\[ \bar{x_j} = \frac{1}{n}1'X_j = \frac{1}{n}X_j '1 \]
n<-10
p<-10
U<- matrix(1,n,p)
U
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
\[ J = \frac{1}{n}U = \frac{1}{n}11' \]
rep(1,10)
## [1] 1 1 1 1 1 1 1 1 1 1
rep(1,10)%*%t(rep(1,10))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
rep(1,10)%*%t(rep(1,10)) == U
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [5,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [6,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [7,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [8,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [9,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [10,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
U%*%U
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 10 10 10 10 10 10 10 10 10 10
## [2,] 10 10 10 10 10 10 10 10 10 10
## [3,] 10 10 10 10 10 10 10 10 10 10
## [4,] 10 10 10 10 10 10 10 10 10 10
## [5,] 10 10 10 10 10 10 10 10 10 10
## [6,] 10 10 10 10 10 10 10 10 10 10
## [7,] 10 10 10 10 10 10 10 10 10 10
## [8,] 10 10 10 10 10 10 10 10 10 10
## [9,] 10 10 10 10 10 10 10 10 10 10
## [10,] 10 10 10 10 10 10 10 10 10 10
J <- (1/n)*U
J
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [2,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [3,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [4,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [5,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [6,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [7,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [8,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [9,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [10,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
\[ A^k=A \]
\[ A^2=A \]
J%*%J
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [2,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [3,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [4,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [5,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [6,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [7,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [8,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [9,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
## [10,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Por lo tanto la matriz J es idempotente
I<-diag(1,n,p)
\[ I - J \]
J==t(J)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [5,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [6,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [7,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [8,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [9,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [10,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
\[ A=A' \]
Sea \(A \in R^{n \times n}\) se dice que A es pseudo-idéntica cuando y solo cuando.
En este caso la matriz J es simétrica e idempotente, por lo tanto es una pseudo-idéntica.
I-J
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [2,] -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [3,] -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [4,] -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [5,] -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1
## [6,] -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1
## [7,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1
## [8,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1
## [9,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1
## [10,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9
I-J == t(I-J)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [5,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [6,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [7,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [8,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [9,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [10,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
POR LO TANTO, LA MATRIZ DE CENTRADO ES SIMÉTRICA.
(I-J)%*%(I-J)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [2,] -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [3,] -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [4,] -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [5,] -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1
## [6,] -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1
## [7,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1
## [8,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1
## [9,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1
## [10,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9
(I-J)%*%(I-J)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [2,] -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [3,] -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [4,] -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
## [5,] -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1 -0.1
## [6,] -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1 -0.1
## [7,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1 -0.1
## [8,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1 -0.1
## [9,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9 -0.1
## [10,] -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.9
# Cargar el conjunto de datos Iris (ya está disponible en R por defecto)
data(iris)
# Ver las primeras filas del conjunto de datos
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
# Resumen estadístico del conjunto de datos
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
View(iris)
attach(iris)
library(ggplot2)
ggplot(iris,aes(x=factor(Species), y=iris$Sepal.Length)) +
geom_boxplot(outlier.shape=16, outlier.size=1) +
labs(x="Especie",
y="Longitud del Sépalo", fill="Tipo") +
theme(legend.position="top", legend.direction="horizontal")
## Warning: Use of `iris$Sepal.Length` is discouraged.
## ℹ Use `Sepal.Length` instead.
ggplot(iris,aes(x=factor(Species), y=iris$Sepal.Length, colour = Species)) +
geom_violin(outlier.shape=16, outlier.size=1) +
labs(x="Especie",
y="Longitud del Sépalo", fill="Tipo") +
theme(legend.position="top", legend.direction="horizontal")
## Warning in geom_violin(outlier.shape = 16, outlier.size = 1): Ignoring unknown
## parameters: `outlier.shape` and `outlier.size`
## Warning: Use of `iris$Sepal.Length` is discouraged.
## ℹ Use `Sepal.Length` instead.
\[ \bar{x_j} = \frac{1}{n}1'X_j = \frac{1}{n}X_j '1 \]
\[ \hat{\mu}=\frac{1}{n}X'1 \]
d<- iris[,1:4]
med1<-(1/length(d$Sepal.Length))*as.matrix(t(d))%*%rep(1,length(d$Sepal.Length))
med1
## [,1]
## Sepal.Length 5.843333
## Sepal.Width 3.057333
## Petal.Length 3.758000
## Petal.Width 1.199333
med2<-rep(0,4)
for(j in 1:4){
med2[j]<-mean(d[,j])
}
med2
## [1] 5.843333 3.057333 3.758000 1.199333
\[ S = X'(I-J)X = (s_{i,j})_{i,j} \]
var(d)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
## Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
## Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
## Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063
library(corrplot)
## corrplot 0.95 loaded
cov_matrix <- cov(d)
print(cov_matrix)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
## Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
## Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
## Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063
cor(d)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
## Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
## Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
## Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
eigen(var(d))
## eigen() decomposition
## $values
## [1] 4.22824171 0.24267075 0.07820950 0.02383509
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.36138659 -0.65658877 0.58202985 0.3154872
## [2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
## [3,] 0.85667061 0.17337266 -0.07623608 -0.4798390
## [4,] 0.35828920 0.07548102 -0.54583143 0.7536574
La matriz de varianzas y covarianzas es una matriz definida positiva.
Una matriz simétrica es definida positiva si y solo si es de varianzas y covarianzas.
corrplot(cor(d))
eigen(cor(d))
## eigen() decomposition
## $values
## [1] 2.91849782 0.91403047 0.14675688 0.02071484
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] 0.5210659 -0.37741762 0.7195664 0.2612863
## [2,] -0.2693474 -0.92329566 -0.2443818 -0.1235096
## [3,] 0.5804131 -0.02449161 -0.1421264 -0.8014492
## [4,] 0.5648565 -0.06694199 -0.6342727 0.5235971
sum(diag(cor(d)))
## [1] 4
tt<-eigen(cor(d))
sum(tt$values)
## [1] 4
# Varianza generalizada
det(var(d))
## [1] 0.00191273
prod(eigen(var(d))$values)
## [1] 0.00191273
data("mtcars")
View(mtcars)
\[tr(A) = \sum_{i=1}^n \lambda_i\]
\[det(A) = \prod_{i=1}^n \lambda_i\]