file.exists("global-plastics-production.csv")
## [1] TRUE
install.packages("read.csv")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
## Warning: package 'read.csv' is not available for this version of R
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages
GPP <- read.csv("global-plastics-production.csv")
# Check the structure for Dorder Data
str(GPP)
## 'data.frame': 69 obs. of 4 variables:
## $ Entity : chr "World" "World" "World" "World" ...
## $ Code : chr "OWID_WRL" "OWID_WRL" "OWID_WRL" "OWID_WRL" ...
## $ Year : int 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 ...
## $ Plastic_Produced: int 2000000 2000000 2000000 3000000 3000000 4000000 5000000 5000000 6000000 7000000 ...
head(GPP)
## Entity Code Year Plastic_Produced
## 1 World OWID_WRL 1950 2000000
## 2 World OWID_WRL 1951 2000000
## 3 World OWID_WRL 1952 2000000
## 4 World OWID_WRL 1953 3000000
## 5 World OWID_WRL 1954 3000000
## 6 World OWID_WRL 1955 4000000
install.packages("ggplot2")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
## also installing the dependencies 'colorspace', 'utf8', 'farver', 'labeling', 'munsell', 'RColorBrewer', 'viridisLite', 'fansi', 'pillar', 'pkgconfig', 'gtable', 'isoband', 'scales', 'tibble', 'withr'
library(ggplot2)
ggplot(GPP, aes(x = Plastic_Produced )) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#Evaluate attendance by weather
ggplot(GPP, aes(x=Year, y=Plastic_Produced)) +
geom_point() +
ggtitle("Plastic produce from 1950 to 2020") +
theme(plot.title = element_text(lineheight=3, face="bold", color="black", size=10))
