FG Stats by Position | ||||
Position | Count | Minimum | Average | Maximum |
---|---|---|---|---|
Forward | 4 | 50.9 | 54.25 | 59.1 |
Guard | 4 | 46.6 | 52.90 | 58.0 |
Center | 4 | 40.8 | 50.85 | 59.9 |
code:
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(gtExtras)
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(gtExtras)
# Specify made-up data for 12 players and turn it into a data frame
# Note: I used ChatGPT to help generate this data
Player <- c(
"Player 1",
"Player 2",
"Player 3",
"Player 4",
"Player 5",
"Player 6",
"Player 7",
"Player 8",
"Player 9",
"Player 10",
"Player 11",
"Player 12"
)
Position <- c(
"Guard",
"Center",
"Center",
"Guard",
"Forward",
"Center",
"Forward",
"Guard",
"Center",
"Forward",
"Guard",
"Forward"
)
FG_Percentage <- c(58.0,
44.9,
40.8,
46.6,
59.1,
57.8,
53.9,
52.8,
59.9,
53.1,
54.2,
50.9)
basketball_players <- data.frame(Player, Position, FG_Percentage)
FG_Average <- mean(FG_Percentage)
basketball_players <- basketball_players %>%
mutate(
FG_Category = case_when(
FG_Percentage < FG_Average ~ "Below average",
FG_Percentage == FG_Average ~ "Average",
FG_Percentage > FG_Average ~ "Above average",
.default = "Error"
)
)
# Making the table
Player_table <- gt(basketball_players) %>%
tab_header("Player positions and FG stats") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Player_table
Summary <- basketball_players %>%
group_by(Position) %>%
summarize(Count = n(),
Minimum = min(FG_Percentage),
Average = (round(mean(FG_Percentage),2)),
Maximum = max(FG_Percentage)) %>%
arrange(desc(Average))
# Making the table
Summary_table <- gt(Summary) %>%
tab_header("FG Stats by Position") %>%
cols_align(align = "left") %>%
gt_theme_538
# Showing the table
Summary_table