Regresión lineal Mtcars

Mpg vs Hp

#Regresión lineal
mod1 = lm(mpg ~ hp, data = mtcars )

plot(mtcars$hp, mtcars$mpg, 
     main = "Relación entre HP y MPG",
     xlab = "Caballos de fuerza (HP)",
     ylab = "Millas por galón (MPG)",
     col = "blue", 
     pch = 19)
abline(mod1, col = "red", lwd = 2)

#Coeficiente beta estandarizado
beta_estandarizado = lm.beta(mod1)
print(beta_estandarizado)
## 
## Call:
## lm(formula = mpg ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.7761684
#CI 95
intervalo_confianza = confint(beta_estandarizado, level = 0.95)
print(intervalo_confianza)
##                  2.5 %    97.5 %
## (Intercept)         NA        NA
## hp          -0.7968347 -0.755502
resumen_modelo = summary(mod1)
p_values = resumen_modelo$coefficients[,4]

cat("Los valores p de la regresión son:", p_values, "\n")
## Los valores p de la regresión son: 6.642736e-18 1.787835e-07
print(p_values)
##  (Intercept)           hp 
## 6.642736e-18 1.787835e-07

Cyl vs Hp

## 
## Call:
## lm(formula = cyl ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA   0.8324475
##                 2.5 %    97.5 %
## (Intercept)        NA        NA
## hp          0.8270658 0.8378291
## Los valores p de la regresión son: 7.405351e-08 3.477861e-09
##  (Intercept)           hp 
## 7.405351e-08 3.477861e-09

Disp vs Hp

## 
## Call:
## lm(formula = disp ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA   0.7909486
##                 2.5 %   97.5 %
## (Intercept)        NA       NA
## hp          0.3785292 1.203368
## Los valores p de la regresión son: 0.5245902 7.142679e-08
##  (Intercept)           hp 
## 5.245902e-01 7.142679e-08

Drat vs Hp

## 
## Call:
## lm(formula = drat ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.4487591
##                  2.5 %     97.5 %
## (Intercept)         NA         NA
## hp          -0.4513576 -0.4461606
## Los valores p de la regresión son: 6.701581e-19 0.009988772
##  (Intercept)           hp 
## 6.701581e-19 9.988772e-03

Wt vs Hp

## 
## Call:
## lm(formula = wt ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA   0.6587479
##                 2.5 %    97.5 %
## (Intercept)        NA        NA
## hp          0.6547444 0.6627513
## Los valores p de la regresión son: 2.389427e-06 4.145827e-05
##  (Intercept)           hp 
## 2.389427e-06 4.145827e-05

Qsec vs Hp

## 
## Call:
## lm(formula = qsec ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.7082234
##                  2.5 %     97.5 %
## (Intercept)         NA         NA
## hp          -0.7150842 -0.7013626
## Los valores p de la regresión son: 6.728254e-27 5.766253e-06
##  (Intercept)           hp 
## 6.728254e-27 5.766253e-06

Vs vs Hp

## 
## Call:
## lm(formula = vs ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.7230967
##                  2.5 %     97.5 %
## (Intercept)         NA         NA
## hp          -0.7249901 -0.7212034
## Los valores p de la regresión son: 4.460506e-09 2.940896e-06
##  (Intercept)           hp 
## 4.460506e-09 2.940896e-06

Am vs Hp

## 
## Call:
## lm(formula = am ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.2432043
##                  2.5 %     97.5 %
## (Intercept)         NA         NA
## hp          -0.2458364 -0.2405721
## Los valores p de la regresión son: 0.003240628 0.1798309
## (Intercept)          hp 
## 0.003240628 0.179830905

Gear vs Hp

## 
## Call:
## lm(formula = gear ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA  -0.1257043
##                  2.5 %     97.5 %
## (Intercept)         NA         NA
## hp          -0.1296848 -0.1217237
## Los valores p de la regresión son: 2.724935e-13 0.4930119
##  (Intercept)           hp 
## 2.724935e-13 4.930119e-01

Carb vs Hp

## 
## Call:
## lm(formula = carb ~ hp, data = mtcars)
## 
## Standardized Coefficients::
## (Intercept)          hp 
##          NA   0.7498125
##                 2.5 %    97.5 %
## (Intercept)        NA        NA
## hp          0.7440006 0.7556244
## Los valores p de la regresión son: 0.6334148 7.82781e-07
##  (Intercept)           hp 
## 6.334148e-01 7.827810e-07