
Mengidentifikasi Tipe Data
a <- 42L
b <- 3.14
c <- “Hello”
d <- FALSE
e <- c(1, 2, 3)
f <- list(name <- “Alice”, age <- 25)
1. Identifikasi tipe data setiap variabel!
a <- 42L # Integer
b <- 3.14 # Double (Numeric)
c <- “Hello” # Character
d <- FALSE # Logical
e <- c(1, 2, 3) # Vector (Numeric)
f <- list(name <- “Alice”, age <- 25} # List
2. Cetak tipe data setiap variabel menggunakan
‘class()’!
a <- 42L
b <- 3.14
c <- "Hello"
d <- FALSE
e <- c(1, 2, 3)
f <- list(name <- "Alice", age <- 25)
print(class(a))
## [1] "integer"
## [1] "numeric"
## [1] "character"
## [1] "logical"
## [1] "numeric"
## [1] "list"
Variabel dan
Manipulasi Data
x <- 20
y <- 5
text1 <- “Data”
text2 <- “Science”
1. Perbarui nilai x dengan menambahkan 10!
x <- 20
x <- x + 10
print(x)
## [1] 30
2. Gabungkan text1 dan text2 ke dalam “Data
Science”!
text1 <- "Data"
text2 <- "Science"
result <- paste(text1, text2)
print(result)
## [1] "Data Science"
3. Ubah teks gabungan menjadi huruf besar!
uppercase_result <- toupper(result)
print(uppercase_result)
## [1] "DATA SCIENCE"
Operasi
Aritmatika
a <- 15
b <- 4
1. Hitunglah jumlah, selisih, produk, pembagian, dan modulo
dari a dan b!
a <- 15
b <- 4
# Jumlah
jumlah <- a + b
print(paste("Jumlah:", jumlah))
## [1] "Jumlah: 19"
# Selisih
selisih <- a - b
print(paste("Selisih:", selisih))
## [1] "Selisih: 11"
# Produk
produk <- a * b
print(paste("Produk:", produk))
## [1] "Produk: 60"
# Pembagian
pembagian <- a / b
print(paste("Pembagian:", pembagian))
## [1] "Pembagian: 3.75"
# Modulo
modulo <- a %% b
print(paste("Modulo:", modulo))
## [1] "Modulo: 3"
2. Hitunglah a pangkat b!
result <- a ^ b
print(result)
## [1] 50625
3. Buat variabel baru c <- a/b dan ubah menjadi
integer!
# Membagi a dengan b
c <- a / b
print(c) # Output: 3.75 (tipe numerik/double)
## [1] 3.75
# Mengubah c menjadi integer
c_int <- as.integer(c)
print(c_int)
## [1] 3
Operasi
String
text <- “Hello, Data Science!”
1. Ekstrak 5 karakter pertama dari teks!
text <- "Hello, Data Science!"
# Ekstrak 5 karakter pertama
first_five <- substr(text, 1, 5)
print(first_five)
## [1] "Hello"
2. Hitung jumlah karakter dalam teks!
char_count <- nchar(text)
print(char_count)
## [1] 20
3. Ubah teks mejadi huruf kecil!
lowercase_text <- tolower(text)
print(lowercase_text)
## [1] "hello, data science!"
Operator
Perbandingan dan Logika
x <- 7
y <- 10
1. Periksa apakah x lebih besar dari y!
x <- 7
y <- 10
result <- x > y
print(result)
## [1] FALSE
2. Periksa apakah x kurang dari atau sama dengan
y!
result <- x <= y
print(result)
## [1] TRUE
3. Periksa apakah x tidak sama dengan y!
result = x != y
print(result)
## [1] TRUE
4. Evaluasilah ekspresi (x > 5) AND (y <
20)!*
result <- (x > 5) & (y < 20)
print(result)
## [1] TRUE
Konversi Tipe
Data
num_str <- “123”
num_float <- 45.67
1. Ubah num_str ke bilangan bulat dan tambahkan
10!
num_str <- "123"
num_int <- as.integer(num_str) + 10
print(num_int)
## [1] 133
2. Ubah num_float ke bilangan bulat!
num_float <- 45.67
num_rounded <- round(num_float)
print(num_rounded)
## [1] 46
3. Konversikan num_float kembali menjadi string!
num_str <- as.character(num_float)
print(num_str)
## [1] "45.67"
Bonus
Challenge
Buat program interaktif yang meminta pengguna untuk memasukkan:
Nama
Usia
Kota Kelahiran
Kemudian, cetak output sebagai berikut:
“Hello [Name], you are [Age] years old and from [Hometown].”
# Meminta input dari pengguna
name <- readline("Enter your name: ")
## Enter your name:
age <- readline("Enter your age: ")
## Enter your age:
hometown <- readline("Enter your hometown: ")
## Enter your hometown:
# Menampilkan output
cat("Hello", name, ", you are", age, "years old and from", hometown, ".\n")
## Hello , you are years old and from .
LS0tDQp0aXRsZTogIlR1Z2FzIDEgRGF0YSBTY2llbmNlIFByb2dyYW1taW5nIg0Kc3VidGl0bGU6ICJCYXNpYyBQcm9ncmFtbWluZyBQcmFjdGljdW0iDQphdXRob3I6IA0KICAiSXNuYWluaSBOdXIgSGFzYW5haCAoNTIyNDAwMDUpIg0KZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDoNCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246ICAgIyBodHRwczovL2dpdGh1Yi5jb20vanViYS9ybWRmb3JtYXRzDQogICAgc2VsZl9jb250YWluZWQ6IHRydWUNCiAgICB0aHVtYm5haWxzOiB0cnVlDQogICAgbGlnaHRib3g6IHRydWUNCiAgICBnYWxsZXJ5OiB0cnVlDQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlDQogICAgbGliX2RpcjogbGlicw0KICAgIGRmX3ByaW50OiAicGFnZWQiDQogICAgY29kZV9mb2xkaW5nOiAic2hvdyINCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICBjc3M6ICJzdHlsZSAoMSkuY3NzIg0KICAgIHBhcmFtczoNCiAgZWNobzogZmFsc2UNCmVkaXRvcl9vcHRpb25zOiANCiAgbWFya2Rvd246IA0KICAgIHdyYXA6IDcyDQotLS0NCg0KPGltZyBpZD0iSXNuYSIgc3JjPSJDOlxVc2Vyc1xBU1VTXERlc2t0b3BcU3RhdGlzdGlrYSBEYXNhclxJc25hLnBuZyIgYWx0PSJMb2dvIiBzdHlsZT0id2lkdGg6MjAwcHg7IGRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87Ij4NCg0KIyAqKk1lbmdpZGVudGlmaWthc2kgVGlwZSBEYXRhKioNCg0KYSA8LSA0MkwNCg0KYiA8LSAzLjE0DQoNCmMgPC0gIkhlbGxvIg0KDQpkIDwtIEZBTFNFDQoNCmUgPC0gYygxLCAyLCAzKQ0KDQpmIDwtIGxpc3QobmFtZSA8LSAiQWxpY2UiLCBhZ2UgPC0gMjUpDQoNCioqMS4gSWRlbnRpZmlrYXNpIHRpcGUgZGF0YSBzZXRpYXAgdmFyaWFiZWwhKioNCg0KYSA8LSA0MkwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgSW50ZWdlcg0KDQpiIDwtIDMuMTQgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBEb3VibGUgKE51bWVyaWMpDQoNCmMgPC0gIkhlbGxvIiAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIENoYXJhY3Rlcg0KDQpkIDwtIEZBTFNFICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgTG9naWNhbA0KDQplIDwtIGMoMSwgMiwgMykgICAgICAgICAgICAgICAgICAgICAgICAgICMgVmVjdG9yIChOdW1lcmljKQ0KDQpmIDwtIGxpc3QobmFtZSA8LSAiQWxpY2UiLCBhZ2UgPC0gMjV9ICAgICMgTGlzdA0KDQoqKjIuIENldGFrIHRpcGUgZGF0YSBzZXRpYXAgdmFyaWFiZWwgbWVuZ2d1bmFrYW4gJ2NsYXNzKCknISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KYSA8LSA0MkwNCmIgPC0gMy4xNA0KYyA8LSAiSGVsbG8iDQpkIDwtIEZBTFNFDQplIDwtIGMoMSwgMiwgMykNCmYgPC0gbGlzdChuYW1lIDwtICJBbGljZSIsIGFnZSA8LSAyNSkNCg0KcHJpbnQoY2xhc3MoYSkpDQpwcmludChjbGFzcyhiKSkgDQpwcmludChjbGFzcyhjKSkNCnByaW50KGNsYXNzKGQpKSANCnByaW50KGNsYXNzKGUpKQ0KcHJpbnQoY2xhc3MoZikpDQpgYGANCg0KDQojICoqVmFyaWFiZWwgZGFuIE1hbmlwdWxhc2kgRGF0YSoqDQoNCnggPC0gMjANCg0KeSA8LSA1DQoNCnRleHQxIDwtICJEYXRhIg0KDQp0ZXh0MiA8LSAiU2NpZW5jZSINCg0KKioxLiBQZXJiYXJ1aSBuaWxhaSB4IGRlbmdhbiBtZW5hbWJhaGthbiAxMCEqKg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCnggPC0gMjANCnggPC0geCArIDEwDQoNCnByaW50KHgpDQpgYGANCg0KKioyLiBHYWJ1bmdrYW4gdGV4dDEgZGFuIHRleHQyIGtlIGRhbGFtICJEYXRhIFNjaWVuY2UiISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KdGV4dDEgPC0gIkRhdGEiDQp0ZXh0MiA8LSAiU2NpZW5jZSINCg0KcmVzdWx0IDwtIHBhc3RlKHRleHQxLCB0ZXh0MikNCnByaW50KHJlc3VsdCkgDQoNCmBgYA0KDQoqKjMuIFViYWggdGVrcyBnYWJ1bmdhbiBtZW5qYWRpIGh1cnVmIGJlc2FyISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KdXBwZXJjYXNlX3Jlc3VsdCA8LSB0b3VwcGVyKHJlc3VsdCkNCg0KcHJpbnQodXBwZXJjYXNlX3Jlc3VsdCkNCmBgYA0KDQojICoqT3BlcmFzaSBBcml0bWF0aWthKioNCg0KYSA8LSAxNQ0KDQpiIDwtIDQNCg0KKioxLiBIaXR1bmdsYWgganVtbGFoLCBzZWxpc2loLCBwcm9kdWssIHBlbWJhZ2lhbiwgZGFuIG1vZHVsbyBkYXJpIGEgZGFuIGIhKioNCg0KYGBge3IsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQoNCmEgPC0gMTUNCmIgPC0gNA0KDQojIEp1bWxhaA0KanVtbGFoIDwtIGEgKyBiDQpwcmludChwYXN0ZSgiSnVtbGFoOiIsIGp1bWxhaCkpIA0KDQojIFNlbGlzaWgNCnNlbGlzaWggPC0gYSAtIGINCnByaW50KHBhc3RlKCJTZWxpc2loOiIsIHNlbGlzaWgpKSANCg0KIyBQcm9kdWsNCnByb2R1ayA8LSBhICogYg0KcHJpbnQocGFzdGUoIlByb2R1azoiLCBwcm9kdWspKQ0KDQojIFBlbWJhZ2lhbg0KcGVtYmFnaWFuIDwtIGEgLyBiDQpwcmludChwYXN0ZSgiUGVtYmFnaWFuOiIsIHBlbWJhZ2lhbikpDQoNCiMgTW9kdWxvDQptb2R1bG8gPC0gYSAlJSBiDQpwcmludChwYXN0ZSgiTW9kdWxvOiIsIG1vZHVsbykpDQoNCmBgYA0KDQoqKjIuIEhpdHVuZ2xhaCBhIHBhbmdrYXQgYiEqKg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCg0KcmVzdWx0IDwtIGEgXiBiDQpwcmludChyZXN1bHQpDQoNCmBgYA0KDQoqKjMuIEJ1YXQgdmFyaWFiZWwgYmFydSBjIDwtIGEvYiBkYW4gdWJhaCBtZW5qYWRpIGludGVnZXIhKioNCg0KYGBge3IsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQoNCiMgTWVtYmFnaSBhIGRlbmdhbiBiDQpjIDwtIGEgLyBiDQpwcmludChjKSAgIyBPdXRwdXQ6IDMuNzUgKHRpcGUgbnVtZXJpay9kb3VibGUpDQoNCiMgTWVuZ3ViYWggYyBtZW5qYWRpIGludGVnZXINCmNfaW50IDwtIGFzLmludGVnZXIoYykNCnByaW50KGNfaW50KSANCg0KYGBgDQoNCiMgKipPcGVyYXNpIFN0cmluZyoqDQoNCnRleHQgPC0gIkhlbGxvLCBEYXRhIFNjaWVuY2UhIg0KDQoqKjEuIEVrc3RyYWsgNSBrYXJha3RlciBwZXJ0YW1hIGRhcmkgdGVrcyEqKg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCnRleHQgPC0gIkhlbGxvLCBEYXRhIFNjaWVuY2UhIg0KDQojIEVrc3RyYWsgNSBrYXJha3RlciBwZXJ0YW1hDQpmaXJzdF9maXZlIDwtIHN1YnN0cih0ZXh0LCAxLCA1KQ0KcHJpbnQoZmlyc3RfZml2ZSkNCmBgYA0KDQoqKjIuIEhpdHVuZyBqdW1sYWgga2FyYWt0ZXIgZGFsYW0gdGVrcyEqKg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCmNoYXJfY291bnQgPC0gbmNoYXIodGV4dCkNCnByaW50KGNoYXJfY291bnQpDQpgYGANCg0KKiozLiBVYmFoIHRla3MgbWVqYWRpIGh1cnVmIGtlY2lsISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KbG93ZXJjYXNlX3RleHQgPC0gdG9sb3dlcih0ZXh0KQ0KDQpwcmludChsb3dlcmNhc2VfdGV4dCkNCmBgYA0KDQojICoqT3BlcmF0b3IgUGVyYmFuZGluZ2FuIGRhbiBMb2dpa2EqKg0KDQp4IDwtIDcNCg0KeSA8LSAxMA0KDQoqKjEuIFBlcmlrc2EgYXBha2FoIHggbGViaWggYmVzYXIgZGFyaSB5ISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KeCA8LSA3DQp5IDwtIDEwDQoNCnJlc3VsdCA8LSB4ID4geQ0KcHJpbnQocmVzdWx0KSANCg0KYGBgDQoNCioqMi4gUGVyaWtzYSBhcGFrYWggeCBrdXJhbmcgZGFyaSBhdGF1IHNhbWEgZGVuZ2FuIHkhKioNCg0KYGBge3IsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQpyZXN1bHQgPC0geCA8PSB5DQpwcmludChyZXN1bHQpDQpgYGANCg0KKiozLiBQZXJpa3NhIGFwYWthaCB4IHRpZGFrIHNhbWEgZGVuZ2FuIHkhKioNCg0KYGBge3IsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQpyZXN1bHQgPSB4ICE9IHkNCnByaW50KHJlc3VsdCkgDQpgYGANCg0KKio0LiBFdmFsdWFzaWxhaCBla3NwcmVzaSAoeCA+IDUpIEFORCAoeSA8IDIwKSEqKioNCg0KYGBge3IsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1UUlVFLCBlY2hvPVRSVUV9DQpyZXN1bHQgPC0gKHggPiA1KSAmICh5IDwgMjApDQpwcmludChyZXN1bHQpIA0KYGBgDQoNCiMgKipLb252ZXJzaSBUaXBlIERhdGEqKg0KDQpudW1fc3RyIDwtICIxMjMiDQoNCm51bV9mbG9hdCA8LSA0NS42Nw0KDQoqKjEuIFViYWggbnVtX3N0ciBrZSBiaWxhbmdhbiBidWxhdCBkYW4gdGFtYmFoa2FuIDEwISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KbnVtX3N0ciA8LSAiMTIzIg0KDQpudW1faW50IDwtIGFzLmludGVnZXIobnVtX3N0cikgKyAxMA0KcHJpbnQobnVtX2ludCkNCmBgYA0KDQoqKjIuIFViYWggbnVtX2Zsb2F0IGtlIGJpbGFuZ2FuIGJ1bGF0ISoqDQoNCmBgYHtyLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRSwgZWNobz1UUlVFfQ0KDQpudW1fZmxvYXQgPC0gNDUuNjcNCg0KbnVtX3JvdW5kZWQgPC0gcm91bmQobnVtX2Zsb2F0KQ0KcHJpbnQobnVtX3JvdW5kZWQpDQpgYGANCg0KKiozLiBLb252ZXJzaWthbiBudW1fZmxvYXQga2VtYmFsaSBtZW5qYWRpIHN0cmluZyEqKg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCm51bV9zdHIgPC0gYXMuY2hhcmFjdGVyKG51bV9mbG9hdCkNCnByaW50KG51bV9zdHIpDQpgYGANCg0KIyAqKkJvbnVzIENoYWxsZW5nZSoqDQoNCkJ1YXQgcHJvZ3JhbSBpbnRlcmFrdGlmIHlhbmcgbWVtaW50YSBwZW5nZ3VuYSB1bnR1ayBtZW1hc3Vra2FuOg0KDQoxLiBOYW1hDQoNCjIuIFVzaWENCg0KMy4gS290YSBLZWxhaGlyYW4NCg0KS2VtdWRpYW4sIGNldGFrIG91dHB1dCBzZWJhZ2FpIGJlcmlrdXQ6DQoNCiJIZWxsbyBbTmFtZV0sIHlvdSBhcmUgW0FnZV0geWVhcnMgb2xkIGFuZCBmcm9tIFtIb21ldG93bl0uIg0KDQpgYGB7ciwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPVRSVUUsIGVjaG89VFJVRX0NCiMgTWVtaW50YSBpbnB1dCBkYXJpIHBlbmdndW5hDQpuYW1lIDwtIHJlYWRsaW5lKCJFbnRlciB5b3VyIG5hbWU6ICIpDQphZ2UgPC0gcmVhZGxpbmUoIkVudGVyIHlvdXIgYWdlOiAiKQ0KaG9tZXRvd24gPC0gcmVhZGxpbmUoIkVudGVyIHlvdXIgaG9tZXRvd246ICIpDQoNCiMgTWVuYW1waWxrYW4gb3V0cHV0DQpjYXQoIkhlbGxvIiwgbmFtZSwgIiwgeW91IGFyZSIsIGFnZSwgInllYXJzIG9sZCBhbmQgZnJvbSIsIGhvbWV0b3duLCAiLlxuIikNCmBgYA0KDQo=