21969224 -1.34892487 1 0 0 1
## 361 1.70533185 1.517997561 2.38860571 2.34451933 0 0 1 0
## 362 1.61084960 0.498068123 1.11266765 2.16405789 0 0 0 1
## 363 -1.50706444 -1.453195186 -1.79592233 -1.72187852 1 0 0 1
## 364 0.60303900 0.310072655 0.56387709 0.62412024 0 0 0 1
## 365 0.73951336 0.623398435 0.50899803 0.63615100 0 0 1 0
## 366 0.71851730 0.813554771 0.98918978 1.17753533 0 0 0 1
## 367 0.37208241 0.385703016 0.68735497 0.53990490 0 0 0 1
## 368 -1.54905655 -1.444551717 -1.67244445 -1.60157089 1 0 0 1
## 369 0.49805873 0.437563834 0.41295969 0.25116659 0 0 0 1
## 370 -1.22361771 -1.241430176 -1.28829106 -1.20455572 0 1 0 1
## 371 -0.84568873 -0.958356540 -0.72578073 -0.59098681 1 0 0 1
## 372 0.61353703 0.634202773 0.57759685 0.82864321 0 0 1 0
## 373 0.56104690 -0.046470475 0.30320157 0.19101278 0 0 0 1
## 374 -1.19212363 -1.230625839 -1.38432941 -1.24064801 0 1 0 1
## 375 -1.19212363 -1.276004055 -1.28829106 -1.33689411 0 1 0 1
## 376 0.61353703 0.956172023 0.42667945 0.33538193 0 0 0 1
## 377 0.77100744 0.928080746 0.87943166 0.67224329 0 0 0 1
## 378 0.66602717 0.582341954 0.48155851 0.50381261 0 0 0 1
## 379 -1.52806050 -1.420782175 -1.53524681 -1.69781700 1 0 0 1
## 380 0.60303900 0.320876992 0.33064110 0.39553574 0 0 0 1
## 381 0.91797982 1.548249705 0.57759685 0.87676626 0 0 0 1
## 382 0.88648573 1.044767589 0.46783874 0.57599719 0 0 0 1
## 383 -1.16062955 -1.327864874 -1.50780728 -1.33689411 0 1 1 0
## 384 0.93897587 0.904311204 0.81083284 0.73239710 0 0 0 1
## 385 0.69752125 0.450529039 0.41295969 0.32335117 0 0 0 1
## 386 -1.58055063 -1.457516921 -1.52152705 -1.66172471 1 0 1 0
## 387 0.95997192 1.228441322 0.75595379 0.98504313 0 0 0 1
## 388 0.91797982 0.925919879 0.96175025 0.69630482 0 0 0 1
## 389 0.94947390 1.239245659 0.83827237 0.94895084 0 0 0 1
## 390 0.68702322 0.428920365 0.59131662 0.70833558 0 0 0 1
## 391 0.83399560 0.580181086 0.57759685 0.53990490 0 0 0 1
## 392 0.99146601 0.612594098 0.92059096 0.75645863 0 0 0 1
## 393 -0.76170452 -0.943230468 -0.58858309 -0.72332520 0 1 1 0
## 394 -1.52806050 -1.446712584 -1.64500493 -1.70984776 1 0 0 1
## 395 -1.10813941 -1.273843188 -1.31573059 -1.22861724 0 1 1 0
## 396 1.14893641 1.466136742 1.16754671 0.93692007 0 0 1 0
## 397 0.90748179 0.463494244 0.65991544 0.55193566 0 0 0 1
## 398 1.72632790 1.788105992 1.70261751 1.22565838 0 0 1 0
## 399 1.01246206 0.478620316 1.14010718 0.75645863 0 0 0 1
## 400 -0.58323806 -0.435426616 -0.36906687 -0.14584858 0 1 0 1
## 401 0.68702322 1.260854334 0.87943166 0.81661244 0 0 1 0
## 402 0.80250152 0.428920365 0.56387709 0.45568956 0 0 1 0
## 403 0.69752125 0.668776652 0.48155851 0.69630482 0 0 0 1
## 404 -1.25511179 -1.265199718 -1.27457130 -1.34892487 0 1 1 0
## 405 0.79200349 0.705511399 0.83827237 0.91285855 0 0 1 0
## 406 0.85499165 1.444528067 0.96175025 0.74442787 0 0 1 0
## 407 0.47706268 0.661124977 0.35808063 0.32335117 0 0 0 1
## 408 0.63453308 0.536963737 0.55015733 0.51584337 0 0 0 1
## 409 0.99146601 1.012354577 1.05778860 0.79255092 0 0 1 0
## 410 0.68702322 1.358093369 0.79711308 0.73239710 0 0 0 1
## 411 0.84449363 0.861093855 0.78339332 -0.00147943 0 0 0 1
## 412 0.70801927 0.850289518 0.71479450 0.56396642 0 0 0 1
## 413 -1.18162560 -1.284647525 -1.41176894 -1.26470953 0 1 0 1
## 414 -0.46775976 0.661124977 0.76967355 0.93692007 0 0 0 1
## 415 -0.63572819 -0.737948060 -0.38278663 -0.27818698 0 1 0 1
## 416 -1.25511179 -1.319221404 -1.30201082 -1.26470953 0 1 0 1
## 417 -1.54905655 -1.438069114 -1.59012587 -1.70984776 1 0 0 1
## 418 0.80250152 0.258211836 0.31692134 0.47975108 0 0 0 1
## 419 -1.60154668 -1.448873451 -1.65872469 -1.63766318 1 0 0 1
## 420 -1.16062955 -1.347105790 -1.10993413 -1.22861724 0 1 0 1
## 421 0.83399560 0.960493758 0.89315143 0.93692007 0 0 0 1
## 422 -1.60154668 -1.448873451 -1.63128516 -1.67375547 1 0 0 1
## 423 0.57154492 0.560733279 0.79711308 0.74442787 0 0 0 1
## 424 -0.95066901 -0.930265263 -0.83553885 -0.69926368 1 0 1 0
## 425 -1.24461376 -1.308417067 -1.35688988 -1.87827844 0 1 0 1
## 426 0.63453308 0.463494244 0.63247591 0.61208948 0 0 0 1
## 427 0.59254098 0.441885569 0.64619568 0.76848939 0 0 0 1
## 428 0.79200349 0.852450385 0.87943166 0.86473550 0 0 0 1
## 429 -1.58055063 -1.459677789 -1.65872469 -1.68578623 0 0 0 1
## 430 0.50855676 0.590985424 0.23460275 0.45568956 0 0 0 1
## 431 -1.19212363 -1.276004055 -1.21969224 -1.22861724 0 1 1 0
## 432 -1.60154668 -1.394851765 -1.65872469 -1.72187852 1 0 0 1
## 433 0.68702322 0.668776652 0.68899769 0.85270473 1 0 0 1
## 434 0.62403506 0.258211836 0.38552016 0.33538193 0 0 0 1
## 435 0.80250152 0.722798338 0.63247591 1.00910465 0 0 0 1
## 436 0.86548968 1.165776166 0.89315143 1.20159686 0 0 1 0
## 437 0.58204295 0.269016173 0.68735497 0.69630482 0 0 0 1
## 438 0.54005084 0.625559303 0.68735497 0.69630482 0 0 1 0
## 439 -1.28660587 -1.308417067 -1.17853295 -1.27674029 0 1 1 0
## 440 0.62403506 0.409472558 0.97547001 0.49178185 0 0 1 0
## 441 0.97046995 1.079341468 1.04406883 0.93692007 0 0 0 1
## 442 -0.66722227 -0.498091772 -0.24558899 0.43162803 0 1 1 0
## 443 -0.82469268 -0.876243577 -0.61602262 -0.63910986 1 0 1 0
## 444 0.87598771 0.863254723 0.89315143 0.56396642 0 0 0 1
## 445 -0.49925384 -0.390048400 -0.24558899 -0.63910986 0 1 1 0
## 446 0.76050941 0.982102432 0.98918978 0.75645863 0 0 0 1
## 447 -1.21311968 -1.286808392 -1.30201082 -1.15643267 0 1 1 0
## 448 -1.29710390 -1.297612730 -1.28829106 -1.16846343 0 1 0 1
## 449 -1.55955458 -1.448873451 -1.61756540 -1.67375547 1 0 1 0
## 450 0.57154492 0.625559303 0.65991544 0.80458168 0 0 0 1
## 451 -1.61204471 -1.427264777 -1.61756540 -1.61360166 1 0 1 0
## 452 0.49805873 0.171777138 0.50899803 0.57599719 0 0 0 1
## 453 0.58204295 0.809233036 0.50899803 -1.79406310 0 0 0 1
## 454 -1.22361771 -1.308417067 -1.27457130 -1.14440190 0 1 1 0
## 455 0.73951336 0.690385326 0.59131662 0.35944346 0 0 0 1
## 456 0.88648573 1.241406527 1.48310128 1.04519694 0 0 0 1
## 457 0.78150546 0.603950628 0.65991544 0.45568956 0 0 0 1
## 458 -1.22361771 -1.232786706 -1.27457130 -1.24064801 0 1 1 0
## 459 -0.64622622 -0.573722133 -0.30046805 -0.14584858 0 1 1 0
## 460 0.69752125 0.582341954 0.72851426 0.67224329 0 0 1 0
## 461 -1.25511179 -1.330025742 -1.24713177 -1.31283258 0 1 1 0
## 462 0.40357649 0.420276895 0.60503638 0.39553574 0 0 0 1
## 463 0.91797982 0.722798338 0.97547001 0.96098160 0 0 0 1
## 464 -1.27610784 -1.330025742 -1.26085153 -1.38501716 0 1 0 1
## 465 0.62403506 0.593146291 0.74223402 0.57599719 0 0 0 1
## 466 0.56104690 0.279820510 0.35808063 0.25116659 0 0 0 1
## 467 0.55054887 0.528320267 0.53643756 0.61208948 0 0 0 1
## 468 0.81299955 1.327841225 0.83827237 0.88879702 0 0 1 0
## 469 0.57154492 0.852450385 0.57759685 0.75645863 0 0 0 1
## 470 0.65552914 0.290624848 0.85199214 0.85270473 0 0 0 1
## 471 0.56104690 0.463494244 0.57759685 0.70833558 0 0 0 1
## 472 0.50855676 0.063733765 0.50899803 0.40756651 0 0 0 1
## 473 0.75001138 0.485102918 0.70107473 0.74442787 0 0 0 1
## 474 0.99146601 1.489906284 1.04406883 1.00910465 0 0 1 0
## 475 -1.27610784 -1.308417067 -1.35688988 -1.33689411 0 1 0 1
## 476 0.99146601 1.760014715 1.20870600 1.75501195 0 0 1 0
## 477 -1.27610784 -1.265199718 -1.19225271 -1.16846343 0 1 1 0
## 478 0.60303900 0.323037860 0.44039921 0.37147422 0 0 0 1
## 479 0.78150546 1.489906284 1.03034907 1.24971991 0 0 0 1
## 480 0.92847784 1.176580503 1.12638742 0.87676626 0 0 1 0
## 481 0.62403506 0.536963737 0.57759685 0.56396642 0 0 0 1
## 482 0.83399560 0.960493758 1.08522813 0.73239710 0 0 0 1
## 483 0.66602717 0.506711593 0.82455261 0.74442787 0 0 0 1
## 484 0.69752125 1.252210864 0.83827237 0.56396642 0 0 0 1
## 485 0.92847784 0.809233036 0.81083284 0.79255092 0 0 0 1
## 486 -1.16062955 -1.286808392 -1.30887071 -1.16846343 0 1 1 0
## 487 0.64503111 0.517515930 0.49527827 0.45568956 0 0 1 0
## 488 -1.38108812 -1.330025742 -1.34317012 -1.24064801 1 0 0 1
## 489 0.78150546 0.755211350 0.65991544 0.57599719 0 0 0 1
## 490 0.92847784 -1.059917310 0.87943166 0.76247401 0 0 1 0
## 491 0.37208241 0.009712079 0.49527827 0.49178185 0 0 0 1
## 492 0.82349757 0.949689421 1.04406883 0.78052016 0 0 0 1
## 493 -1.47557036 -1.433747379 -1.61756540 -1.66172471 1 0 1 0
## 494 0.59254098 0.299268318 0.35808063 0.02258210 0 0 1 0
## 495 -1.53855852 -1.459677789 -1.61756540 -1.60758627 1 0 0 1
## 496 0.63453308 0.809233036 0.45411898 0.76247401 0 0 0 1
## 497 0.87598771 0.820037374 0.74223402 0.52185875 0 0 0 1
## 498 0.87598771 1.705993029 1.12638742 1.03918156 0 0 0 1
## 499 0.43507057 0.366255209 0.24832252 0.37748960 0 0 0 1
## 500 -1.26560982 -1.351634416 -1.38432941 -1.27674029 0 1 0 1
## 501 0.88648573 0.688224459 0.75595379 0.94895084 0 0 0 1
## 502 0.69752125 0.915115541 1.04406883 1.03316618 0 0 0 1
## 503 -1.62254274 -1.459677789 -1.60384563 -1.67375547 1 0 0 1
## 504 0.78150546 0.528320267 0.85199214 0.58802795 0 0 0 1
## 505 0.66602717 0.441885569 0.31692134 0.46772032 0 0 0 1
## 506 0.63453308 0.571537617 0.68735497 0.63615100 0 0 0 1
## 507 0.16212187 0.614754966 0.71479450 0.62412024 0 0 1 0
## 508 0.58204295 0.377059546 0.59131662 0.60005871 0 0 0 1
## 509 -1.63304077 -1.470482126 -1.48036776 -1.61360166 1 0 0 1
## 510 0.47706268 0.031320753 0.46783874 0.41959727 0 0 0 1
## 511 -0.49925384 -1.543951619 -0.34162734 0.10679744 0 1 1 0
## 512 0.82349757 0.971298095 1.16754671 1.11738152 0 0 0 1
## 513 -1.30760193 -1.286808392 -1.20597248 -1.19252495 0 1 1 0
## 514 0.44556860 0.549928942 0.76967355 0.45568956 0 0 1 0
## 515 0.67652519 0.495907256 0.70107473 0.45568956 0 0 0 1
## 516 -1.33909601 -1.286808392 -1.32945035 -1.32486335 0 1 1 0
## 517 0.85499165 0.949689421 0.89315143 1.05722770 0 0 0 1
## 518 -1.25511179 -1.276004055 -1.19225271 -1.36095563 0 1 1 0
## 519 -1.31809995 -1.286808392 -1.23341200 -1.27674029 0 1 1 0
## 520 -1.62254274 -1.470482126 -1.64500493 -1.69781700 1 0 0 1
## 521 -1.79051117 -0.973482612 -0.72578073 -0.56692529 0 1 1 0
## 522 0.80250152 0.895667734 0.92059096 0.93692007 0 0 0 1
## 523 -1.31809995 -1.347105790 -1.35688988 -1.27674029 0 1 0 1
## 524 -0.89817887 -0.908656588 -0.73950050 -0.47067918 1 0 0 1
## 525 0.94947390 0.844699836 0.71479450 0.70833558 0 0 1 0
## 526 0.49805873 0.387863883 0.38552016 0.61208948 0 0 0 1
## 527 -1.61204471 -1.481286463 -1.60384563 -1.66172471 1 0 0 1
## 528 0.61353703 0.269016173 0.63247591 0.67224329 0 0 0 1
## 529 1.01246206 0.820037374 0.82455261 0.96098160 0 0 0 1
## 530 -0.45726173 -0.444070086 -0.14955064 -0.14584858 0 1 0 1
## 531 0.76050941 0.387863883 0.64619568 0.84067397 0 0 0 1
## 532 0.58204295 0.474298581 0.70107473 0.53990490 0 0 0 1
## 533 -0.95066901 -0.962678275 -0.82181908 -0.78347902 1 0 0 1
## 534 0.79200349 0.755211350 0.98918978 1.04519694 0 0 0 1
## 535 -1.60154668 -1.470482126 -1.64500493 -1.64969394 1 0 0 1
## 536 0.99146601 0.755211350 0.92059096 1.00910465 0 1 0 1
## 537 0.55054887 0.106951114 0.46783874 0.41959727 0 0 0 1
## 538 0.99146601 0.928080746 0.67363520 0.50381261 0 1 0 1
## 539 1.14893641 0.755211350 1.04406883 0.97301236 0 1 1 0
## 540 0.55054887 0.755211350 0.39923992 0.67224329 0 0 0 1
## 541 0.80250152 0.971298095 0.75595379 1.06925847 0 0 0 1
## 542 -0.68821833 -0.649352494 -0.39650639 0.01055133 1 0 0 1
## 543 1.07545022 1.165776166 1.00290954 0.80458168 0 0 0 1
## 544 0.57154492 0.323037860 0.68735497 0.53990490 0 0 0 1
## 545 -1.52806050 -1.448873451 -1.49408752 -1.56547860 1 0 1 0
## 546 -1.18162560 -1.276004055 -1.17853295 -1.15643267 0 1 1 0
## 547 0.57154492 0.398668220 0.64619568 0.63615100 0 0 1 0
## 548 0.97046995 0.982102432 0.96175025 0.90082778 0 0 1 0
## 549 0.81299955 1.360254237 0.83827237 1.21362762 0 0 1 0
## 550 0.51905479 0.549928942 0.38552016 0.58802795 0 0 0 1
## 551 0.93897587 0.798428699 0.87943166 0.80458168 0 0 0 1
## 552 0.68702322 0.668776652 0.59131662 0.76848939 0 0 0 1
## 553 0.78150546 0.787624362 0.79711308 0.70833558 0 0 0 1
## 554 0.71851730 1.425080260 1.09894789 1.17753533 0 0 0 1
## 555 0.78150546 0.603950628 0.52271780 0.56396642 0 0 0 1
## 556 0.68702322 0.323037860 0.71479450 0.52787414 0 0 0 1
## 557 -1.27610784 -1.286808392 -1.28829106 -1.34892487 0 1 1 0
## 558 0.58204295 0.290624848 0.24832252 0.19101278 0 0 0 1
## 559 0.42457254 0.312233522 0.63247591 0.44365880 0 0 0 1
## 560 0.64503111 0.301429185 0.44039921 0.45568956 0 0 0 1
## 561 0.48756071 0.387863883 0.49527827 0.53990490 0 0 0 1
## 562 -1.58055063 -1.438069114 -1.60384563 -1.61360166 1 0 1 0
## 563 -1.68553090 -1.448873451 -1.71360375 -1.61360166 1 0 1 0
## 564 0.88648573 0.982102432 0.75595379 1.08128923 0 0 0 1
## 565 -1.62254274 -1.438069114 -1.56268634 -1.58954013 1 0 1 0
## 566 0.75001138 0.690385326 0.83827237 0.86473550 0 0 0 1
## 567 0.98096798 1.252210864 1.12638742 0.90082778 0 0 0 1
## 568 -1.26560982 -1.232786706 -1.20597248 -1.42110945 0 1 1 0
## 569 -1.25511179 -1.232786706 -1.13737365 -1.18049419 0 1 1 0
## 570 -1.53855852 -1.448873451 -1.61756540 -1.62563242 1 0 1 0
## 571 0.72901533 0.366255209 0.60503638 0.63615100 0 0 0 1
## 572 0.64503111 0.323037860 0.39923992 0.49178185 0 0 0 1
## 573 0.88648573 0.906472072 1.04406883 0.97301236 0 0 0 1
## 574 -1.59104866 -1.470482126 -1.69988398 -1.74594005 1 0 0 1
## 575 -1.58055063 -1.459677789 -1.56268634 -1.66172471 1 0 1 0
## 576 0.49805873 0.312233522 0.44039921 0.37147422 0 0 0 1
## 577 -0.52024989 -0.508896110 -0.41022616 0.02258210 0 1 1 0
## 578 0.91797982 1.165776166 1.00290954 0.97301236 0 0 0 1
## 579 0.62403506 0.387863883 0.70107473 0.58802795 0 0 0 1
## 580 -1.57005260 -1.405656102 -1.60384563 -1.62563242 1 0 1 0
## 581 0.60303900 0.441885569 0.59131662 0.32335117 0 0 0 1
## 582 0.60303900 0.474298581 0.83827237 0.69630482 0 0 0 1
## 583 -1.52806050 -1.427264777 -1.42548870 -0.99462762 1 0 1 0
## 584 0.60303900 1.079341468 0.64619568 0.52787414 0 0 1 0
## 585 0.40357649 0.409472558 0.57759685 0.69630482 0 0 0 1
## 586 0.82349757 1.122558817 0.96175025 0.66021253 0 0 0 1
## 587 -1.58055063 -1.459677789 -1.59012587 -1.63766318 1 0 0 1
## 588 -0.57274003 -0.573722133 -0.35534710 -0.01351019 0 1 1 0
## 589 0.64503111 0.593146291 0.70107473 0.75645863 0 0 0 1
## 590 0.50855676 0.690385326 0.72851426 0.61208948 0 0 0 1
## 591 0.72901533 0.884863397 0.93431072 0.57599719 0 0 0 1
## 592 0.78150546 0.917276409 0.79711308 1.14144304 0 0 0 1
## 593 0.70801927 0.614754966 0.81083284 0.90082778 0 0 1 0
## 594 0.51905479 0.549928942 0.59131662 0.61208948 0 0 0 1
## 595 -1.20262166 -1.286808392 -1.34317012 -1.25267877 0 1 0 1
## 596 0.63453308 0.366255209 0.45411898 0.78052016 0 0 0 1
## 597 0.90748179 1.219797852 0.89315143 0.97301236 0 0 1 0
## 598 0.82349757 0.679580989 1.04406883 0.90082778 0 0 0 1
## 599 -0.97166506 -0.854634902 -0.76694002 -0.54286376 1 0 0 1
## 600 0.65552914 0.690385326 0.85199214 0.68427405 0 0 1 0
## 601 0.56104690 0.485102918 0.57759685 0.35944346 0 0 0 1
## 602 0.65552914 0.690385326 0.85199214 0.66021253 0 0 1 0
## 603 -0.56224200 0.539124605 0.85199214 0.72036634 0 0 1 0
## 604 -1.58055063 -1.448873451 -1.53524681 -1.57750937 1 0 0 1
## 605 0.66602717 0.495907256 0.93431072 0.84067397 0 0 1 0
## 606 0.67652519 0.679580989 0.76967355 0.97301236 0 0 0 1
## 607 0.67652519 0.593146291 0.42667945 0.21507430 0 0 1 0
## 608 0.81299955 0.625559303 0.81083284 0.86473550 0 0 0 1
## 609 0.77100744 0.787624362 0.72851426 0.82864321 0 0 1 0
## 610 0.83399560 0.949689421 0.92059096 0.39553574 0 0 0 1
## 611 -1.13963349 -1.265199718 -1.20597248 -1.31283258 0 1 0 1
## 612 0.54005084 0.420276895 0.41295969 -0.13381782 0 0 0 1
## 613 0.55054887 0.290624848 0.68735497 0.21507430 0 0 1 0
## 614 0.64503111 0.766015687 0.48155851 0.51584337 0 0 0 1
## 615 0.61353703 0.387863883 0.74223402 0.55193566 0 0 0 1
## 616 0.72901533 0.917276409 0.75595379 0.68427405 0 0 1 0
## 617 0.49805873 0.506711593 0.44039921 0.76848939 0 0 0 1
## 618 -1.59104866 -1.459677789 -1.42548870 -1.31993010 1 0 0 1
## 619 -1.22361771 -1.286808392 -1.30201082 -1.22861724 0 1 1 0
## 620 0.65552914 0.485102918 0.60503638 0.57599719 0 0 0 1
## 621 -1.21311968 -1.308417067 -1.32945035 -1.32486335 0 1 0 1
## 622 0.93897587 0.863254723 1.02348919 1.75501195 0 0 0 1
## 623 -1.27610784 -1.351634416 -1.34317012 -1.27674029 0 1 0 1
## 624 -1.31809995 -1.286808392 -1.28829106 -1.20455572 0 1 0 1
## 625 -1.26560982 -1.297612730 -1.19225271 -1.25267877 0 1 0 1
## 626 -1.62254274 -1.438069114 -1.57640611 -1.68578623 1 0 0 1
## 627 -1.54905655 -1.459677789 -1.61756540 -1.66172471 1 0 0 1
## 628 -1.63304077 -1.459677789 -1.64500493 -1.73390928 1 0 0 1
## 629 0.80250152 0.679580989 1.29102459 1.12941228 0 0 0 1
## 630 -1.20262166 -1.308417067 -1.30201082 -1.25267877 0 1 0 1
## 631 0.83399560 0.744407013 0.76967355 0.90082778 0 0 0 1
## 632 0.78150546 0.917276409 0.79711308 0.93692007 0 0 0 1
## 633 -1.62254274 -1.448873451 -1.64500493 -1.60157089 1 0 0 1
## 634 -0.89817887 -0.876243577 -0.67090168 -0.19998702 1 0 1 0
## 635 -1.29710390 -1.297612730 -1.35688988 -1.89030920 0 1 0 1
## 636 -1.67503287 -1.470482126 -1.64500493 -1.67375547 1 0 0 1
## 637 -1.65403682 -1.459677789 -1.52152705 -1.69781700 1 0 0 1
## 638 -1.55955458 -1.416460440 -1.64500493 -1.66172471 1 0 0 1
## 639 -1.22361771 -1.330025742 -1.35688988 -1.28877106 0 1 0 1
## 640 0.04664357 -1.170121550 -0.65718191 -0.50677147 0 1 0 1
## 641 0.77100744 0.852450385 0.98918978 0.94895084 0 0 1 0
## 642 -0.92967295 -1.330025742 -0.64346215 -0.50677147 1 0 0 1
## 643 -0.89817887 -0.930265263 -0.78065979 -0.60301757 1 0 1 0
## 644 -1.22361771 -1.276004055 -1.34317012 -1.16846343 0 1 1 0
## 645 0.65552914 -1.157156345 0.49527827 0.66021253 0 0 0 1
## 646 -1.59104866 -1.438069114 -1.59012587 -1.68578623 1 0 0 1
## 647 0.72901533 0.679580989 0.78339332 0.67224329 0 0 1 0
## 648 0.56104690 0.431081232 0.59131662 0.62412024 0 0 0 1
## 649 0.65552914 0.560733279 0.92059096 0.80458168 0 0 0 1
## 650 0.60303900 0.528320267 0.50899803 0.52787414 0 0 0 1
## 651 1.08594825 0.560733279 1.01662931 0.75645863 0 0 1 0
## 652 1.03345811 0.960493758 0.63247591 0.47975108 0 0 0 1
## 653 -1.18162560 -1.265199718 -1.13737365 -1.32486335 0 1 1 0
## 654 -1.61204471 -1.459677789 -1.59012587 -1.70984776 1 0 1 0
## 655 -1.58055063 -1.459677789 -1.61756540 -1.70984776 1 0 0 1
## 656 -1.62254274 -1.459677789 -1.65872469 -1.70984776 1 0 1 0
## 657 -1.62254274 -1.427264777 -1.60384563 -1.61360166 1 0 0 1
## 658 0.92847784 0.863254723 0.90687119 0.91285855 0 0 0 1
## 659 -1.58055063 -1.438069114 -1.56268634 -1.68578623 1 0 0 1
## 660 -1.22361771 -1.286808392 -1.23341200 -1.28877106 0 1 1 0
## 661 -1.51756247 -1.459677789 -1.49408752 -1.62563242 1 0 0 1
## 662 -1.07664533 -1.254395381 -1.10993413 -1.20455572 0 1 1 0
## 663 -1.53855852 -1.438069114 -1.59012587 -1.61360166 1 0 1 0
## 664 0.66602717 1.435884597 0.76967355 0.90082778 0 0 0 1
## 665 0.95997192 1.003711107 1.14010718 1.27378143 0 0 0 1
## 666 0.63453308 0.614754966 1.05778860 0.84067397 0 0 0 1
## 667 0.67652519 0.722798338 0.02880629 0.67224329 0 0 0 1
## 668 -1.50706444 -1.405656102 -1.64500493 -1.61360166 1 0 1 0
## 669 0.97046995 1.338645562 0.90687119 0.90082778 0 0 0 1
## 670 -1.55955458 -1.438069114 -1.57640611 -1.73390928 1 0 1 0
## 671 0.61353703 0.668776652 0.64619568 0.73239710 0 0 1 0
## 672 0.63453308 0.301429185 0.59131662 0.84067397 0 0 0 1
## 673 -0.60423411 -0.606135145 -0.51998427 -0.12178706 0 1 0 1
## 674 0.57154492 0.160972801 0.44039921 0.26319735 0 0 0 1
## 675 -1.19212363 -1.286808392 -1.16481318 -1.24064801 0 1 1 0
## 676 0.49805873 0.204190150 0.52271780 0.25116659 0 0 0 1
## 677 -1.21311968 -1.276004055 -1.35688988 -1.40907869 0 1 1 0
## 678 0.59254098 2.721600732 0.60503638 0.60005871 0 0 0 1
## 679 0.65552914 0.409472558 0.38552016 0.57599719 0 0 1 0
## 680 -0.64622622 -0.552113459 -0.31418781 -0.16991011 0 1 1 0
## 681 0.47706268 0.431081232 0.61875615 0.66021253 0 0 0 1
## 682 0.77100744 1.068537131 0.65991544 0.64818176 0 0 1 0
## 683 0.92847784 1.144167491 1.04406883 0.91285855 0 0 1 0
## 684 -1.26560982 -1.297612730 -1.21969224 -1.26470953 0 1 0 1
## 685 -1.18162560 -1.252234513 -1.13737365 -1.16846343 0 1 0 1
## 686 -0.65672425 -0.498091772 -0.36906687 -0.31427927 0 1 1 0
## 687 -1.22361771 -1.265199718 -1.34317012 -1.24064801 0 1 0 1
## 688 -1.27610784 -1.308417067 -1.35688988 -1.30080182 0 1 0 1
## 689 -1.25511179 -1.221982369 -1.31573059 -1.34892487 0 1 1 0
## 690 -1.54905655 -1.459677789 -1.56268634 -1.57750937 1 0 0 1
## 691 0.83399560 0.863254723 0.55015733 0.63615100 0 0 1 0
## 692 0.55054887 0.657972315 0.81083284 0.78052016 0 0 0 1
## 693 -1.10813941 -1.232786706 -1.32945035 -1.19252495 0 1 0 1
## 694 0.89698376 0.420276895 0.55015733 0.46772032 0 0 0 1
## 695 0.41407452 0.031320753 0.12484464 -0.02554096 0 0 0 1
## 696 0.64503111 0.701189664 0.52271780 0.78052016 0 0 1 0
## 697 -1.24461376 -1.319221404 -1.34317012 -1.26470953 0 1 0 1
## 698 -1.51756247 -1.459677789 -1.74104327 -1.64969394 1 0 0 1
## 699 -0.40477160 1.576340982 1.08522813 0.82864321 0 0 1 0
## 700 1.25391668 1.781623390 0.76967355 1.11738152 0 0 1 0
## 701 0.59254098 0.463494244 0.49527827 0.69630482 0 0 0 1
## 702 -0.58323806 -0.444070086 -0.24558899 -0.12178706 0 1 1 0
## 703 0.78150546 -1.146352008 0.46783874 0.49178185 0 0 0 1
## 704 0.45606662 0.225798824 0.57759685 0.70833558 0 0 0 1
## 705 0.81299955 0.982102432 0.98918978 0.98504313 0 0 0 1
## 706 0.90748179 1.046928456 1.20870600 1.12941228 0 0 0 1
## 707 0.48756071 0.387863883 0.68735497 0.66021253 0 0 0 1
## 708 -0.92967295 -0.951873937 -0.79437955 -0.80754054 1 0 0 1
## 709 0.45606662 0.269016173 0.78339332 0.58802795 0 0 1 0
## 710 -1.68553090 -1.448873451 -1.64500493 -1.58954013 1 0 0 1
## 711 -0.57274003 -0.681765506 -0.64346215 0.19101278 0 1 0 1
## 712 -1.63304077 -1.470482126 -1.57640611 -1.64969394 1 0 0 1
## 713 -1.57005260 -1.438069114 -1.43920846 -1.66172471 1 0 0 1
## 714 0.48756071 1.154971829 0.87943166 1.09331999 0 0 0 1
## 715 0.62403506 0.441885569 0.74223402 0.79255092 0 0 0 1
## 716 0.76050941 0.895667734 0.97547001 1.09331999 0 0 0 1
## 717 0.80250152 0.560733279 0.59131662 0.63615100 0 0 0 1
## 718 1.01246206 0.960493758 0.94803048 1.06925847 0 0 0 1
## 719 0.58204295 0.657972315 0.70107473 0.91285855 0 0 0 1
## 720 -0.63572819 0.409472558 -0.28674828 2.11593483 0 1 1 0
## 721 0.79200349 0.052929428 0.34436087 0.28725888 0 0 0 1
## 722 -1.31809995 -1.276004055 -1.31573059 -1.32486335 0 1 0 1
## 723 0.72901533 0.982102432 0.82455261 0.81661244 0 0 0 1
## 724 -1.57005260 -1.427264777 -1.61756540 -1.60157089 1 0 0 1
## 725 -1.24461376 -1.308417067 -1.31573059 -1.24064801 0 1 1 0
## 726 0.57154492 0.323037860 0.61875615 0.81661244 0 0 0 1
## 727 -1.31809995 -1.297612730 -1.34317012 -1.22861724 0 1 0 1
## 728 0.88648573 1.176580503 1.07150836 1.05722770 0 0 0 1
## 729 -1.61204471 -1.448873451 -1.69988398 -1.69781700 1 0 0 1
## 730 -1.27610784 -1.330025742 -1.27457130 -1.28877106 0 1 0 1
## 731 0.83399560 0.830841711 1.11266765 1.10535075 0 0 0 1
## 732 0.91797982 0.841646048 0.98918978 0.85270473 0 0 0 1
## 733 0.73951336 0.398668220 0.83827237 0.62412024 0 0 0 1
## 734 -1.28660587 -1.254395381 -1.19225271 -1.24064801 0 1 1 0
## 735 -1.18162560 -1.276004055 -1.09621436 -1.26470953 0 1 1 0
## 736 -1.64353879 -1.470482126 -1.61756540 -1.64969394 1 0 1 0
## 737 -1.60154668 -1.448873451 -1.64500493 -1.62563242 1 0 0 1
## 738 -1.30760193 -1.254395381 -1.28829106 -1.25267877 1 0 1 0
## 739 -1.57005260 -1.438069114 -1.57640611 -1.58954013 1 0 0 1
## 740 0.47706268 0.560733279 0.71479450 0.63615100 0 0 0 1
## 741 -0.58323806 -0.444070086 -0.28674828 3.52353409 0 1 1 0
## 742 -0.85618676 -0.843830565 -1.28829106 -0.39849461 1 0 1 0
## 743 0.64503111 0.582341954 0.86571190 0.68427405 0 0 0 1
## 744 0.47706268 0.301429185 0.34436087 0.27522812 0 0 0 1
## 745 0.62403506 0.506711593 0.57759685 0.87676626 0 0 0 1
## 746 -1.28660587 -1.276004055 -1.35688988 -1.31283258 0 1 0 1
## 747 -1.25511179 -1.286808392 -1.28829106 -1.15643267 0 1 0 1
## 748 -1.64353879 -1.438069114 -1.64500493 -1.70984776 1 0 0 1
## 749 -1.29710390 -1.254395381 -1.37060964 -1.32486335 0 1 0 1
## 750 0.89698376 1.036124119 0.87943166 1.21362762 0 0 0 1
## 751 -1.23411574 -1.265199718 -1.26085153 -1.20455572 0 1 0 1
## 752 0.95997192 1.090145805 0.78339332 1.02113541 0 0 0 1
## 753 -1.61204471 -1.438069114 -1.64500493 -1.52938631 1 0 0 1
## 754 -1.53855852 -0.282005027 -0.69834120 -0.19397164 0 1 1 0
## 755 -1.54905655 -1.448873451 -1.54896658 -1.74594005 1 0 0 1
## 756 -1.54905655 -1.438069114 -1.52152705 -1.63766318 1 0 1 0
## 757 -0.97166506 -0.822221890 -0.80809932 -0.55489452 1 0 1 0
## 758 0.62403506 0.560733279 0.70107473 0.73239710 0 0 0 1
## 759 0.94947390 1.122558817 1.03034907 0.97301236 0 0 1 0
## 760 0.73951336 0.539124605 0.70107473 0.76848939 0 0 0 1
## 761 -1.63304077 -1.438069114 -1.63128516 -1.66172471 1 0 1 0
## 762 0.65552914 0.614754966 0.64619568 0.56396642 0 0 0 1
## 763 -1.28660587 -1.265199718 -1.30201082 -1.25267877 0 1 1 0
## 764 0.66602717 0.517515930 0.44039921 0.49178185 0 0 0 1
## 765 0.50855676 0.528320267 0.42667945 0.51584337 0 0 0 1
## 766 0.36158438 0.744407013 1.05778860 0.61208948 0 0 1 0
## 767 0.67652519 1.187384840 0.67363520 0.76848939 0 0 0 1
## 768 0.83399560 0.884863397 1.16754671 0.98504313 0 0 1 0
## 769 0.59254098 0.809233036 0.56387709 0.84067397 0 0 0 1
## 770 0.63453308 0.485102918 0.85199214 0.60005871 0 0 0 1
## 771 0.54005084 0.593146291 0.59131662 0.63615100 0 0 0 1
## 772 -0.89817887 -0.930265263 -0.79437955 -0.68723291 1 0 0 1
## 773 0.52955281 0.355450871 0.53643756 0.22710506 0 0 0 1
## 774 0.73951336 0.636363640 0.59131662 0.69630482 0 0 0 1
## 775 0.62403506 0.733602675 0.81083284 0.73239710 0 0 0 1
## 776 -1.22361771 -1.254395381 -1.34317012 -1.20455572 0 1 0 1
## 777 0.93897587 1.046928456 0.83827237 0.79255092 0 0 1 0
## 778 0.58204295 0.528320267 0.42667945 0.38350498 0 0 1 0
## 779 -1.28660587 -1.254395381 -1.31573059 -1.20455572 0 1 0 1
## 780 0.36158438 0.409472558 0.65991544 0.56396642 0 0 0 1
## 781 -1.28660587 -1.232786706 -1.43920846 -1.40907869 0 1 0 1
## 782 0.55054887 0.690385326 0.75595379 0.62412024 0 0 1 0
## 783 -1.37059009 -1.297612730 -1.34317012 -1.26470953 1 0 0 1
## 784 0.59254098 0.679580989 0.49527827 0.55193566 0 0 0 1
## 785 0.84449363 0.636363640 0.81083284 0.57599719 0 0 0 1
## 786 0.51905479 0.766015687 0.70107473 0.49178185 0 0 0 1
## 787 0.61353703 0.603950628 0.50899803 0.61208948 0 0 0 1
## 788 -0.65672425 -0.530504784 -0.31418781 -0.20600240 0 1 0 1
## 789 0.59254098 0.452689907 0.63247591 0.45568956 0 0 0 1
## 790 0.63453308 0.884863397 0.35808063 0.66021253 0 0 0 1
## 791 -1.57005260 -1.416460440 -1.63128516 -1.63766318 1 0 0 1
## 792 0.56104690 0.701189664 0.65991544 0.38350498 0 0 0 1
## 793 0.79200349 1.208993515 0.68735497 0.58802795 0 0 1 0
## 794 -1.28660587 -1.265199718 -1.32945035 -1.24064801 0 1 0 1
## 795 0.85499165 0.711994001 0.04252606 0.43162803 0 0 1 0
## 796 0.52955281 0.744407013 0.72851426 -0.50677147 0 0 0 1
## 797 0.72901533 1.360254237 1.16754671 0.97301236 0 0 1 0
## 798 0.88648573 0.874059060 0.79711308 0.88879702 0 0 0 1
## 799 -1.23411574 -1.265199718 -1.37060964 -1.21658648 0 1 0 1
## 800 0.51905479 0.431081232 0.56387709 0.76848939 0 0 1 0
## 801 -1.27610784 -1.297612730 -1.39804917 -1.34892487 0 1 0 1
## 802 -1.26560982 -1.286808392 -1.34317012 -1.15643267 0 1 0 1
## 803 -1.21311968 -1.308417067 -1.41176894 -1.28877106 0 1 0 1
## 804 0.71851730 1.057732793 0.93431072 0.87676626 0 0 0 1
## 805 -1.64353879 -1.427264777 -1.63128516 -1.69781700 1 0 0 1
## 806 -1.62254274 -1.448873451 -1.71360375 -1.64969394 1 0 0 1
## 807 -1.30760193 -1.254395381 -1.30201082 -1.25267877 0 1 0 1
## 808 -1.04515125 -1.005895624 -0.79437955 -0.57895605 1 0 0 1
## 809 -0.62523017 -0.562917796 -0.41022616 -0.23006392 0 1 0 1
## 810 -1.62254274 -1.470482126 -1.68616422 -1.67375547 1 0 0 1
## 811 0.84449363 0.917276409 0.71479450 -0.16991011 0 0 1 0
## 812 0.79200349 0.571537617 0.83827237 0.94895084 0 0 0 1
## 813 -1.63304077 -1.470482126 -1.78220257 -1.66172471 1 0 0 1
## 814 -1.39158614 -1.319221404 -1.24713177 -1.27674029 1 0 0 1
## 815 -1.67503287 -1.481286463 -1.65872469 -1.70984776 1 0 0 1
## 816 0.81299955 0.830841711 0.89315143 0.68427405 0 0 0 1
## 817 0.85499165 1.057732793 0.82455261 0.92488931 0 0 0 1
## 818 -1.64353879 -1.459677789 -1.76848280 -1.78203234 1 0 0 1
## 819 -0.63572819 -0.714178518 -0.43766569 -0.29021774 0 1 0 1
## 820 -1.24461376 -1.286808392 -1.61756540 -1.24064801 1 0 0 1
## 821 -1.02415519 -1.027504298 -0.78065979 -0.69926368 1 0 0 1
## 822 -1.25511179 -1.319221404 -1.26085153 -1.28877106 0 1 0 1
## 823 0.71851730 0.517515930 0.68735497 0.70833558 0 0 0 1
## 824 0.72901533 0.474298581 0.57759685 0.52787414 0 0 0 1
## 825 -1.41258220 -1.340830079 -1.42548870 -1.31283258 1 0 0 1
## 826 -0.95066901 -1.016699961 -0.79437955 -0.61504834 1 0 0 1
## 827 0.66602717 0.377059546 0.37180039 0.73239710 0 0 0 1
## 828 -1.20262166 -1.258717116 -1.38432941 -1.24064801 0 1 0 1
## 829 -1.62254274 -1.459677789 -1.53524681 -1.64969394 1 0 0 1
## 830 -0.89817887 -0.951873937 -0.83553885 -0.69926368 1 0 1 0
## 831 -1.64353879 -1.459677789 -1.63128516 -1.68578623 1 0 0 1
## 832 0.54005084 0.431081232 0.63247591 0.63615100 0 0 0 1
## 833 0.84449363 1.014515444 0.97547001 0.91285855 0 0 0 1
## 834 -1.66453485 -1.438069114 -1.61756540 -1.64969394 1 0 0 1
## 835 -1.30760193 -1.308417067 -1.41176894 -1.24064801 0 1 0 1
## 836 -1.30760193 -1.297612730 -1.32945035 -1.21658648 0 1 0 1
## 837 -1.54905655 -1.448873451 -1.59012587 -1.60157089 1 0 0 1
## 838 1.18043049 1.122558817 0.90687119 1.04519694 0 0 0 1
## 839 -0.66722227 -0.649352494 -0.31418781 0.38350498 0 1 1 0
## 840 -1.29710390 -1.286808392 -1.38432941 -1.32486335 0 1 1 0
## 841 -1.26560982 -1.243591043 -1.12365389 -1.34892487 0 1 1 0
## 842 -0.86668479 -0.941069600 -0.75322026 -0.47067918 1 0 1 0
## 843 0.50855676 0.820037374 0.59131662 0.35944346 0 0 1 0
## 844 0.57154492 0.409472558 0.49527827 0.62412024 0 0 0 1
## 845 0.88648573 0.776820025 0.89315143 0.50381261 0 0 0 1
## 846 0.62403506 0.333842197 0.49527827 0.40756651 0 0 0 1
## 847 0.86548968 0.938885083 0.79711308 0.98504313 0 0 0 1
## 848 0.72901533 0.582341954 0.74223402 0.75645863 0 0 0 1
## 849 -1.67503287 -1.448873451 -1.63128516 -1.68578623 1 0 0 1
## 850 -0.89817887 -0.941069600 -0.75322026 -0.66317139 1 0 0 1
## 851 -1.00315914 -0.941069600 -0.76694002 -0.62707910 1 0 0 1
## 852 -1.60154668 -1.438069114 -1.57640611 -1.62563242 1 0 0 1
## 853 0.63453308 0.193385812 0.52271780 0.57599719 0 0 0 1
## 854 0.46656465 0.355450871 0.55015733 0.57599719 0 0 0 1
## 855 0.59254098 0.517515930 0.34436087 0.45568956 0 0 1 0
## 856 0.88648573 1.111754480 1.08522813 0.99707389 0 0 0 1
## 857 -1.27610784 -1.211178032 -1.20597248 -1.28877106 0 1 1 0
## 858 0.57154492 0.128559789 0.24832252 0.31132040 0 0 0 1
## 859 -1.63304077 -1.459677789 -1.59012587 -1.68578623 1 0 0 1
## 860 0.91797982 1.252210864 0.85199214 0.91285855 0 0 0 1
## 861 0.62403506 0.517515930 0.44039921 0.67224329 0 0 0 1
## 862 0.60303900 0.409472558 0.81083284 0.87676626 0 0 0 1
## 863 0.72901533 1.295428213 0.63247591 0.47975108 0 0 0 1
## 864 -1.81150723 -1.297612730 -1.23341200 -1.36095563 0 1 0 1
## 865 -1.61204471 -1.448873451 -1.79592233 -1.66172471 1 0 0 1
## 866 0.80250152 1.036124119 0.93431072 0.92488931 0 0 0 1
## 867 0.59254098 0.312233522 0.39923992 0.35944346 0 0 0 1
## 868 0.62403506 0.171777138 0.44039921 0.33538193 0 0 0 1
## 869 1.04395614 1.111754480 1.04406883 1.05722770 0 0 0 1
## 870 -1.62254274 -1.459677789 -1.64500493 -1.62563242 1 0 1 0
## 871 0.67652519 0.506711593 0.71479450 0.76848939 0 0 1 0
## 872 1.00196403 0.971298095 0.86571190 0.90082778 0 0 1 0
## 873 -1.62254274 -1.459677789 -1.67244445 -1.54141708 1 0 1 0
## 874 -1.58055063 -1.448873451 -1.64500493 -1.58954013 1 0 0 1
## 875 0.81299955 1.068537131 0.89315143 0.90082778 0 0 0 1
## 876 0.57154492 0.539124605 0.38552016 0.57599719 0 0 0 1
## 877 -0.89817887 -0.887047914 -0.79437955 -0.37443308 1 0 1 0
## 878 0.51905479 0.269016173 0.37180039 0.44365880 0 0 0 1
## 879 0.58204295 0.841646048 0.53643756 0.38350498 0 0 0 1
## 880 0.88648573 1.760014715 0.98918978 1.03316618 0 0 0 1
## 881 0.69752125 0.798428699 0.42667945 0.76848939 0 0 1 0
## 882 0.58204295 0.744407013 0.48155851 0.47975108 0 0 1 0
## 883 0.57154492 0.809233036 0.49527827 0.60005871 0 0 1 0
## 884 -1.27610784 -1.265199718 -1.23341200 -1.25267877 0 1 1 0
## 885 0.33009030 0.474298581 0.48155851 0.55193566 0 0 1 0
## 886 0.49805873 0.377059546 0.37180039 0.84440031 0 0 0 1
## 887 -1.26560982 -1.308417067 -1.38432941 -1.28877106 0 1 0 1
## 888 0.80250152 0.560733279 0.61875615 0.34741269 0 0 1 0
## 889 -1.00315914 -0.973482612 -0.86297837 -0.68723291 1 0 0 1
## 890 -1.28660587 -1.438069114 -1.20597248 -1.15643267 0 1 0 1
## 891 0.51905479 0.474298581 0.63247591 0.57599719 0 0 0 1
## 892 0.75001138 0.636363640 0.85199214 0.90082778 0 0 1 0
## 893 0.88648573 0.603950628 0.59131662 0.53990490 0 0 0 1
## 894 0.48756071 0.150168463 0.19344346 0.10679744 0 0 0 1
## 895 -1.23411574 -1.254395381 -1.31573059 -1.13237114 0 1 0 1
## 896 -1.31809995 -1.232786706 -1.24713177 -1.22861724 0 1 0 1
## 897 -1.24461376 -1.265199718 -1.23341200 -1.15643267 0 1 0 1
## 898 0.57154492 0.495907256 0.70107473 0.74442787 0 0 1 0
## 899 -1.21311968 -1.265199718 -1.23341200 -1.20455572 0 1 0 1
## 900 0.46656465 1.198189178 0.60503638 0.64818176 0 0 1 0
## 901 0.52955281 0.377059546 0.48155851 0.23913583 0 0 1 0
## 902 0.90748179 1.252210864 0.94803048 0.69630482 0 0 1 0
## 903 0.52955281 0.074538103 0.23460275 0.05867438 0 0 0 1
## 904 0.67652519 1.630362668 0.57759685 0.28725888 0 0 0 1
## 905 -1.31809995 -1.286808392 -1.24713177 -1.18049419 0 1 0 1
## 906 0.46656465 0.042125091 0.01508653 0.28725888 0 0 0 1
## 907 0.56104690 0.193385812 0.46783874 0.33538193 0 0 0 1
## 908 -1.22361771 1.122558817 0.94803048 0.82864321 0 0 1 0
res2 <- optics(hawks_scaled, minPts = 10)
res2
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.40653377439247, eps_cl = NA, xi = NA
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi
The data indicates that 3.47 is the maximum size to
consider the neighborhood between the data points, so the size has been
slightly increased.
We will print the order again for this new analysis.
res2$order
## [1] 1 571 390 267 260 245 620 185 184 150 149 137 93 824 764 650 408 233
## [19] 193 25 236 481 426 467 317 787 771 594 281 12 87 378 134 119 861 844
## [37] 701 471 223 648 283 762 765 334 139 7 165 555 116 891 832 681 508 579
## [55] 532 131 11 784 295 206 876 561 364 80 323 337 157 823 717 473 270 3
## [73] 760 758 715 427 135 848 589 506 450 423 79 48 774 552 292 154 113 43
## [91] 403 182 179 556 526 178 90 355 544 740 707 309 726 528 437 342 854 550
## [109] 391 572 465 183 181 274 51 286 789 615 515 354 222 251 893 585 743 692
## [127] 582 483 649 336 155 180 338 853 489 110 733 504 45 617 770 560 290 2
## [145] 867 878 846 576 478 466 434 380 230 19 862 596 780 601 581 324 258 907
## [163] 240 868 674 117 676 537 32 205 21 412 200 177 173 138 49 672 559 114
## [181] 505 457 745 590 531 385 151 136 397 497 123 744 209 208 204 194 367 614
## [199] 540 558 369 153 694 118 719 147 55 608 775 207 10 92 344 472 197 27
## [217] 785 115 106 46 452 102 462 47 499 496 44 827 470 704 247 455 163 273
## [235] 886 261 812 566 501 392 105 773 631 798 847 658 632 485 428 300 226 124
## [253] 91 816 553 551 384 377 351 421 875 866 833 817 705 522 517 804 573 335
## [271] 732 529 262 492 388 54 564 541 350 716 502 441 254 752 389 246 174 82
## [289] 66 50 229 186 120 723 446 271 463 482 257 225 22 444 860 869 856 578
## [307] 220 97 95 60 728 567 252 164 127 81 73 217 158 718 592 6 591 241
## [325] 145 669 387 187 543 264 189 63 280 435 586 89 731 606 666 430 845 303
## [343] 17 792 750 133 769 534 366 418 140 786 109 652 382 192 510 879 790 706
## [361] 235 58 838 126 610 265 96 858 298 598 339 491 77 248 259 512 15 469
## [379] 146 297 373 894 156 20 721 76 767 484 333 629 407 343 665 376 255 232
## [397] 242 399 348 903 331 906 410 62 863 695 30 52 272 664 78 346 162 381
## [415] 554 714 244 612 148 456 64 880 345 479 667 175 411 498 904 296 282 88
## [433] 349 347 132 622 243 796 414 362 59 538 536 433 678 703 645 23 326 453
## [451] 266 33 888 487 855 778 679 402 365 696 883 881 671 898 782 647 460 871
## [469] 602 600 438 250 31 372 278 237 609 72 14 593 547 190 159 13 199 169
## [487] 285 203 800 605 294 892 616 525 405 691 682 71 514 882 275 28 872 777
## [505] 759 548 683 409 291 289 9 480 293 269 641 902 597 94 440 18 709 8
## [523] 75 332 70 843 36 607 468 436 256 406 401 24 793 584 37 34 901 768
## [541] 224 238 797 885 549 613 494 900 507 474 39 35 651 396 16 766 210 38
## [559] 795 74 191 700 166 356 811 359 603 476 398 539 322 699 908 490 361 330
## [577] 321 889 851 850 826 821 772 708 599 533 371 808 524 299 642 234 319 542
## [595] 814 825 820 783 618 488 360 315 284 26 231 837 874 852 829 739 724 791
## [613] 737 657 633 535 810 527 859 831 849 805 748 636 520 503 307 304 712 646
## [631] 626 422 314 308 655 419 659 311 417 627 587 834 628 815 302 638 495 41
## [649] 101 729 806 394 368 755 379 196 432 690 85 604 637 509 144 142 753 710
## [667] 574 100 698 865 813 661 112 212 130 818 65 107 363 141 121 713 213 40
## [685] 341 357 128 287 152 429 42 56 819 809 788 673 415 400 310 353 239 108
## [703] 67 4 249 530 711 111 640 327 328 685 899 897 751 779 836 807 802 794
## [721] 776 727 624 448 370 747 828 799 687 697 887 803 746 688 639 623 500 475
## [739] 313 219 523 416 621 214 630 595 202 801 749 29 374 276 722 228 176 171
## [757] 375 172 160 104 84 5 822 730 301 835 306 413 83 167 129 895 611 198
## [775] 905 896 218 168 99 227 684 464 312 625 340 161 693 53 781 195 201 216
## [793] 420 890 277 215 211 253 425 635 329 305 320 864 318 325 493 668 663 756
## [811] 580 575 570 562 870 761 565 451 449 670 654 125 268 386 736 656 122 68
## [829] 873 563 545 738 583 424 842 877 830 757 643 443 221 86 57 288 634 188
## [847] 742 358 763 884 857 734 660 519 513 458 439 431 675 518 461 404 143 619
## [865] 725 644 486 447 316 170 395 98 454 477 557 689 516 841 653 568 840 569
## [883] 546 735 677 69 662 103 383 352 393 702 839 686 680 588 577 459 445 442
## [901] 521 754 511 263 279 720 741 61
It is clear that the number of valleys has increased considerably, as well as their size.
plot(res2, main= "Diagram reachability plot")
k <- 9
kNNdistplot(hawks_scaled, k = k)
We can see that the elbow continues to rise drastically, even a bit
later from 0.6 to 0.8, shifting to a mean of
0.7. We will introduce this new change in epsilon.
res2 <- extractDBSCAN(res2, eps_cl = 0.7)
res2
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.40653377439247, eps_cl = 0.7, xi = NA
## The clustering contains 8 cluster(s) and 51 noise points.
##
## 0 1 2 3 4 5 6 7 8
## 51 438 115 110 18 93 27 14 42
##
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi, cluster
As expected, the number of clusters changes radically, we now have 8 clusters and much more noise, as seen in the plot.
plot(res2)
Upon plotting, we see that the clusters themselves overlap, concluding that this analysis is not valid and is erroneous.
hullplot(hawks_scaled2, res2)
## Warning in hullplot(hawks_scaled2, res2): Not enough colors. Some colors will
## be reused.
We return to our normalized dataset without the dummy attributes and change the epsilon value to 0.6 and 0.61, determining if we see significant changes since we are right on the limit.
res06 <- extractDBSCAN(res, eps_cl = 0.6)
res06
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.07488223798005, eps_cl = 0.6, xi = NA
## The clustering contains 3 cluster(s) and 29 noise points.
##
## 0 1 2 3
## 29 559 61 259
##
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi, cluster
res61 <- extractDBSCAN(res, eps_cl = 0.61)
res61
## OPTICS ordering/clustering for 908 objects.
## Parameters: minPts = 10, eps = 3.07488223798005, eps_cl = 0.61, xi = NA
## The clustering contains 2 cluster(s) and 28 noise points.
##
## 0 1 2
## 28 559 321
##
## Available fields: order, reachdist, coredist, predecessor, minPts, eps,
## eps_cl, xi, cluster
Conclusions ESP
The tests with eps_cl values of 0.55, 0.6, and 0.61 for the OPTICS algorithm provide a clear insight into the sensitivity of the epsilon parameter in cluster identification. With eps_cl = 0.55 and eps_cl = 0.6, OPTICS identifies 3 clusters, with a small variation in the number of noise points (31 and 29, respectively). However, when increasing eps_cl to 0.61, the number of clusters reduces to 2, and the noise points decrease to 28.
This indicates that the epsilon value within the range of 0.55 to 0.61 is a critical margin where small changes can significantly affect the clustering structure. This behavior suggests that the data has variable density, which is sensitive to epsilon adjustments, affecting the algorithm’s ability to differentiate between dense clusters and noise points.
In comparison, the DBSCAN and OPTICS methods show greater stability
and clarity in the clustering structure, consistently identifying three
main clusters with different eps_cl values. The average number of noise
points varied slightly, but the overall result was consistent with the
data structure.
This stability suggests that density-based methods like DBSCAN and
OPTICS may be more suitable for these specific data compared to
partition-based methods like k-means, especially due to their ability to
handle density variations and detect noise points.
Each of these clustering algorithms has its pros and cons. Choosing the best one depends on the structure and characteristics of the dataset and the purpose of the clustering. For example, if we want to group customers and need all the data to belong to a group, K-means is useful because it guarantees that each data point will belong to a cluster. On the other hand, if we want to filter noise and focus only on certain subsets, DBSCAN is better, as it allows ignoring isolated data points and focusing only on the most relevant ones, such as in an analysis of areas with prospect potential.
K-means forms spherical clusters and requires specifying the number of groups beforehand. It is efficient with large datasets and is not affected by the variation in densities between points. However, it is sensitive to noise and outliers, which can distort the formation of clusters and make anomaly detection difficult. It only needs to define one parameter: the desired number of clusters (K).
On the other hand, DBSCAN creates irregularly shaped clusters of variable sizes without needing to specify the number of groups beforehand. Although not as efficient with high-dimensional data, it handles noise well and can mark certain points as “noise” or out of the clusters, making anomaly detection easier. However, it is sensitive to the choice of its two parameters: the neighborhood radius (R) and the minimum number of points (M) in that neighborhood, and it doesn’t perform well with sparse data or with highly variable densities.
Both algorithms have strengths: K-means works well on large, uniform data, while DBSCAN excels with complex densities and noise. The choice between them should be based on the type of data and the specific needs of the analysis.
In a study conducted by Schubert et al. (2017), K-Means and DBSCAN
were compared on simulated datasets with different density and shape
configurations. The results showed that DBSCAN outperformed K-Means in
situations where clusters had different shapes and sizes, while K-Means
was more efficient in uniformly distributed data. This study illustrates
how the choice of algorithm can significantly affect data
interpretation.
A practical use case is in analyzing customer data in the retail sector.
If K-Means is used, the segmentation may be appropriate if customers
group consistently and without significant outliers. However, if the
data contains customers with extreme behaviors, DBSCAN could provide
better insights by identifying those outliers and preserving the
integrity of the main clusters.
The choice between K-Means and DBSCAN depends on the type of data and the application context. K-Means is preferable for well-structured and spherical data, while DBSCAN is the best choice for data with complex shapes and the presence of outliers. Understanding the characteristics of each algorithm allows analysts to select the most suitable one, thus improving the quality of the results and data-driven decision-making.
The analysis conducted concludes that, in the dataset used, three heterogeneous groups were identified, and DBSCAN and OPTICS methods outperformed K-means, especially in a dataset with much noise and variability. However, the results were not entirely satisfactory.
K-means: A prototype-based clustering method that seeks to minimize the variance within each group. While simple and effective, it requires knowing the number of clusters beforehand and tends to form circular clusters, which limits its usefulness in noisy datasets or datasets with complex shapes.
DBSCAN: A density-based method that groups points with a high concentration in their neighborhood, allowing the identification of non-linear clusters and handling noise and outliers well. However, it is sensitive to the input parameters, and its performance can be affected in high-dimensional datasets.
OPTICS was explored as an extension of DBSCAN, which allows identifying clusters with variable densities and represents the results graphically, facilitating analysis in contexts where clustering patterns are not obvious.
When applying both methods to a dataset of raptor birds, it was observed that K-means generated uniform clusters with good separation, while DBSCAN identified more complex and dense clusters and handled noise better. OPTICS provided a useful visual representation of the structure and density of the data.
Regarding cluster validation, both techniques showed good cohesion and separation according to the average silhouette index, indicating less compactness and separation between clusters.
Both methods can be useful, depending on the nature of the dataset and the research questions.