Actividad 1. Población

Ejemplo en Clase: Población

Instalar paquetes y llamar librerías

# install.packages("forecast")
library(forecast)
# install.packages("tidyverse")
library(tidyverse)
library(ggplot2)
# install.packages("maps")
library(maps)
#install.packages("palette")
library(palette)
# install.packages("leaflet")
library(leaflet)
library(readxl)

Importar base de datos

#file.choose()
poblacion = read.csv("/Users/marianaaleal/Desktop/TEC 2025/Generación de escenarios futuros con analítica/M1/population.csv")

Entender la base de datos

summary(poblacion)
##     state                year        population      
##  Length:6020        Min.   :1900   Min.   :   43000  
##  Class :character   1st Qu.:1930   1st Qu.:  901483  
##  Mode  :character   Median :1960   Median : 2359000  
##                     Mean   :1960   Mean   : 3726003  
##                     3rd Qu.:1990   3rd Qu.: 4541883  
##                     Max.   :2019   Max.   :39512223
str(poblacion)
## 'data.frame':    6020 obs. of  3 variables:
##  $ state     : chr  "AK" "AK" "AK" "AK" ...
##  $ year      : int  1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 ...
##  $ population: int  135000 158000 189000 205000 215000 222000 224000 231000 224000 224000 ...
head(poblacion)
##   state year population
## 1    AK 1950     135000
## 2    AK 1951     158000
## 3    AK 1952     189000
## 4    AK 1953     205000
## 5    AK 1954     215000
## 6    AK 1955     222000

Entender la base de datos

poblacion_texas= poblacion %>% filter(state=="TX")
ggplot(poblacion_texas, aes(x = year, y = population)) +
  geom_line(color = "#0073C2", size = 1.2) +  # Línea en azul fuerte
  geom_point(color = "#742a36", size = 3) +   # Puntos en naranja
  labs(title = "Evolución de la Población en Texas",
       x = "Año",
       y = "Población") +
  theme_minimal(base_size = 14) +  # Estilo limpio con fuente más grande
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", color = "#0073C2"), # Centrar título
    axis.title.x = element_text(face = "bold", color = "#333333"),
    axis.title.y = element_text(face = "bold", color = "#333333"),
    panel.grid.major = element_line(color = "gray80", linetype = "dashed") # Líneas de fondo más suaves
  )
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

ts_texas= ts(poblacion_texas$population, start = 1900, frequency = 1) # Serie de Tiempo Anual 

# Serie de Tiempo Trimestral
ts_texas= ts(poblacion_texas$population, start = c(1900,4), frequency = 4) # Serie de Tiempo Anual 

# ts_texas= ts(poblacion_texas$population, start = c(1900,8), frequency = 12) # Serie de Tiempo Trimestral
#ts_texas= ts(poblacion_texas$population, start = c(1900,8), frequency = 12) # Serie de Tiempo Mensual

arima_texas= auto.arima(ts_texas)
summary(arima_texas)
## Series: ts_texas 
## ARIMA(0,2,2) 
## 
## Coefficients:
##           ma1      ma2
##       -0.5950  -0.1798
## s.e.   0.0913   0.0951
## 
## sigma^2 = 1.031e+10:  log likelihood = -1527.14
## AIC=3060.28   AICc=3060.5   BIC=3068.6
## 
## Training set error measures:
##                    ME     RMSE      MAE       MPE      MAPE      MASE
## Training set 12147.62 99818.31 59257.39 0.1046163 0.5686743 0.0679596
##                     ACF1
## Training set -0.02136734
pronostico_texas= forecast(arima_texas,level=95, h=10) # h es cuantos periodos queremos más que nos pronostique
pronostico_texas
##         Point Forecast    Lo 95    Hi 95
## 1930 Q4       29398472 29199487 29597457
## 1931 Q1       29806827 29463665 30149990
## 1931 Q2       30215183 29742956 30687410
## 1931 Q3       30623538 30024100 31222977
## 1931 Q4       31031894 30303359 31760429
## 1932 Q1       31440249 30579246 32301253
## 1932 Q2       31848605 30851090 32846119
## 1932 Q3       32256960 31118581 33395339
## 1932 Q4       32665316 31381587 33949044
## 1933 Q1       33073671 31640070 34507272
autoplot(pronostico_texas) +
  ggtitle("Proyección de Población en Texas") +
  xlab("Año") + 
  ylab("Población") +
  theme_minimal(base_size = 14) +  # Estilo limpio con fuente más grande
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", color = "#0073C2"), # Título centrado en azul fuerte
    axis.title.x = element_text(face = "bold", color = "#333333"),
    axis.title.y = element_text(face = "bold", color = "#333333"),
    panel.grid.major = element_line(color = "gray80", linetype = "dashed") # Líneas de fondo suaves
  )

Crear un mapa

Ejercicio en clase Lunes 17

# Crear un mapa de EUA por década con un gradiente verde-rojo de la población por estado, desde 1950 hasta 2050.
map(database = "state")
map(database = "state", regions ="Texas", col="red", fill=TRUE, add=TRUE)
map(database = "state", regions ="New York", col="blue", fill=TRUE, add=TRUE)

# Generar pronósticos con ARIMA para cada estado
proyecciones <- poblacion %>%
  group_by(state) %>%
  summarise(
    modelo = list(auto.arima(ts(population, start = 1950, frequency = 1))),  # Modelo ARIMA
    .groups = "drop"
  ) %>%
  rowwise() %>%
  mutate(
    pronostico = list(forecast(modelo, h = 31)),  # Pronóstico de 5 años
    poblacion5 = tail(pronostico$mean, 1)  # Obtener la población del último año pronosticado
  ) %>%
  select(state, poblacion5)
# Unir proyecciones con el mapa
states <- map("state", plot = FALSE, fill = TRUE)
map_data <- merge(data.frame(state = tolower(state.name)), proyecciones, by = "state", all.x = TRUE)


# Asignar colores según la población (gradiente verde-rojo)
color_pal <- colorNumeric(palette = "RdYlGn", domain = proyecciones$poblacion5)

# Crear mapa interactivo con Leaflet
leaflet(data = states) %>%
  addTiles() %>%
  addPolygons(
    fillColor = ~color_pal(proyecciones$poblacion5),
    fillOpacity = 0.7,
    color = "black",
    weight = 1,
    popup = ~paste("Estado:", proyecciones$state, "<br>",
                   "Población en 5 años:", format(proyecciones$poblacion5, big.mark = ","))
  ) %>%
  addLegend(
    "bottomright",
    pal = color_pal,
    values = proyecciones$poblacion5,
    title = "Población pronosticada en 5 Años",
    opacity = 1
  )

Actividad 2. Leche saborizada Hershey´s

Instalar paquetes y llamar librerías

# install.packages("forecast")
library(forecast)
# install.packages("tidyverse")
library(tidyverse)
library(ggplot2)
# install.packages("maps")
library(maps)
#install.packages("palette")
library(palette)
# install.packages("leaflet")
library(leaflet)
library(readxl)

Importar Base de Datos

#file.choose()
ventas = read_excel("/Users/marianaaleal/Desktop/TEC 2025/Generación de escenarios futuros con analítica/M1/Ventas_Históricas_Lechitas.xlsx")

1. Modelo AUTO.ARIMA

# Serie de Tiempo Mensual
ts_ventas= ts(ventas$Ventas, start = c(2017,1), frequency = 12) 
# Cargar librerías necesarias
library(ggplot2)
library(forecast)

# Gráfico de series temporales
autoplot(ts_ventas) +
  labs(
    title = "Ventas de Leche Saborizada Hershey's",
    x = "Tiempo",
    y = "Miles de Dólares"
  ) +
  theme_minimal(base_size = 14) +  # Tema limpio y moderno
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 16),  # Título centrado y en negrita
    axis.text = element_text(color = "black"),
    axis.title = element_text(face = "bold"),
    panel.grid.major = element_line(color = "gray80", linetype = "dashed")  # Líneas de guía sutiles
  ) +
  geom_line(color = "#ff00ff", size = 1.2) +  # Línea azul con mayor grosor
  geom_point(color = "#00aaff", size = 2, alpha = 0.8)  # Puntos rojos en cada observación

arima_ventas=auto.arima(ts_ventas)
summary(arima_ventas)
## Series: ts_ventas 
## ARIMA(1,0,0)(1,1,0)[12] with drift 
## 
## Coefficients:
##          ar1     sar1     drift
##       0.6383  -0.5517  288.8979
## s.e.  0.1551   0.2047   14.5026
## 
## sigma^2 = 202701:  log likelihood = -181.5
## AIC=371   AICc=373.11   BIC=375.72
## 
## Training set error measures:
##                    ME    RMSE    MAE        MPE      MAPE       MASE      ACF1
## Training set 25.22158 343.864 227.17 0.08059932 0.7069542 0.06491044 0.2081026
pronostico_ventas= forecast(arima_ventas,level=95,h=12)
summary(pronostico_ventas)
## 
## Forecast method: ARIMA(1,0,0)(1,1,0)[12] with drift
## 
## Model Information:
## Series: ts_ventas 
## ARIMA(1,0,0)(1,1,0)[12] with drift 
## 
## Coefficients:
##          ar1     sar1     drift
##       0.6383  -0.5517  288.8979
## s.e.  0.1551   0.2047   14.5026
## 
## sigma^2 = 202701:  log likelihood = -181.5
## AIC=371   AICc=373.11   BIC=375.72
## 
## Error measures:
##                    ME    RMSE    MAE        MPE      MAPE       MASE      ACF1
## Training set 25.22158 343.864 227.17 0.08059932 0.7069542 0.06491044 0.2081026
## 
## Forecasts:
##          Point Forecast    Lo 95    Hi 95
## Jan 2020       35498.90 34616.48 36381.32
## Feb 2020       34202.17 33155.28 35249.05
## Mar 2020       36703.01 35596.10 37809.92
## Apr 2020       36271.90 35141.44 37402.36
## May 2020       37121.98 35982.07 38261.90
## Jun 2020       37102.65 35958.90 38246.40
## Jul 2020       37151.04 36005.73 38296.34
## Aug 2020       38564.64 37418.70 39710.58
## Sep 2020       38755.22 37609.03 39901.42
## Oct 2020       39779.02 38632.72 40925.32
## Nov 2020       38741.63 37595.28 39887.97
## Dec 2020       38645.86 37499.50 39792.22
autoplot(pronostico_ventas) +
  labs(
    title = "Pronóstico de Ventas 2020 de Leche Saborizada Hershey's",
    x = "Tiempo",
    y = "Miles de Dólares"
  ) +
  theme_minimal(base_size = 14) +  # Tema limpio y moderno
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 16),  # Título centrado y en negrita
    axis.text = element_text(color = "black"),
    axis.title = element_text(face = "bold"),
    panel.grid.major = element_line(color = "gray80", linetype = "dashed")  # Líneas de guía sutiles
  ) 

2. Modelo Regresión Lineal

#file.choose()
ventas$mes= 1:36
regresion_ventas= lm(Ventas~mes, data=ventas)

# primero la varibale que queremos predecir
summary(regresion_ventas)
## 
## Call:
## lm(formula = Ventas ~ mes, data = ventas)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2075.79  -326.41    33.74   458.40  1537.04 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24894.67     275.03   90.52   <2e-16 ***
## mes           298.37      12.96   23.02   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 808 on 34 degrees of freedom
## Multiple R-squared:  0.9397, Adjusted R-squared:  0.9379 
## F-statistic: 529.8 on 1 and 34 DF,  p-value: < 2.2e-16
siguiente_anio= data.frame(mes=37:48)
prediccion_regresion= predict(regresion_ventas,siguiente_anio)
prediccion_regresion
##        1        2        3        4        5        6        7        8 
## 35934.49 36232.86 36531.23 36829.61 37127.98 37426.35 37724.73 38023.10 
##        9       10       11       12 
## 38321.47 38619.85 38918.22 39216.59
plot(ventas$mes, ventas$Ventas, labs(
    title = "Ventas de Leche Saborizada Hershey's",
    x = "Tiempo",
    y = "Miles de Dólares"
  ) +
  theme_minimal(base_size = 14) +  # Tema limpio y moderno
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 16),  # Título centrado y en negrita
    axis.text = element_text(color = "black"),
    axis.title = element_text(face = "bold"),
    panel.grid.major = element_line(color = "gray80", linetype = "dashed")  # Líneas de guía sutiles
  ) )
abline(regresion_ventas,col="blue")
points(siguiente_anio$mes,prediccion_regresion, col="red")

predicciones_reales= predict(regresion_ventas, ventas)
predicciones_reales
##        1        2        3        4        5        6        7        8 
## 25193.04 25491.42 25789.79 26088.16 26386.54 26684.91 26983.28 27281.66 
##        9       10       11       12       13       14       15       16 
## 27580.03 27878.40 28176.78 28475.15 28773.52 29071.90 29370.27 29668.64 
##       17       18       19       20       21       22       23       24 
## 29967.02 30265.39 30563.76 30862.14 31160.51 31458.88 31757.26 32055.63 
##       25       26       27       28       29       30       31       32 
## 32354.00 32652.38 32950.75 33249.12 33547.50 33845.87 34144.25 34442.62 
##       33       34       35       36 
## 34740.99 35039.37 35337.74 35636.11
#MAPE 
MAPE= mean(abs((ventas$Ventas- predicciones_reales)/ventas$Ventas))*100
MAPE
## [1] 2.011297

3. Conclusiones

El mejor modelo que se adapta a la serie es el SARIMA con un MAPE de 0.71%, comparado con la regresión Lineal que su MAPE es de 2.01%.

Para el siguiene año, la proyección de ventas es la siguiente:

Mes y Año Escenario Optimista Escenario Esperado Escenario Pesimista
Jan 2020 35498.90 34616.48 36381.32
Feb 2020 34202.17 33155.28 35249.05
Mar 2020 36703.01 35596.10 37809.92
Apr 2020 36271.90 35141.44 37402.36
May 2020 37121.98 35982.07 38261.90
Jun 2020 37102.65 35958.90 38246.40
Jul 2020 37151.04 36005.73 38296.34
Aug 2020 38564.64 37418.70 39710.58
Sep 2020 38755.22 37609.03 39901.42
Oct 2020 39779.02 38632.72 40925.32
Nov 2020 38741.63 37595.29 39887.97
Dic 2020 38645.86 37499.50 39792.22
#file.choose()
ventas_por_anio= read_excel("/Users/marianaaleal/Desktop/TEC 2025/Generación de escenarios futuros con analítica/M1/Ventas2.xlsx")
#view(ventas_por_anio)
ggplot(ventas_por_anio, aes(x=Mes,y= Ventas, col=as.factor(Anio), group=Anio))+
  geom_line() + labs(title = "Ventas de Leche Saborizada Hershey's por Año", x="Mes", y= "Miles de Dólares")

Nuestra recomendación sería realizar campañas publicitarias para aumentar el consumo de leche saborizada Hershey’s en el primer semestre del año.

LS0tCnRpdGxlOiAiQWN0aXZpZGFkIDAyIgpzdWJ0aXRsZTogIk1vZGVsb3MgZGUgcHJvbsOzc3RpY28gZGUgU2VyaWVzIGRlIFRpZW1wbyIKYXV0aG9yOiAiUmVhbGl6YWRvIHBvciBNYXJpYW5hIExlYWwgQTAxNTcwOTc3IgpkYXRlOiAiMTgvMDIvMjAyNSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjZXJ1bGVhbgogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAgY3NzOiBzdHlsZXMuY3NzCi0tLQoKIyBBY3RpdmlkYWQgMS4gUG9ibGFjacOzbgpFamVtcGxvIGVuIENsYXNlOiBQb2JsYWNpw7NuCgoKIVtdKC9Vc2Vycy9tYXJpYW5hYWxlYWwvRGVza3RvcC9URUMgMjAyNS9HZW5lcmFjaW/MgW4gZGUgZXNjZW5hcmlvcyBmdXR1cm9zIGNvbiBhbmFsacyBdGljYS9NMS9wb3AuZ2lmKQoKCiMjIEluc3RhbGFyIHBhcXVldGVzIHkgbGxhbWFyIGxpYnJlcsOtYXMKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KIyBpbnN0YWxsLnBhY2thZ2VzKCJmb3JlY2FzdCIpCmxpYnJhcnkoZm9yZWNhc3QpCiMgaW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIikKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZ2dwbG90MikKIyBpbnN0YWxsLnBhY2thZ2VzKCJtYXBzIikKbGlicmFyeShtYXBzKQojaW5zdGFsbC5wYWNrYWdlcygicGFsZXR0ZSIpCmxpYnJhcnkocGFsZXR0ZSkKIyBpbnN0YWxsLnBhY2thZ2VzKCJsZWFmbGV0IikKbGlicmFyeShsZWFmbGV0KQpsaWJyYXJ5KHJlYWR4bCkKYGBgCiMjIEltcG9ydGFyIGJhc2UgZGUgZGF0b3MKYGBge3J9CiNmaWxlLmNob29zZSgpCnBvYmxhY2lvbiA9IHJlYWQuY3N2KCIvVXNlcnMvbWFyaWFuYWFsZWFsL0Rlc2t0b3AvVEVDIDIwMjUvR2VuZXJhY2lvzIFuIGRlIGVzY2VuYXJpb3MgZnV0dXJvcyBjb24gYW5hbGnMgXRpY2EvTTEvcG9wdWxhdGlvbi5jc3YiKQpgYGAKCiMjIEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MKYGBge3J9CnN1bW1hcnkocG9ibGFjaW9uKQpzdHIocG9ibGFjaW9uKQpoZWFkKHBvYmxhY2lvbikKYGBgCgojIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zCmBgYHtyfQpwb2JsYWNpb25fdGV4YXM9IHBvYmxhY2lvbiAlPiUgZmlsdGVyKHN0YXRlPT0iVFgiKQpnZ3Bsb3QocG9ibGFjaW9uX3RleGFzLCBhZXMoeCA9IHllYXIsIHkgPSBwb3B1bGF0aW9uKSkgKwogIGdlb21fbGluZShjb2xvciA9ICIjMDA3M0MyIiwgc2l6ZSA9IDEuMikgKyAgIyBMw61uZWEgZW4gYXp1bCBmdWVydGUKICBnZW9tX3BvaW50KGNvbG9yID0gIiM3NDJhMzYiLCBzaXplID0gMykgKyAgICMgUHVudG9zIGVuIG5hcmFuamEKICBsYWJzKHRpdGxlID0gIkV2b2x1Y2nDs24gZGUgbGEgUG9ibGFjacOzbiBlbiBUZXhhcyIsCiAgICAgICB4ID0gIkHDsW8iLAogICAgICAgeSA9ICJQb2JsYWNpw7NuIikgKwogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTQpICsgICMgRXN0aWxvIGxpbXBpbyBjb24gZnVlbnRlIG3DoXMgZ3JhbmRlCiAgdGhlbWUoCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBmYWNlID0gImJvbGQiLCBjb2xvciA9ICIjMDA3M0MyIiksICMgQ2VudHJhciB0w610dWxvCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZSA9ICJib2xkIiwgY29sb3IgPSAiIzMzMzMzMyIpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIsIGNvbG9yID0gIiMzMzMzMzMiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2xpbmUoY29sb3IgPSAiZ3JheTgwIiwgbGluZXR5cGUgPSAiZGFzaGVkIikgIyBMw61uZWFzIGRlIGZvbmRvIG3DoXMgc3VhdmVzCiAgKQp0c190ZXhhcz0gdHMocG9ibGFjaW9uX3RleGFzJHBvcHVsYXRpb24sIHN0YXJ0ID0gMTkwMCwgZnJlcXVlbmN5ID0gMSkgIyBTZXJpZSBkZSBUaWVtcG8gQW51YWwgCgojIFNlcmllIGRlIFRpZW1wbyBUcmltZXN0cmFsCnRzX3RleGFzPSB0cyhwb2JsYWNpb25fdGV4YXMkcG9wdWxhdGlvbiwgc3RhcnQgPSBjKDE5MDAsNCksIGZyZXF1ZW5jeSA9IDQpICMgU2VyaWUgZGUgVGllbXBvIEFudWFsIAoKIyB0c190ZXhhcz0gdHMocG9ibGFjaW9uX3RleGFzJHBvcHVsYXRpb24sIHN0YXJ0ID0gYygxOTAwLDgpLCBmcmVxdWVuY3kgPSAxMikgIyBTZXJpZSBkZSBUaWVtcG8gVHJpbWVzdHJhbAojdHNfdGV4YXM9IHRzKHBvYmxhY2lvbl90ZXhhcyRwb3B1bGF0aW9uLCBzdGFydCA9IGMoMTkwMCw4KSwgZnJlcXVlbmN5ID0gMTIpICMgU2VyaWUgZGUgVGllbXBvIE1lbnN1YWwKCmFyaW1hX3RleGFzPSBhdXRvLmFyaW1hKHRzX3RleGFzKQpzdW1tYXJ5KGFyaW1hX3RleGFzKQoKcHJvbm9zdGljb190ZXhhcz0gZm9yZWNhc3QoYXJpbWFfdGV4YXMsbGV2ZWw9OTUsIGg9MTApICMgaCBlcyBjdWFudG9zIHBlcmlvZG9zIHF1ZXJlbW9zIG3DoXMgcXVlIG5vcyBwcm9ub3N0aXF1ZQpwcm9ub3N0aWNvX3RleGFzCmF1dG9wbG90KHByb25vc3RpY29fdGV4YXMpICsKICBnZ3RpdGxlKCJQcm95ZWNjacOzbiBkZSBQb2JsYWNpw7NuIGVuIFRleGFzIikgKwogIHhsYWIoIkHDsW8iKSArIAogIHlsYWIoIlBvYmxhY2nDs24iKSArCiAgdGhlbWVfbWluaW1hbChiYXNlX3NpemUgPSAxNCkgKyAgIyBFc3RpbG8gbGltcGlvIGNvbiBmdWVudGUgbcOhcyBncmFuZGUKICB0aGVtZSgKICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUsIGZhY2UgPSAiYm9sZCIsIGNvbG9yID0gIiMwMDczQzIiKSwgIyBUw610dWxvIGNlbnRyYWRvIGVuIGF6dWwgZnVlcnRlCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X3RleHQoZmFjZSA9ICJib2xkIiwgY29sb3IgPSAiIzMzMzMzMyIpLAogICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIsIGNvbG9yID0gIiMzMzMzMzMiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2xpbmUoY29sb3IgPSAiZ3JheTgwIiwgbGluZXR5cGUgPSAiZGFzaGVkIikgIyBMw61uZWFzIGRlIGZvbmRvIHN1YXZlcwogICkKYGBgCgoKIyMgQ3JlYXIgdW4gbWFwYQpFamVyY2ljaW8gZW4gY2xhc2UgTHVuZXMgMTcKYGBge3J9CiMgQ3JlYXIgdW4gbWFwYSBkZSBFVUEgcG9yIGTDqWNhZGEgY29uIHVuIGdyYWRpZW50ZSB2ZXJkZS1yb2pvIGRlIGxhIHBvYmxhY2nDs24gcG9yIGVzdGFkbywgZGVzZGUgMTk1MCBoYXN0YSAyMDUwLgptYXAoZGF0YWJhc2UgPSAic3RhdGUiKQptYXAoZGF0YWJhc2UgPSAic3RhdGUiLCByZWdpb25zID0iVGV4YXMiLCBjb2w9InJlZCIsIGZpbGw9VFJVRSwgYWRkPVRSVUUpCm1hcChkYXRhYmFzZSA9ICJzdGF0ZSIsIHJlZ2lvbnMgPSJOZXcgWW9yayIsIGNvbD0iYmx1ZSIsIGZpbGw9VFJVRSwgYWRkPVRSVUUpCmBgYApgYGB7cn0KIyBHZW5lcmFyIHByb27Ds3N0aWNvcyBjb24gQVJJTUEgcGFyYSBjYWRhIGVzdGFkbwpwcm95ZWNjaW9uZXMgPC0gcG9ibGFjaW9uICU+JQogIGdyb3VwX2J5KHN0YXRlKSAlPiUKICBzdW1tYXJpc2UoCiAgICBtb2RlbG8gPSBsaXN0KGF1dG8uYXJpbWEodHMocG9wdWxhdGlvbiwgc3RhcnQgPSAxOTUwLCBmcmVxdWVuY3kgPSAxKSkpLCAgIyBNb2RlbG8gQVJJTUEKICAgIC5ncm91cHMgPSAiZHJvcCIKICApICU+JQogIHJvd3dpc2UoKSAlPiUKICBtdXRhdGUoCiAgICBwcm9ub3N0aWNvID0gbGlzdChmb3JlY2FzdChtb2RlbG8sIGggPSAzMSkpLCAgIyBQcm9uw7NzdGljbyBkZSA1IGHDsW9zCiAgICBwb2JsYWNpb241ID0gdGFpbChwcm9ub3N0aWNvJG1lYW4sIDEpICAjIE9idGVuZXIgbGEgcG9ibGFjacOzbiBkZWwgw7psdGltbyBhw7FvIHByb25vc3RpY2FkbwogICkgJT4lCiAgc2VsZWN0KHN0YXRlLCBwb2JsYWNpb241KQoKYGBgCgoKYGBge3J9CiMgVW5pciBwcm95ZWNjaW9uZXMgY29uIGVsIG1hcGEKc3RhdGVzIDwtIG1hcCgic3RhdGUiLCBwbG90ID0gRkFMU0UsIGZpbGwgPSBUUlVFKQptYXBfZGF0YSA8LSBtZXJnZShkYXRhLmZyYW1lKHN0YXRlID0gdG9sb3dlcihzdGF0ZS5uYW1lKSksIHByb3llY2Npb25lcywgYnkgPSAic3RhdGUiLCBhbGwueCA9IFRSVUUpCgoKIyBBc2lnbmFyIGNvbG9yZXMgc2Vnw7puIGxhIHBvYmxhY2nDs24gKGdyYWRpZW50ZSB2ZXJkZS1yb2pvKQpjb2xvcl9wYWwgPC0gY29sb3JOdW1lcmljKHBhbGV0dGUgPSAiUmRZbEduIiwgZG9tYWluID0gcHJveWVjY2lvbmVzJHBvYmxhY2lvbjUpCgojIENyZWFyIG1hcGEgaW50ZXJhY3Rpdm8gY29uIExlYWZsZXQKbGVhZmxldChkYXRhID0gc3RhdGVzKSAlPiUKICBhZGRUaWxlcygpICU+JQogIGFkZFBvbHlnb25zKAogICAgZmlsbENvbG9yID0gfmNvbG9yX3BhbChwcm95ZWNjaW9uZXMkcG9ibGFjaW9uNSksCiAgICBmaWxsT3BhY2l0eSA9IDAuNywKICAgIGNvbG9yID0gImJsYWNrIiwKICAgIHdlaWdodCA9IDEsCiAgICBwb3B1cCA9IH5wYXN0ZSgiRXN0YWRvOiIsIHByb3llY2Npb25lcyRzdGF0ZSwgIjxicj4iLAogICAgICAgICAgICAgICAgICAgIlBvYmxhY2nDs24gZW4gNSBhw7FvczoiLCBmb3JtYXQocHJveWVjY2lvbmVzJHBvYmxhY2lvbjUsIGJpZy5tYXJrID0gIiwiKSkKICApICU+JQogIGFkZExlZ2VuZCgKICAgICJib3R0b21yaWdodCIsCiAgICBwYWwgPSBjb2xvcl9wYWwsCiAgICB2YWx1ZXMgPSBwcm95ZWNjaW9uZXMkcG9ibGFjaW9uNSwKICAgIHRpdGxlID0gIlBvYmxhY2nDs24gcHJvbm9zdGljYWRhIGVuIDUgQcOxb3MiLAogICAgb3BhY2l0eSA9IDEKICApCmBgYAojIDxzcGFuIHN0eWxlID0gImNvbG9yOiAjODA0MDAwOyI+KkFjdGl2aWRhZCAyLiBMZWNoZSBzYWJvcml6YWRhIEhlcnNoZXnCtHMqPC9hcGFuPgoKIVtdKC9Vc2Vycy9tYXJpYW5hYWxlYWwvRGVza3RvcC9URUMgMjAyNS9HZW5lcmFjaW/MgW4gZGUgZXNjZW5hcmlvcyBmdXR1cm9zIGNvbiBhbmFsacyBdGljYS9NMS9jaG9jby5naWYpCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6ICM4MDQwMDA7Ij5JbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzPC9zcGFuPgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojIGluc3RhbGwucGFja2FnZXMoImZvcmVjYXN0IikKbGlicmFyeShmb3JlY2FzdCkKIyBpbnN0YWxsLnBhY2thZ2VzKCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShnZ3Bsb3QyKQojIGluc3RhbGwucGFja2FnZXMoIm1hcHMiKQpsaWJyYXJ5KG1hcHMpCiNpbnN0YWxsLnBhY2thZ2VzKCJwYWxldHRlIikKbGlicmFyeShwYWxldHRlKQojIGluc3RhbGwucGFja2FnZXMoImxlYWZsZXQiKQpsaWJyYXJ5KGxlYWZsZXQpCmxpYnJhcnkocmVhZHhsKQpgYGAKCiMjIDxzcGFuIHN0eWxlPSJjb2xvcjogIzgwNDAwMDsiPkltcG9ydGFyIEJhc2UgZGUgRGF0b3M8L3NwYW4+CmBgYHtyfQojZmlsZS5jaG9vc2UoKQp2ZW50YXMgPSByZWFkX2V4Y2VsKCIvVXNlcnMvbWFyaWFuYWFsZWFsL0Rlc2t0b3AvVEVDIDIwMjUvR2VuZXJhY2lvzIFuIGRlIGVzY2VuYXJpb3MgZnV0dXJvcyBjb24gYW5hbGnMgXRpY2EvTTEvVmVudGFzX0hpc3RvzIFyaWNhc19MZWNoaXRhcy54bHN4IikKCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiAjODA0MDAwOyI+MS4gTW9kZWxvIEFVVE8uQVJJTUE8L3NwYW4+CmBgYHtyfQojIFNlcmllIGRlIFRpZW1wbyBNZW5zdWFsCnRzX3ZlbnRhcz0gdHModmVudGFzJFZlbnRhcywgc3RhcnQgPSBjKDIwMTcsMSksIGZyZXF1ZW5jeSA9IDEyKSAKIyBDYXJnYXIgbGlicmVyw61hcyBuZWNlc2FyaWFzCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShmb3JlY2FzdCkKCiMgR3LDoWZpY28gZGUgc2VyaWVzIHRlbXBvcmFsZXMKYXV0b3Bsb3QodHNfdmVudGFzKSArCiAgbGFicygKICAgIHRpdGxlID0gIlZlbnRhcyBkZSBMZWNoZSBTYWJvcml6YWRhIEhlcnNoZXkncyIsCiAgICB4ID0gIlRpZW1wbyIsCiAgICB5ID0gIk1pbGVzIGRlIETDs2xhcmVzIgogICkgKwogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTQpICsgICMgVGVtYSBsaW1waW8geSBtb2Rlcm5vCiAgdGhlbWUoCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBmYWNlID0gImJvbGQiLCBzaXplID0gMTYpLCAgIyBUw610dWxvIGNlbnRyYWRvIHkgZW4gbmVncml0YQogICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KGNvbG9yID0gImJsYWNrIiksCiAgICBheGlzLnRpdGxlID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIpLAogICAgcGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfbGluZShjb2xvciA9ICJncmF5ODAiLCBsaW5ldHlwZSA9ICJkYXNoZWQiKSAgIyBMw61uZWFzIGRlIGd1w61hIHN1dGlsZXMKICApICsKICBnZW9tX2xpbmUoY29sb3IgPSAiI2ZmMDBmZiIsIHNpemUgPSAxLjIpICsgICMgTMOtbmVhIGF6dWwgY29uIG1heW9yIGdyb3NvcgogIGdlb21fcG9pbnQoY29sb3IgPSAiIzAwYWFmZiIsIHNpemUgPSAyLCBhbHBoYSA9IDAuOCkgICMgUHVudG9zIHJvam9zIGVuIGNhZGEgb2JzZXJ2YWNpw7NuCgphcmltYV92ZW50YXM9YXV0by5hcmltYSh0c192ZW50YXMpCnN1bW1hcnkoYXJpbWFfdmVudGFzKQpwcm9ub3N0aWNvX3ZlbnRhcz0gZm9yZWNhc3QoYXJpbWFfdmVudGFzLGxldmVsPTk1LGg9MTIpCnN1bW1hcnkocHJvbm9zdGljb192ZW50YXMpCgoKYXV0b3Bsb3QocHJvbm9zdGljb192ZW50YXMpICsKICBsYWJzKAogICAgdGl0bGUgPSAiUHJvbsOzc3RpY28gZGUgVmVudGFzIDIwMjAgZGUgTGVjaGUgU2Fib3JpemFkYSBIZXJzaGV5J3MiLAogICAgeCA9ICJUaWVtcG8iLAogICAgeSA9ICJNaWxlcyBkZSBEw7NsYXJlcyIKICApICsKICB0aGVtZV9taW5pbWFsKGJhc2Vfc2l6ZSA9IDE0KSArICAjIFRlbWEgbGltcGlvIHkgbW9kZXJubwogIHRoZW1lKAogICAgcGxvdC50aXRsZSA9IGVsZW1lbnRfdGV4dChoanVzdCA9IDAuNSwgZmFjZSA9ICJib2xkIiwgc2l6ZSA9IDE2KSwgICMgVMOtdHVsbyBjZW50cmFkbyB5IGVuIG5lZ3JpdGEKICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvciA9ICJibGFjayIpLAogICAgYXhpcy50aXRsZSA9IGVsZW1lbnRfdGV4dChmYWNlID0gImJvbGQiKSwKICAgIHBhbmVsLmdyaWQubWFqb3IgPSBlbGVtZW50X2xpbmUoY29sb3IgPSAiZ3JheTgwIiwgbGluZXR5cGUgPSAiZGFzaGVkIikgICMgTMOtbmVhcyBkZSBndcOtYSBzdXRpbGVzCiAgKSAKYGBgCgojIyA8c3BhbiBzdHlsZT0iY29sb3I6ICM4MDQwMDA7Ij4yLiBNb2RlbG8gUmVncmVzacOzbiBMaW5lYWw8L3NwYW4+CmBgYHtyfQojZmlsZS5jaG9vc2UoKQp2ZW50YXMkbWVzPSAxOjM2CnJlZ3Jlc2lvbl92ZW50YXM9IGxtKFZlbnRhc35tZXMsIGRhdGE9dmVudGFzKQoKIyBwcmltZXJvIGxhIHZhcmliYWxlIHF1ZSBxdWVyZW1vcyBwcmVkZWNpcgpzdW1tYXJ5KHJlZ3Jlc2lvbl92ZW50YXMpCnNpZ3VpZW50ZV9hbmlvPSBkYXRhLmZyYW1lKG1lcz0zNzo0OCkKcHJlZGljY2lvbl9yZWdyZXNpb249IHByZWRpY3QocmVncmVzaW9uX3ZlbnRhcyxzaWd1aWVudGVfYW5pbykKcHJlZGljY2lvbl9yZWdyZXNpb24KCnBsb3QodmVudGFzJG1lcywgdmVudGFzJFZlbnRhcywgbGFicygKICAgIHRpdGxlID0gIlZlbnRhcyBkZSBMZWNoZSBTYWJvcml6YWRhIEhlcnNoZXkncyIsCiAgICB4ID0gIlRpZW1wbyIsCiAgICB5ID0gIk1pbGVzIGRlIETDs2xhcmVzIgogICkgKwogIHRoZW1lX21pbmltYWwoYmFzZV9zaXplID0gMTQpICsgICMgVGVtYSBsaW1waW8geSBtb2Rlcm5vCiAgdGhlbWUoCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LCBmYWNlID0gImJvbGQiLCBzaXplID0gMTYpLCAgIyBUw610dWxvIGNlbnRyYWRvIHkgZW4gbmVncml0YQogICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KGNvbG9yID0gImJsYWNrIiksCiAgICBheGlzLnRpdGxlID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIpLAogICAgcGFuZWwuZ3JpZC5tYWpvciA9IGVsZW1lbnRfbGluZShjb2xvciA9ICJncmF5ODAiLCBsaW5ldHlwZSA9ICJkYXNoZWQiKSAgIyBMw61uZWFzIGRlIGd1w61hIHN1dGlsZXMKICApICkKYWJsaW5lKHJlZ3Jlc2lvbl92ZW50YXMsY29sPSJibHVlIikKcG9pbnRzKHNpZ3VpZW50ZV9hbmlvJG1lcyxwcmVkaWNjaW9uX3JlZ3Jlc2lvbiwgY29sPSJyZWQiKQoKcHJlZGljY2lvbmVzX3JlYWxlcz0gcHJlZGljdChyZWdyZXNpb25fdmVudGFzLCB2ZW50YXMpCnByZWRpY2Npb25lc19yZWFsZXMKCiNNQVBFIApNQVBFPSBtZWFuKGFicygodmVudGFzJFZlbnRhcy0gcHJlZGljY2lvbmVzX3JlYWxlcykvdmVudGFzJFZlbnRhcykpKjEwMApNQVBFCmBgYAoKIyMgPHNwYW4gc3R5bGU9ImNvbG9yOiAjODA0MDAwOyI+My4gQ29uY2x1c2lvbmVzIDwvc3Bhbj4KRWwgbWVqb3IgbW9kZWxvIHF1ZSBzZSBhZGFwdGEgYSBsYSBzZXJpZSBlcyBlbCAqKlNBUklNQSoqIGNvbiB1biBNQVBFIGRlIDAuNzElLCBjb21wYXJhZG8gY29uIGxhIHJlZ3Jlc2nDs24gTGluZWFsIHF1ZSBzdSBNQVBFIGVzIGRlIDIuMDElLgoKUGFyYSBlbCBzaWd1aWVuZSBhw7FvLCBsYSBwcm95ZWNjacOzbiBkZSB2ZW50YXMgZXMgbGEgc2lndWllbnRlOgoKfCBNZXMgeSBBw7FvIHwgRXNjZW5hcmlvIE9wdGltaXN0YSB8IEVzY2VuYXJpbyBFc3BlcmFkbyB8IEVzY2VuYXJpbyBQZXNpbWlzdGEgfAp8LS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tLS0tLXwKfEphbiAyMDIwCXwgMzU0OTguOTAgfAkzNDYxNi40OCB8CTM2MzgxLjMyCQp8RmViIDIwMjAJfCAzNDIwMi4xNyB8CTMzMTU1LjI4IHwJMzUyNDkuMDUJCnxNYXIgMjAyMAl8IDM2NzAzLjAxIHwJMzU1OTYuMTAgfAkzNzgwOS45MgkKfEFwciAyMDIwCXwgMzYyNzEuOTAgfAkzNTE0MS40NCB8CTM3NDAyLjM2CQp8TWF5IDIwMjAJfCAzNzEyMS45OCB8CTM1OTgyLjA3IHwJMzgyNjEuOTAJCnxKdW4gMjAyMAl8IDM3MTAyLjY1IHwJMzU5NTguOTAgfAkzODI0Ni40MAkKfEp1bCAyMDIwCXwgMzcxNTEuMDQgfAkzNjAwNS43MyB8CTM4Mjk2LjM0CQp8QXVnIDIwMjAJfCAzODU2NC42NCB8CTM3NDE4LjcwIHwJMzk3MTAuNTgJCnxTZXAgMjAyMAl8IDM4NzU1LjIyIHwJMzc2MDkuMDMgfAkzOTkwMS40MgkKfE9jdCAyMDIwCXwgMzk3NzkuMDIgfAkzODYzMi43MiB8CTQwOTI1LjMyCnxOb3YgMjAyMAl8IDM4NzQxLjYzIHwJMzc1OTUuMjkgfAkzOTg4Ny45NwkKfERpYyAyMDIwCXwgMzg2NDUuODYgfAkzNzQ5OS41MCB8CTM5NzkyLjIyCgoKYGBge3J9CiNmaWxlLmNob29zZSgpCnZlbnRhc19wb3JfYW5pbz0gcmVhZF9leGNlbCgiL1VzZXJzL21hcmlhbmFhbGVhbC9EZXNrdG9wL1RFQyAyMDI1L0dlbmVyYWNpb8yBbiBkZSBlc2NlbmFyaW9zIGZ1dHVyb3MgY29uIGFuYWxpzIF0aWNhL00xL1ZlbnRhczIueGxzeCIpCiN2aWV3KHZlbnRhc19wb3JfYW5pbykKZ2dwbG90KHZlbnRhc19wb3JfYW5pbywgYWVzKHg9TWVzLHk9IFZlbnRhcywgY29sPWFzLmZhY3RvcihBbmlvKSwgZ3JvdXA9QW5pbykpKwogIGdlb21fbGluZSgpICsgbGFicyh0aXRsZSA9ICJWZW50YXMgZGUgTGVjaGUgU2Fib3JpemFkYSBIZXJzaGV5J3MgcG9yIEHDsW8iLCB4PSJNZXMiLCB5PSAiTWlsZXMgZGUgRMOzbGFyZXMiKQoKCmBgYAoKCgoKTnVlc3RyYSByZWNvbWVuZGFjacOzbiBzZXLDrWEgcmVhbGl6YXIgY2FtcGHDsWFzIHB1YmxpY2l0YXJpYXMgcGFyYSBhdW1lbnRhciBlbCBjb25zdW1vIGRlIGxlY2hlIHNhYm9yaXphZGEgSGVyc2hleeKAmXMgZW4gZWwgcHJpbWVyIHNlbWVzdHJlIGRlbCBhw7FvLgoK