#install.packages("WDI")
library(WDI)
#install.packages("wbstats")
library(wbstats)
#install.packages("tidyverse")
library(ggplot2)
#install.packages("gplots")
library(gplots)
#install.packages ("plm")
library (plm)
# Obtener la información de un país
PIB_MEX <- wb_data(country = "MX", indicator = "NY.GDP.PCAP.CD", start_date = 1900, end_date = 2025)
summary(PIB_MEX)
## iso2c iso3c country date
## Length:64 Length:64 Length:64 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1976
## Mode :character Mode :character Mode :character Median :1992
## Mean :1992
## 3rd Qu.:2007
## Max. :2023
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 355.1 Length:64 Length:64 Length:64
## 1st Qu.: 1427.8 Class :character Class :character Class :character
## Median : 4006.5 Mode :character Mode :character Mode :character
## Mean : 5097.1
## 3rd Qu.: 8905.4
## Max. :13790.0
## last_updated
## Min. :2025-01-28
## 1st Qu.:2025-01-28
## Median :2025-01-28
## Mean :2025-01-28
## 3rd Qu.:2025-01-28
## Max. :2025-01-28
ggplot(PIB_MEX, aes(x=date, y = NY.GDP.PCAP.CD)) +
geom_point () +
geom_line() +
labs(title= "PIB per capita en México (current USD$)", x = "año", y = "valor")
# Obtener información de varios países
PIB_PANEL <- wb_data(country = c("MX","US","CA"), indicator = "NY.GDP.PCAP.CD", start_date = 1900, end_date = 2025)
summary(PIB_PANEL)
## iso2c iso3c country date
## Length:192 Length:192 Length:192 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1976
## Mode :character Mode :character Mode :character Median :1992
## Mean :1992
## 3rd Qu.:2007
## Max. :2023
## NY.GDP.PCAP.CD unit obs_status footnote
## Min. : 355.1 Length:192 Length:192 Length:192
## 1st Qu.: 4059.2 Class :character Class :character Class :character
## Median :10544.4 Mode :character Mode :character Mode :character
## Mean :19152.2
## 3rd Qu.:29010.1
## Max. :82769.4
## last_updated
## Min. :2025-01-28
## 1st Qu.:2025-01-28
## Median :2025-01-28
## Mean :2025-01-28
## 3rd Qu.:2025-01-28
## Max. :2025-01-28
ggplot(PIB_PANEL, aes(x=date, y = NY.GDP.PCAP.CD, color = iso3c)) +
geom_point () +
geom_line() +
labs(title= "PIB per capita en Norteamérica (current USD$)", x = "año", y = "valor")
# Teniendo varios indicadores
PIB_PANEL_MULTIPLE <- wb_data(country = c("MX","US","CA"), indicator = c("NY.GDP.PCAP.CD", "SP.DYN.LE00.IN"), start_date = 1900, end_date = 2025)
summary(PIB_PANEL_MULTIPLE)
## iso2c iso3c country date
## Length:192 Length:192 Length:192 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1976
## Mode :character Mode :character Mode :character Median :1992
## Mean :1992
## 3rd Qu.:2007
## Max. :2023
##
## NY.GDP.PCAP.CD SP.DYN.LE00.IN
## Min. : 355.1 Min. :55.02
## 1st Qu.: 4059.2 1st Qu.:71.11
## Median :10544.4 Median :74.36
## Mean :19152.2 Mean :73.41
## 3rd Qu.:29010.1 3rd Qu.:77.49
## Max. :82769.4 Max. :82.22
## NA's :3
plotmeans(NY.GDP.PCAP.CD ~ country, main = "Heterogeneidad entre países", xlab = "País", ylab = "PIB per Cápita", data = PIB_PANEL_MULTIPLE, ) #graficar promedios del PIB entre países
# Convertir la tabla de datos a datos panel
datos_panel <- pdata.frame(PIB_PANEL, index = c("country", "date")) # index = renglones
# Modelo efectos fijos
modelo_efectos_fijos <- plm(NY.GDP.PCAP.CD ~ date, data = datos_panel,
model = "within") # Variable a predecir
summary (modelo_efectos_fijos)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ date, data = datos_panel, model = "within")
##
## Balanced Panel: n = 3, T = 64, N = 192
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -22869.42 -3713.59 -740.79 4417.57 22788.54
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## date1961 19.689 7891.777 0.0025 0.9980133
## date1962 93.003 7891.777 0.0118 0.9906159
## date1963 182.117 7891.777 0.0231 0.9816255
## date1964 329.256 7891.777 0.0417 0.9667868
## date1965 493.812 7891.777 0.0626 0.9502057
## date1966 705.548 7891.777 0.0894 0.9289037
## date1967 836.074 7891.777 0.1059 0.9157965
## date1968 1051.287 7891.777 0.1332 0.8942375
## date1969 1278.661 7891.777 0.1620 0.8715461
## date1970 1483.079 7891.777 0.1879 0.8512361
## date1971 1757.600 7891.777 0.2227 0.8241196
## date1972 2139.145 7891.777 0.2711 0.7867884
## date1973 2652.616 7891.777 0.3361 0.7373364
## date1974 3306.205 7891.777 0.4189 0.6759711
## date1975 3736.686 7891.777 0.4735 0.6366822
## date1976 4425.604 7891.777 0.5608 0.5759388
## date1977 4698.806 7891.777 0.5954 0.5526405
## date1978 5234.634 7891.777 0.6633 0.5083487
## date1979 6060.354 7891.777 0.7679 0.4439640
## date1980 7072.576 7891.777 0.8962 0.3718573
## date1981 8188.133 7891.777 1.0376 0.3014655
## date1982 7987.390 7891.777 1.0121 0.3134224
## date1983 8523.654 7891.777 1.0801 0.2821751
## date1984 9312.706 7891.777 1.1801 0.2402027
## date1985 9796.257 7891.777 1.2413 0.2167918
## date1986 9909.818 7891.777 1.2557 0.2115431
## date1987 10895.002 7891.777 1.3806 0.1698612
## date1988 12362.836 7891.777 1.5665 0.1197288
## date1989 13585.668 7891.777 1.7215 0.0876150 .
## date1990 14316.347 7891.777 1.8141 0.0720442 .
## date1991 14759.335 7891.777 1.8702 0.0637741 .
## date1992 14990.000 7891.777 1.8994 0.0597918 .
## date1993 15667.517 7891.777 1.9853 0.0492832 *
## date1994 16091.651 7891.777 2.0390 0.0435376 *
## date1995 15978.167 7891.777 2.0247 0.0450159 *
## date1996 16773.055 7891.777 2.1254 0.0355067 *
## date1997 17769.387 7891.777 2.2516 0.0260772 *
## date1998 18030.354 7891.777 2.2847 0.0240026 *
## date1999 19236.904 7891.777 2.4376 0.0161811 *
## date2000 20835.037 7891.777 2.6401 0.0093360 **
## date2001 21096.198 7891.777 2.6732 0.0085083 **
## date2002 21538.969 7891.777 2.7293 0.0072554 **
## date2003 23202.118 7891.777 2.9400 0.0039054 **
## date2004 25366.654 7891.777 3.2143 0.0016609 **
## date2005 27852.977 7891.777 3.5294 0.0005823 ***
## date2006 30232.924 7891.777 3.8309 0.0002003 ***
## date2007 32408.252 7891.777 4.1066 7.172e-05 ***
## date2008 33394.731 7891.777 4.2316 4.431e-05 ***
## date2009 30291.171 7891.777 3.8383 0.0001950 ***
## date2010 33440.081 7891.777 4.2373 4.333e-05 ***
## date2011 35778.148 7891.777 4.5336 1.331e-05 ***
## date2012 36526.334 7891.777 4.6284 9.027e-06 ***
## date2013 37214.927 7891.777 4.7157 6.286e-06 ***
## date2014 37345.549 7891.777 4.7322 5.866e-06 ***
## date2015 35011.917 7891.777 4.4365 1.971e-05 ***
## date2016 34666.237 7891.777 4.3927 2.348e-05 ***
## date2017 36493.760 7891.777 4.6243 9.182e-06 ***
## date2018 38068.376 7891.777 4.8238 3.990e-06 ***
## date2019 38902.406 7891.777 4.9295 2.543e-06 ***
## date2020 37056.865 7891.777 4.6956 6.833e-06 ***
## date2021 42836.438 7891.777 5.4280 2.815e-07 ***
## date2022 46436.696 7891.777 5.8842 3.387e-08 ***
## date2023 48123.578 7891.777 6.0979 1.218e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.061e+10
## Residual Sum of Squares: 1.1771e+10
## R-Squared: 0.76742
## Adj. R-Squared: 0.64743
## F-statistic: 6.59909 on 63 and 126 DF, p-value: < 2.22e-16
# Modelo efectos aleatorios
modelo_efectos_aleatorios <- plm(NY.GDP.PCAP.CD ~ date, data = datos_panel,
model = "random") # Variable a predecir
summary (modelo_efectos_aleatorios)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = NY.GDP.PCAP.CD ~ date, data = datos_panel, model = "random")
##
## Balanced Panel: n = 3, T = 64, N = 192
##
## Effects:
## var std.dev share
## idiosyncratic 93420218 9665 0.375
## individual 155441504 12468 0.625
## theta: 0.9035
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -24225.08 -3320.91 -892.17 5059.72 23751.53
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1873.296 9107.904 0.2057 0.8370424
## date1961 19.689 7891.777 0.0025 0.9980093
## date1962 93.003 7891.777 0.0118 0.9905973
## date1963 182.117 7891.777 0.0231 0.9815890
## date1964 329.256 7891.777 0.0417 0.9667208
## date1965 493.812 7891.777 0.0626 0.9501065
## date1966 705.548 7891.777 0.0894 0.9287617
## date1967 836.074 7891.777 0.1059 0.9156280
## date1968 1051.287 7891.777 0.1332 0.8940250
## date1969 1278.661 7891.777 0.1620 0.8712866
## date1970 1483.079 7891.777 0.1879 0.8509338
## date1971 1757.600 7891.777 0.2227 0.8237590
## date1972 2139.145 7891.777 0.2711 0.7863449
## date1973 2652.616 7891.777 0.3361 0.7367774
## date1974 3306.205 7891.777 0.4189 0.6752578
## date1975 3736.686 7891.777 0.4735 0.6358628
## date1976 4425.604 7891.777 0.5608 0.5749430
## date1977 4698.806 7891.777 0.5954 0.5515726
## date1978 5234.634 7891.777 0.6633 0.5071370
## date1979 6060.354 7891.777 0.7679 0.4425272
## date1980 7072.576 7891.777 0.8962 0.3701483
## date1981 8188.133 7891.777 1.0376 0.2994785
## date1982 7987.390 7891.777 1.0121 0.3114828
## date1983 8523.654 7891.777 1.0801 0.2801120
## date1984 9312.706 7891.777 1.1801 0.2379796
## date1985 9796.257 7891.777 1.2413 0.2144858
## date1986 9909.818 7891.777 1.2557 0.2092195
## date1987 10895.002 7891.777 1.3806 0.1674170
## date1988 12362.836 7891.777 1.5665 0.1172207
## date1989 13585.668 7891.777 1.7215 0.0851607 .
## date1990 14316.347 7891.777 1.8141 0.0696648 .
## date1991 14759.335 7891.777 1.8702 0.0614537 .
## date1992 14990.000 7891.777 1.8994 0.0575059 .
## date1993 15667.517 7891.777 1.9853 0.0471115 *
## date1994 16091.651 7891.777 2.0390 0.0414460 *
## date1995 15978.167 7891.777 2.0247 0.0429023 *
## date1996 16773.055 7891.777 2.1254 0.0335546 *
## date1997 17769.387 7891.777 2.2516 0.0243455 *
## date1998 18030.354 7891.777 2.2847 0.0223303 *
## date1999 19236.904 7891.777 2.4376 0.0147856 *
## date2000 20835.037 7891.777 2.6401 0.0082883 **
## date2001 21096.198 7891.777 2.6732 0.0075134 **
## date2002 21538.969 7891.777 2.7293 0.0063470 **
## date2003 23202.118 7891.777 2.9400 0.0032817 **
## date2004 25366.654 7891.777 3.2143 0.0013076 **
## date2005 27852.977 7891.777 3.5294 0.0004166 ***
## date2006 30232.924 7891.777 3.8309 0.0001277 ***
## date2007 32408.252 7891.777 4.1066 4.016e-05 ***
## date2008 33394.731 7891.777 4.2316 2.320e-05 ***
## date2009 30291.171 7891.777 3.8383 0.0001239 ***
## date2010 33440.081 7891.777 4.2373 2.262e-05 ***
## date2011 35778.148 7891.777 4.5336 5.799e-06 ***
## date2012 36526.334 7891.777 4.6284 3.685e-06 ***
## date2013 37214.927 7891.777 4.7157 2.409e-06 ***
## date2014 37345.549 7891.777 4.7322 2.221e-06 ***
## date2015 35011.917 7891.777 4.4365 9.143e-06 ***
## date2016 34666.237 7891.777 4.3927 1.119e-05 ***
## date2017 36493.760 7891.777 4.6243 3.759e-06 ***
## date2018 38068.376 7891.777 4.8238 1.408e-06 ***
## date2019 38902.406 7891.777 4.9295 8.245e-07 ***
## date2020 37056.865 7891.777 4.6956 2.658e-06 ***
## date2021 42836.438 7891.777 5.4280 5.699e-08 ***
## date2022 46436.696 7891.777 5.8842 4.000e-09 ***
## date2023 48123.578 7891.777 6.0979 1.074e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.0797e+10
## Residual Sum of Squares: 1.1958e+10
## R-Squared: 0.76459
## Adj. R-Squared: 0.64873
## Chisq: 415.742 on 63 DF, p-value: < 2.22e-16
# Prueba de Hausman
phtest (modelo_efectos_fijos, modelo_efectos_aleatorios )
##
## Hausman Test
##
## data: NY.GDP.PCAP.CD ~ date
## chisq = 2.1185e-13, df = 63, p-value = 1
## alternative hypothesis: one model is inconsistent
# Como el P value es mayor a 0.05 usamos el modelo de efectos aleatorios
[Link del ejemplo de la clase] (https://p55hoi-andrea-ortiz0castro.shinyapps.io/App_R/)
[Ejercicio sesión 3 por mesas] (https://3o3n6j-c0sar0romeo-vega0rodr0guez.shinyapps.io/ClimateChange/)
## Instalar paquetes y llamar librerías
library (plm)
library(ggplot2)
library(WDI)
#install.packages("wbstats")
library(wbstats)
#install.packages("readxl")
library ("readxl")
#install.packages("lmtest")
library (lmtest)
#install.packages("pglm")
library(pglm)
## Importar la base de datos
patentes <- read_excel ("~/Downloads/R databases /PATENT 3.xls")
## Análisis descriptivo
summary(patentes)
## cusip merger employ return
## Min. : 800 Min. :0.0000 Min. : 0.085 Min. :-73.022
## 1st Qu.:368514 1st Qu.:0.0000 1st Qu.: 1.227 1st Qu.: 5.128
## Median :501116 Median :0.0000 Median : 3.842 Median : 7.585
## Mean :514536 Mean :0.0177 Mean : 18.826 Mean : 8.003
## 3rd Qu.:754688 3rd Qu.:0.0000 3rd Qu.: 15.442 3rd Qu.: 10.501
## Max. :878555 Max. :1.0000 Max. :506.531 Max. : 48.675
## NA's :21 NA's :8
## patents patentsg stckpr rnd
## Min. : 0.0 Min. : 0.00 Min. : 0.1875 Min. : 0.0000
## 1st Qu.: 1.0 1st Qu.: 1.00 1st Qu.: 7.6250 1st Qu.: 0.6847
## Median : 3.0 Median : 4.00 Median : 16.5000 Median : 2.1456
## Mean : 22.9 Mean : 27.14 Mean : 22.6270 Mean : 29.3398
## 3rd Qu.: 15.0 3rd Qu.: 19.00 3rd Qu.: 29.2500 3rd Qu.: 11.9168
## Max. :906.0 Max. :1063.00 Max. :402.0000 Max. :1719.3535
## NA's :2
## rndeflt rndstck sales sic
## Min. : 0.0000 Min. : 0.125 Min. : 1.22 Min. :2000
## 1st Qu.: 0.4788 1st Qu.: 5.152 1st Qu.: 52.99 1st Qu.:2890
## Median : 1.4764 Median : 13.353 Median : 174.06 Median :3531
## Mean : 19.7238 Mean : 163.823 Mean : 1219.60 Mean :3333
## 3rd Qu.: 8.7527 3rd Qu.: 74.563 3rd Qu.: 728.96 3rd Qu.:3661
## Max. :1000.7876 Max. :9755.352 Max. :44224.00 Max. :9997
## NA's :157 NA's :3
## year
## Min. :2012
## 1st Qu.:2014
## Median :2016
## Mean :2016
## 3rd Qu.:2019
## Max. :2021
##
sum(is.na(patentes))
## [1] 191
sapply(patentes, function(x) sum(is.na(x))) # NA´s por variable
## cusip merger employ return patents patentsg stckpr rnd
## 0 0 21 8 0 0 2 0
## rndeflt rndstck sales sic year
## 0 157 3 0 0
patentes <- na.omit(patentes)
# Num patentes es la variable endógena
## Construcción del modelo en datos de panel
panel_patentes <- pdata.frame(patentes, index = c("cusip", "year"))
## Modelo de efectos fijos y aleatorios
modelo_efectos_fijos_pat <- plm(patents ~ merger + employ + return + patentsg + stckpr + rnd + rndeflt + rndstck + sales + sic, data = panel_patentes, model = "within")
summary (modelo_efectos_fijos_pat)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = patents ~ merger + employ + return + patentsg +
## stckpr + rnd + rndeflt + rndstck + sales + sic, data = panel_patentes,
## model = "within")
##
## Unbalanced Panel: n = 215, T = 2-10, N = 2083
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -468.39577 -1.75634 -0.25666 1.85265 172.64513
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## merger 6.02467998 4.30535335 1.3993 0.1619
## employ -0.09095534 0.08057733 -1.1288 0.2591
## return -0.01221444 0.12005904 -0.1017 0.9190
## patentsg 0.03913907 0.02580379 1.5168 0.1295
## stckpr -0.03959771 0.03347713 -1.1828 0.2370
## rnd -2.04101003 0.15053766 -13.5581 < 2.2e-16 ***
## rndeflt 3.25369409 0.22523191 14.4460 < 2.2e-16 ***
## rndstck 0.19724166 0.01808942 10.9037 < 2.2e-16 ***
## sales -0.00188938 0.00041715 -4.5293 6.294e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1090400
## Residual Sum of Squares: 714450
## R-Squared: 0.34479
## Adj. R-Squared: 0.2662
## F-statistic: 108.696 on 9 and 1859 DF, p-value: < 2.22e-16
# Poner las mismas variables en efectos fijos y aleatorios: merger, employ, return, parentsg, stckpr, rnd, rndeflt, rndstck, sales, sic
modelo_efectos_aleatorios_pat <- plm(patents ~ merger + employ + return + patentsg + stckpr + rnd + rndeflt + rndstck + sales + sic, data = panel_patentes,model = "random") # Variable a predecir
summary (modelo_efectos_aleatorios_pat)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = patents ~ merger + employ + return + patentsg +
## stckpr + rnd + rndeflt + rndstck + sales + sic, data = panel_patentes,
## model = "random")
##
## Unbalanced Panel: n = 215, T = 2-10, N = 2083
##
## Effects:
## var std.dev share
## idiosyncratic 384.3 19.6 1
## individual 0.0 0.0 0
## theta:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 0 0 0 0 0
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -525.42194 -2.59738 -0.31264 1.88763 277.92369
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.19864916 2.94181986 0.4075 0.68368
## merger 1.92231907 4.04770404 0.4749 0.63485
## employ 0.12548448 0.03060149 4.1006 4.121e-05 ***
## return 0.06432167 0.10374558 0.6200 0.53526
## patentsg 0.78696226 0.01016726 77.4016 < 2.2e-16 ***
## stckpr 0.00355791 0.02557045 0.1391 0.88934
## rnd -0.18291882 0.04480367 -4.0827 4.452e-05 ***
## rndeflt 0.26805014 0.03877619 6.9128 4.753e-12 ***
## rndstck -0.00122890 0.00628664 -0.1955 0.84502
## sales -0.00054529 0.00025769 -2.1161 0.03434 *
## sic -0.00049485 0.00081918 -0.6041 0.54579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 10910000
## Residual Sum of Squares: 1154800
## R-Squared: 0.89416
## Adj. R-Squared: 0.89365
## Chisq: 17504.4 on 10 DF, p-value: < 2.22e-16
phtest (modelo_efectos_fijos_pat, modelo_efectos_aleatorios_pat )
##
## Hausman Test
##
## data: patents ~ merger + employ + return + patentsg + stckpr + rnd + ...
## chisq = 1104.9, df = 9, p-value < 2.2e-16
## alternative hypothesis: one model is inconsistent
## Pruebas de heterocedasticidad y autocorrelación serial
# heterocedasticidad para modelo de efectos fijos
bptest(modelo_efectos_fijos_pat)
##
## studentized Breusch-Pagan test
##
## data: modelo_efectos_fijos_pat
## BP = 617.25, df = 10, p-value < 2.2e-16
# P_valor menor que 0, hay presencia de heterocedasticidad en los residuos (problema detectado)
# heterocedasticidad para modelo de efectos fijos
bptest(modelo_efectos_aleatorios_pat)
##
## studentized Breusch-Pagan test
##
## data: modelo_efectos_aleatorios_pat
## BP = 617.25, df = 10, p-value < 2.2e-16
# P_valor menor que 0, hay presencia de heterocedasticidad en los residuos (problema detectado)
# Autocorrelación serial para modelo de efectos fijos
pwartest(modelo_efectos_fijos_pat)
##
## Wooldridge's test for serial correlation in FE panels
##
## data: modelo_efectos_fijos_pat
## F = 42.281, df1 = 1, df2 = 1866, p-value = 1.012e-10
## alternative hypothesis: serial correlation
# Como p valor es menor a 0.05, hay autocorrelación serial en errores
# Autocorrelación serial para modelo de efectos aleatorios
pbnftest(modelo_efectos_aleatorios_pat)
##
## modified Bhargava/Franzini/Narendranathan Panel Durbin-Watson Test
##
## data: patents ~ merger + employ + return + patentsg + stckpr + rnd + ...
## DW = 1.0069
## alternative hypothesis: serial correlation in idiosyncratic errors
# Como el valor es < a 1.5, hay autocorrelación positiva significativa
# Corrección del modelo con errores estándar robustos
coeficientes_corregidos <- coeftest(modelo_efectos_fijos_pat,
vcov=vcovHC(modelo_efectos_fijos_pat, type = "HC0"))
solo_coeficientes <- coeficientes_corregidos [,1]
# Generación de pronósticos y evaluación del modelo
datos_de_prueba <- data.frame(merger=0, employ=10, return=6, patentsg=24, stckpr=48, rnd=3, rndeflt=3, rndstck=16, sales=344)
prediccion <- sum(solo_coeficientes*c(datos_de_prueba$merger,datos_de_prueba$employ, datos_de_prueba$return, datos_de_prueba$patentsg, datos_de_prueba$stckpr, datos_de_prueba$rnd, datos_de_prueba$rndeflt, datos_de_prueba$rndstck, datos_de_prueba$sales))
prediccion
## [1] 4.199779
# El valor esperado de la predicción es 22, y el resultado fue 4.2, por lo que tenemos una diferencia significativa