youtube <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2021/2021-03-02/youtube.csv')
skimr::skim(youtube)
Name | youtube |
Number of rows | 247 |
Number of columns | 25 |
_______________________ | |
Column type frequency: | |
character | 10 |
logical | 7 |
numeric | 7 |
POSIXct | 1 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
brand | 0 | 1.00 | 3 | 9 | 0 | 10 | 0 |
superbowl_ads_dot_com_url | 0 | 1.00 | 34 | 120 | 0 | 244 | 0 |
youtube_url | 11 | 0.96 | 43 | 43 | 0 | 233 | 0 |
id | 11 | 0.96 | 11 | 11 | 0 | 233 | 0 |
kind | 16 | 0.94 | 13 | 13 | 0 | 1 | 0 |
etag | 16 | 0.94 | 27 | 27 | 0 | 228 | 0 |
title | 16 | 0.94 | 6 | 99 | 0 | 228 | 0 |
description | 50 | 0.80 | 3 | 3527 | 0 | 194 | 0 |
thumbnail | 129 | 0.48 | 48 | 48 | 0 | 118 | 0 |
channel_title | 16 | 0.94 | 3 | 37 | 0 | 185 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
funny | 0 | 1 | 0.69 | TRU: 171, FAL: 76 |
show_product_quickly | 0 | 1 | 0.68 | TRU: 169, FAL: 78 |
patriotic | 0 | 1 | 0.17 | FAL: 206, TRU: 41 |
celebrity | 0 | 1 | 0.29 | FAL: 176, TRU: 71 |
danger | 0 | 1 | 0.30 | FAL: 172, TRU: 75 |
animals | 0 | 1 | 0.37 | FAL: 155, TRU: 92 |
use_sex | 0 | 1 | 0.27 | FAL: 181, TRU: 66 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1.00 | 2010.19 | 5.86 | 2000 | 2005 | 2010 | 2015.00 | 2020 | ▇▇▇▇▆ |
view_count | 16 | 0.94 | 1407556.46 | 11971111.01 | 10 | 6431 | 41379 | 170015.50 | 176373378 | ▇▁▁▁▁ |
like_count | 22 | 0.91 | 4146.03 | 23920.40 | 0 | 19 | 130 | 527.00 | 275362 | ▇▁▁▁▁ |
dislike_count | 22 | 0.91 | 833.54 | 6948.52 | 0 | 1 | 7 | 24.00 | 92990 | ▇▁▁▁▁ |
favorite_count | 16 | 0.94 | 0.00 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | ▁▁▇▁▁ |
comment_count | 25 | 0.90 | 188.64 | 986.46 | 0 | 1 | 10 | 50.75 | 9190 | ▇▁▁▁▁ |
category_id | 16 | 0.94 | 19.32 | 8.00 | 1 | 17 | 23 | 24.00 | 29 | ▃▁▂▆▇ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
published_at | 16 | 0.94 | 2006-02-06 10:02:36 | 2021-01-27 13:11:29 | 2013-01-31 09:13:55 | 227 |
data <- youtube %>%
# Treat missing values
select(-superbowl_ads_dot_com_url, -youtube_url, -id, -kind, -etag, -channel_title, -category_id, -comment_count, -thumbnail, -published_at) %>%
na.omit()
Identify good predictors.
view_count
data %>%
ggplot(aes(like_count, view_count)) +
scale_y_log10() +
geom_point()
celebrity
data %>%
ggplot(aes(like_count, funny)) +
geom_point()
Brand
data %>%
# tokenize title
unnest_tokens(output = word, input = brand) %>%
# calculate avg rent per word
group_by(word) %>%
summarise(like_count = mean(like_count),
n = n()) %>%
ungroup() %>%
# Plot
ggplot(aes(like_count, fct_reorder(word, like_count))) +
geom_point() +
labs(y = "Brands")
EDA Shortcut
# Step 1: Prepare Data
data_binarized_tbl <- data %>%
select(-year) %>%
binarize()
data_binarized_tbl %>% glimpse()
## Rows: 194
## Columns: 40
## $ brand__Bud_Light <dbl> 0, 1, 1, 0, 1, 0,…
## $ brand__Budweiser <dbl> 0, 0, 0, 0, 0, 0,…
## $ `brand__Coca-Cola` <dbl> 0, 0, 0, 0, 0, 0,…
## $ brand__Doritos <dbl> 0, 0, 0, 0, 0, 0,…
## $ `brand__E-Trade` <dbl> 0, 0, 0, 0, 0, 0,…
## $ brand__Hynudai <dbl> 0, 0, 0, 1, 0, 0,…
## $ brand__Kia <dbl> 0, 0, 0, 0, 0, 0,…
## $ brand__NFL <dbl> 0, 0, 0, 0, 0, 0,…
## $ brand__Pepsi <dbl> 0, 0, 0, 0, 0, 0,…
## $ brand__Toyota <dbl> 1, 0, 0, 0, 0, 1,…
## $ funny__0 <dbl> 1, 0, 0, 1, 0, 0,…
## $ funny__1 <dbl> 0, 1, 1, 0, 1, 1,…
## $ show_product_quickly__0 <dbl> 1, 0, 1, 0, 0, 0,…
## $ show_product_quickly__1 <dbl> 0, 1, 0, 1, 1, 1,…
## $ patriotic__0 <dbl> 1, 1, 1, 1, 1, 1,…
## $ patriotic__1 <dbl> 0, 0, 0, 0, 0, 0,…
## $ celebrity__0 <dbl> 1, 0, 1, 1, 1, 0,…
## $ celebrity__1 <dbl> 0, 1, 0, 0, 0, 1,…
## $ danger__0 <dbl> 1, 0, 0, 1, 0, 0,…
## $ danger__1 <dbl> 0, 1, 1, 0, 1, 1,…
## $ animals__0 <dbl> 1, 1, 0, 1, 0, 0,…
## $ animals__1 <dbl> 0, 0, 1, 0, 1, 1,…
## $ use_sex__0 <dbl> 1, 1, 1, 1, 0, 1,…
## $ use_sex__1 <dbl> 0, 0, 0, 0, 1, 0,…
## $ `view_count__-Inf_10484.75` <dbl> 0, 0, 0, 1, 0, 0,…
## $ view_count__10484.75_58515.5 <dbl> 0, 1, 0, 0, 1, 1,…
## $ view_count__58515.5_219180.25 <dbl> 1, 0, 1, 0, 0, 0,…
## $ view_count__219180.25_Inf <dbl> 0, 0, 0, 0, 0, 0,…
## $ `like_count__-Inf_29.75` <dbl> 0, 0, 0, 1, 1, 0,…
## $ like_count__29.75_165 <dbl> 0, 0, 1, 0, 0, 1,…
## $ like_count__165_592.75 <dbl> 0, 1, 0, 0, 0, 0,…
## $ like_count__592.75_Inf <dbl> 1, 0, 0, 0, 0, 0,…
## $ `dislike_count__-Inf_2` <dbl> 0, 0, 0, 1, 0, 0,…
## $ dislike_count__2_8.5 <dbl> 0, 0, 0, 0, 1, 0,…
## $ dislike_count__8.5_37.75 <dbl> 0, 1, 1, 0, 0, 1,…
## $ dislike_count__37.75_Inf <dbl> 1, 0, 0, 0, 0, 0,…
## $ title__Bud_Lighta_Cedric_a_Island_Fantasy_2005 <dbl> 0, 0, 0, 0, 0, 0,…
## $ `title__-OTHER` <dbl> 1, 1, 1, 1, 1, 1,…
## $ description__Bud_Lighta_Cedric_a_Island_Fantasy_2005 <dbl> 0, 0, 0, 0, 0, 0,…
## $ `description__-OTHER` <dbl> 1, 1, 1, 1, 1, 1,…
# Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
correlate(like_count__592.75_Inf)
data_corr_tbl
## # A tibble: 40 × 3
## feature bin correlation
## <fct> <chr> <dbl>
## 1 like_count 592.75_Inf 1
## 2 view_count 219180.25_Inf 0.782
## 3 dislike_count 37.75_Inf 0.672
## 4 dislike_count -Inf_2 -0.366
## 5 view_count -Inf_10484.75 -0.338
## 6 like_count -Inf_29.75 -0.338
## 7 like_count 165_592.75 -0.333
## 8 view_count 10484.75_58515.5 -0.333
## 9 like_count 29.75_165 -0.333
## 10 dislike_count 2_8.5 -0.306
## # ℹ 30 more rows
# Step 3: Plot
data_corr_tbl %>%
plot_correlation_funnel()
## Warning: ggrepel: 3 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps