4
Because, they did not have a match on the other table
q1 <- inner_join (customers , orders , by = 'customer_id')
q1
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
6
The number of rows is higher than the inner joined, since customers without orders are included
q2 <- left_join (customers , orders , by = 'customer_id')
q2
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
7
6 and 7 because they are missing in the customer files
q3 <- right_join(customers , orders , by = 'customer_id')
q3
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
8
Rows 5 and 6 have customers with no order. Rows 7 and 8 have orders with no matching customer IDs.
q4 <- full_join(customers , orders , by = 'customer_id')
q4
## # A tibble: 8 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
## 7 6 <NA> <NA> 105 Camera 600
## 8 7 <NA> <NA> 106 Printer 150
3
This result differs because the inner join showed all of his orders placed, which shows Bob’s two orders, but in this result, it only shows Bob once because it only goes by cutsomers not orders.
q5 <- semi_join(customers , orders , by = 'customer_id')
q5
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
David and Eve
These customers have no orders
q6 <- anti_join(customers , orders , by = 'customer_id')
q6
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
Left Join, because its used to see all customers and their orders, even if they have not placed any
q7 <- left_join(customers , orders , by = 'customer_id')
q7
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
Inner join, because its used to see only customers who placed orders
q7 <- inner_join(customers , orders , by = 'customer_id')
q7
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
Results above
q8 <- customers %>%
left_join(orders, by = "customer_id") %>%
group_by(customer_id, name, city) %>%
summarise(
total_orders = n(),
total_spent = sum(amount, na.rm = TRUE)
) %>%
ungroup()
## `summarise()` has grouped output by 'customer_id', 'name'. You can override
## using the `.groups` argument.
q8
## # A tibble: 5 × 5
## customer_id name city total_orders total_spent
## <dbl> <chr> <chr> <int> <dbl>
## 1 1 Alice New York 1 1200
## 2 2 Bob Los Angeles 2 2300
## 3 3 Charlie Chicago 1 300
## 4 4 David Houston 1 0
## 5 5 Eve Phoenix 1 0